用户名: 密码: 验证码:
若干过渡金属化合物及氢键的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化学理论及方法的完善,计算机运行速度的提高,计算化学在化学学科中的重要性已经逐渐凸显出来。一方面,运用计算化学软件,人们已经能以较小的成本在计算机上实现对化学物质和化学反应的高精度研究,从而验证实验结果;另一方面,运用计算化学方法,人们能对化学物质的结构和功能以及反应做出新的合理设计,从而指导实验过程。本论文针对一些过渡金属化合物的化学反应、化合物中化学键的特点和相互作用情况等进行了从头算的理论研究,研究内容涉及体系几何构型、电子结构、催化反应过程等方面,同时还对一些含有非常规氢键的体系中分子间相互作用进行了研究。
     第一章简要介绍了从头计算方法的基本理论框架和本论文中使用的计算方法。首先简单介绍了Hartree-Fock理论以及考虑电子相关能校正的组态相互作用、多级微扰和耦合簇等多种高精度方法。其次简要介绍了密度泛函理论的基本特点和它在计算中的优缺点。最后重点介绍了电子密度拓扑分析方法和自然键轨道理论的基本特点、基本概念以及应用范例。
     第二章中我们研究了氧锰卟啉络合物逐级质子化的过程。用密度泛函理论和自然键轨道方法对氧锰卟啉络合物[Mn(V)(O)2(por)](1),[Mn(V)(O)(OH)(por)](2),[Mn(V)(O)(H2O)(por)]+(3)和[Mn(V)(OH)2(por)]+(4)基态的分子结构和电子特性进行了分析。从热力学分析、自然原子电荷布居和成键特点三个角度,我们解释了络合物2到3的质子化过程比络合物2到4更容易,说明了络合物2中OH基团中的0原子是质子更容易进攻的碱性位置。
     在第三章中,通过第一性原理的计算方法研究了丙烯在V4O11-负离子团簇上的化学反应动力学过程。我们发现,V4O11-负离子团簇和丙烯反应的主要氧化产物是环氧丙烷,同时含有丙酮和很小量的丙醛和丙烯醛。在反应中伴随氧原子、质子和电荷的转移过程。通过对V4O11-负离子团簇和丙烯反应的研究,我们提出了异相催化丙烯和氧气生成环氧丙烷的钒氧化合物负离子团簇模型,它能够高选择性并且高活性的催化丙烯生成环氧丙烷。我们也详细研究了在V4O11-负离子团簇选择性氧化丙烯到丙烯醛的反应机理和化学动力学过程,为V4O11-团簇催化丙烯生成环氧丙烷的反应中减少丙烯醛副产物的生成提供了很好的指导。
     第四章研究了含有β-agostic相互作用的过渡金属Ti化合物的成键特点。我们发现,化合物中Cα原子和Ti原子之间化学键的类型影响着键角∠Cβ-Cα-Ti的大小,而键角∠Cβ-Cα-Ti的大小影响着Cβ-Hβ键键长的长短。化合物CH3CH2TiHx(x=1,2,3)和CH3CHTiHy(y=1,2)中,Cβ-Hβ键键长的增长是由不同的原因引起的。对化合物CH3CH2TiHx(x=1,2,3),成键轨道σCβHβ到Ti原子的反键轨道(包括nTi*和(σTiH*)的超共轭相互作用对Cβ-Hβ键的增长起了决定性的作用,Cβ-Hβ键中Cβ原子的重新杂化贡献相对比较小;而化合物CH3CHTiHy (y=1,2)正好相反,Cβ-Hβ键中Cβ原子的重新杂化作用对Cβ-Hβ键键长的变化起了主要贡献。对化合物CH3CH2TiHx(x=1,2,3)和CH3CHTiHy(y=1,2),Ti原子上配位数的不同,不影响两类化合物中Cβ-Hβ键键长的变化趋势。
     第五章研究了硼烷的桥位氢原子和π-轨道之间形成的一类非常规氢键以及硼氢化合物BH4-通过双氢键作用对甘氨酸两性离子构型的特殊稳定作用。首先我们用高精度的从头算方法结合自然键轨道方法和电子密度拓扑分析在复合物C6H6…B2H6,C5H6…B2H6和C4H4…B2H6中发现了一类新型的氢键。相比于单体B2H6,桥位H原子两种不同的振动模式:(1)对称伸缩振动,复合物C6H6…B2H6和C5H6…B2H6中发生红移,而C4H4…B2H6中发生蓝移;(2)非对称伸缩振动,三种复合物中都发生了蓝移。明显不同于单键伸缩振动模式,这种多键伸缩振动模式的复杂性和多样性对全面理解氢键作用是一个挑战。其次我们用从头算的方法研究了BH4-负离子通过双氢键和甘氨酸形成复合物的稳定性,并进行了电子密度的拓扑分析。通过分析发现BH4-可以稳定两性离子的甘氨酸,它们之间形成了非常强的双氢键。这类复合物的解离过程是吸热过程,并且双氢键的强度都比以前的报道要强很多。一方面,从实验和理论上来理解甘氨酸和硼氢化合物之间的双氢键作用对理解硼烷在医药上的应用有很大帮助;另外一个方面,这个工作为在气相中找到稳定存在的甘氨酸两性离子构型提供了有益参考。
Owing to the progress of chemistry theories and the computer technology, the computational chemistry is becoming more and more important. People can do computaional and modeling researches within high accuracy on the properties of chemical materials and dynamics of chemical reactions to gain more insights in comparison with the experimental results. On the other hand, reasonable designment of the structures, functions, and reactions of the chemical materials can be supplied through the high-level computations for the instructions in the experiments. In this dissertation, we study the chemical properties and reaction processes of transition metal complexes with ab initio methods, including geometry, electronic structure, chemical bond character, reaction processes and so on. Meanwhile, we also study the novel hydrogen bonding (HB) in the specific systems.
     In the first chapter, we introduce the basic concepts of ab initio methods and the theories used in our work. Firstly, we simply introduce the Hartree Fock theory and high level methods including electronic correlation energy, such as configuration interaction, multiple perturbation theory and coupled cluster theory. Secondly, we introduce the basic properties of density functional theory and its merits and weak points in computation. Then we introduce the quantum theory atoms in molecules (QTAIM) and natural bond orbital (NBO) theory including their basic concepts, properties and their application.
     In the second chapter, we study the stepwise protonation of dioxo manganese porphyrin. The first-principles density functional calculations combined with the NBO analyses are preformed to investigate the molecular structural and electronic properties of the complexes dioxo (1), oxo-hydroxo (2), oxo-aqua (3), and bishydroxo-manganese(V) porphyrin (4) in their ground states. The thermodynamic analyses for protonation processes, the natural atomic population analyses, and the characteristics of the bonding between Mn(V) and O atoms indicate that the O atom of the hydroxyl group in 2 is a stronger base site for proton attack.
     In chapter 3, we study the chemical reaction dynamics of propene over the V4O11-anion clusters by the first-principles calculations. We find that the main C3H6O product observed in the photocatalytic experiment can be identified as propylene oxide (PO). Acetone and propanal are the by-products. Another possible product C3H4O is assigned as acrolein. We propose the reaction mechanisms which involve oxygen, proton, and the negative charge transfer. An excellent cluster model of the heterogeneous catalysis is established for the activation of the molecular oxygen and the coadsorption of propene on vanadium oxide anion clusters, in which the higher selectivity to produce PO is demonstrated, moreover, the much higher conversion to PO is hopefully archived. We also discuss in detail about oxidation dynamics and reaction mechanisms of propene to acrolein on V4O11- anion cluster. This can give good instruction for the oxidation of propene to PO by controlling the production of the by-product acrolein.
     In chapter 4, the molecular structural and electronic properties of the compounds CH3CH2TiHx(x=1,2,3) and CH3CHTiHy(y=1,2), involvingβ-agostic interactions, are studied with the first-principles density functional calculations and NBO analyses. The bond type between C and Ti atoms influences bond angle∠CβCαTi, and the bond angle∠CβCαTi influences the bond length R(CpHp). For the compounds CH3CH2TiHx(x=1,2,3) and CH3CHTiHy(y=1,2), the length of R(CβHβ) have different influencing factors. In the compounds CH3CH2TiHx(x=1,2,3), hyperconjugative interaction E(2) from bonding orbital ofσCβHβto anti-bonding orbitals of the titanium atom (including nTi* andσTiH*) is predominated while rehybridization of Cβin the Cβ—Hβis minor; On the contrary, in the compounds CH3CHTiHy(y=1,2), the rehybridization is important. On the other hand, for CH3CH2TiHx(x=1,2,3), the different coordinates number does not influence the varying trend of R(CpHp), because they have the same orbital shape for nTi* in the hyperconjugative interactions. The same is for the compounds CH3CHTiHy(y=1,2) because of the similar rehybridization characteristics.
     In chapter 5, novel HB interaction between diborane andπ-orbitals and dihydrogen bonding (DHB) in the stabilization of the zwitterionic glycine are reported. In the first part, we found a new type of HB in the complexes C6H6…B2H6, C5H6…B2H6, and C4H4…B2H6 on the basis of QTAIM and NBO analyses combined with the high-level ab initio calculations. Compared with those of free monomer B2H6, the theoretical calculations predict red shifts for complexes C6H6…B2H6 and C5H6…B2H6, and blue shift for C4H4…B2H6; for the symmetric stretching vibrational modes of the bridging H-atoms, however, three blue shifts for C6H6…B2H6, C5H6…B2H6, and C4H4…B2H6, are predicted for the asymmetric stretching vibrational modes. To the best of our knowledge, no such blue-or red-shifted vibrations for these complexes have been studied prior to this work. Distinctly different from the local stretching vibrational mode of a single bond, the complexity and variety of the blue or red-shifted multiple-bond stretching vibrations will be a challenge toward a complete understanding of HB effects. In the second part, we study the stabilization of the four complexes between BH4- anions and glycine by ab initio methods. We find that BH4-anions can stabilize the zwitterionic glycine through DHB interaction. The dissociations of the complexes are endothermic and the DHBs are stronger than those previously reported. Both the experimental and theoretical efforts to explore the nature of the DHBs between amino acids and boron hydrides are making progress towards the understanding of the medical applications of boranes. On the other hand, the work presented herein enhances the feasibility of searching for the stable zwitterionic conformers of amino acids in gas-phase complexes.
引文
[1]Schrodinger, E.Ann. Physik.1926,79,361.
    [2]Schrodinger, E. Phys. Rev.1926,28,1049.
    [3]Levine, I. N. Quantum Chemistry,3rd ed., Allyn & Bacon:Boston,1983.
    [4]Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules, Oxford Univ. Press: Oxford,1989.
    [5]Hohenberg, P.; Kohn, W. Phys. Rev.1964,136, B864.
    [6]Kohn, W.; Sham, L. J. Phys. Rev.1965,140, A1133.
    [7]Salahub, D. R.; Zerner, M. C. The Challenge of d and f electrons, ACS:Washington, D.C. 1989.
    [8]Labanowski, J. K.; Andzelm, J. W. Density Functional Methods in Chemistry, Spring-Verlag: New York,1991.
    [9]Hoffmann, R.J. Chem. Phys.1963,39,1397.
    [10]Pople, J. A.; Segal, G. A.J. Chem. Phys.1965,43,5136.
    [11]Pople, J. A.; Beveridge, D. L.近似分子轨道理论方法,江元生译,科学出版社,北京,1976.
    [12]Ridley, J. E.; Zemer, M. C. Theoret. Chim. Acta.1976,42,223.
    [13]Hartree, D. Calculations of Atomic Structure. Wiley,1957.
    [14]Born, M.; Oppenheimer, J. R. Ann. Physik.1927,84,457.
    [15]Born, M.; Huang, K. Dynamical Theory of Crystal Lattices, Oxford Univ. Press:New York, 1954.
    [16]Roothaan, C. C. J. Rev. Mod. Phys.1951,23,69.
    [17]M(?)ller, C.; Plesset, M. S. Phys. Rev.1934,46,618.
    [18]Bartlett, R. J.; Purvis, G. D. Int. J. Quant. Chem.1995,46,701.
    [19]Paldus, J. Coupled-cluster Theory in Method in Computational Molecular Physics, Wilson, S.; Diercksen, G. H. F. ed. New York,1992.
    [20]Shavitt, Ⅰ. The Method of Configuration Interaction, in Methods of Electronic Structure Theory, Schaefer Ⅲ, H. F. ed. Plenum Press, New York.1977.
    [21]Sherrill, C. D.; Schaefer Ⅲ, H. F.Adv. Quant. Chem.1999,34,143.
    [22]Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys.1980,58,1200.
    [23]Becke, A. D. Phys. Rev. A 1988,38,3098.
    [24]Perdew, J. P.; Wang, Y. Phys. Rev. B1992,45,13244.
    [25]Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988,37,785.
    [26]Perdew, J. P. Phys. Rev. B 1986,33,8822.
    [27]Perdew, J. P.; Burke, K. Int. J. Quant. Chem.1996,57,767.
    [28]Bader, R. F. W.; Beddall, P. J. Chem. Phys.1972,56,3320.
    [29]Bader, R. F. W. Atoms in Molecules-A Quantum Theory, Oxford University Press, Oxford, 1990.
    [30]Matta, C. F.; Boyd, R. J. The Quantum Theory of Atoms in Molecules, Wiley-VCH.2006.
    [31]Popelier, P.; Logothetis, G. J. Organomet. Chem.1998,555,101.
    [32]Popelier, P.; Bader, R. Chem. Phys. Lett.1992,189,542.
    [33]Popelier, P.; Bader, R. J. Phys. Chem.1994,98,4473.
    [34]Koch, U.; Popelier, P. J. Phys. Chem.1995,99,9747.
    [35]Popelier, P. J. Phys. Chem. A 1998,102,1873.
    [36]Parr, R. G; Ayers, P. W; Nalewajski, R. F. J. Phys. Chem. A 2005,109,3957.
    [37]Matta, C. F.; Bader, R. F. W. J. Phys. Chem. A 2006,110,6365.
    [38]Lowdin, P. O. Phys. Rev.1955,97,1474.
    [39]Reed, A. E.; Weinhold, F. J. Chem. Phys.1983,78,4061.
    [40]Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev.1988,88,899.
    [41]Almlof, J.; Taylor, P. R. Adv. Quant. Chem.1991,22,301.
    [42]Reed, A. E.; Weinstock, R. B.; Weinhold, F. Chem. Phys.1985,83,735.
    [43]Carpenter, J. E.; Weinhold, F. J. Mol. Struct. (Theochem) 1988,169,41.
    [44]Weinhold, F.; Landis, C. R. Valency and Bonding:A Natural Bond Orbital Donor-Acceptor Perspective, Cambridge University Press, New York,2005.
    [45]Luthi, H. P.; Ammeter, J. H.; Almof, J.; Faegri, K.J. Chem. Phys.1982,77,2002.
    [46]Collins, J. B.; Streitwieser, J. J. Comput. Chem.1980,4,81.
    [1]Bernadou, J.; Fabiano, A. S.; Robert, A.; Meunier, B. J. Am. Chem. Soc.1994,116,9375.
    [2]Bryliakov, K. P.; Kholdeeva, O. A.; Vanina, M. P.; Talsi, E. P. J. Mol. Catal. A 2002,178,47.
    [3]Carrell, T. G; Tyryshkin, A. M.; Dismukes, G. C. J. Biol. Inorg. Chem.2002,7,2.
    [4]Groves, J. T. Proc. Nat. Acad. Sci.2003,100,3569.
    [5]Groves, J. T.; Ahn, K. H.; Quinn, R. J. Am. Chem. Soc.1988,110, 4217.
    [6]Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev.2004,104,3947.
    [7]Shimazaki, Y.; Nagano, T.; Takesue, H.; Ye, B. H.; Tani, F.; Naruta, Y. Angew. Chem., Int. Et. 2004,43,98.
    [8]Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.; Krauss, N.; Saenger, W.; Orth, P. Nature 2001, 409,739.
    [9]Groves, J. T.; Lee, J. B.; Maria, S. S. J. Am. Chem. Soc.1997,119,6269.
    [10]Lee, J. B.; Hunt, J. A.; Groves, J. T. J. Am. Chem. Soc.1998,120,6053.
    [11]Arnaud, P.; Zakrzewska, K.; Meunier, B. J. Comput. Chem.2003,24,797.
    [12]de Visser, S. P.; Kumar, D.; Neumann, R.; Shaik, S. Angew. Chem., Int. Ed.2004,43,5661.
    [13]de Visser, S. P.; Ogliaro, F.; Gross, Z.; Shaik, S. Chem. Eur. J.2001,7,4954.
    [14]Giannozzi, P.; De Angelis, F.; Car, R. J. Chem. Phys.2004,120,5903.
    [15]Guallar, V; Baik, M. H.; Lippard, S. J.; Friesner, R. A. Proc. Nat. Acad. Sci.2003,100,6998.
    [16]Kamachi, T.; Yoshizawa, K. J. Am. Chem. Soc.2003,125,4652.
    [17]Ogliaro, F.; de Visser, S. P.; Groves, J. T.; Shaik, S. Angew. Chem. Int. Ed.2001,40,2874.
    [18]Schoneboom, J. C.; Cohen, S.; Lin, H.; Shaik, S.; Thiel, W. J. Am. Chem. Soc.2004,126, 4017.
    [19]Shaik, S.; Cohen, S.; de Visser, S. P.; Sharma, P. K.; Kumar, D.; Kozuch, S.; Ogliaro, F.; Danovich, D. Eur. J. Inorg. Chem.2004,35,207.
    [20]De Angelis, F.; Jin, N.; Car, R.; Groves, J. T. Inorg. Chem.2006,45,4268.
    [21]Jin, N.; Ibrahim, M.; Spiro, T. G.; Groves, J. T. J. Am. Chem. Soc.2007,129,12416.
    [22]Song, W. J.; Seo, M. S.; George, S. D.; Ohta, T.; Song, R.; Kang, M. J.; Tosha, T.; Kitagawa, T.; Solomon, E. I.; Nam, W. J. Am. Chem. Soc.2007,129,1268.
    [23]Gross, Z. Angew. Chem. Int. Ed.2008,47,2737.
    [24]Weinhold, F.; Landis, C. Valency and Bonding, Cambridge University Press, Cambridge,
    2005.
    [25]Frisch,M.J.;Trucks,G W.; Schlegel,H.B.;Scuseria,G E.;Robb,M.A.;Cheeseman,J.R.; Montgomery,Jr. J.A.;Vreven,T.;Kudin,K.N.;Burant,J.C.;Millam,J.M.;Iyengar,S.S.; Tomasi,J.;Barone,V;Mennucci,B.;Cossi,M.;Scalmani,G;Rega,N.;Petersson,G A.; Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.; Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H. P.;Cross,J.B.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin, A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Voth,G. A.; Salvador,P.;Dannenberg,J.J.;Zakrzewski,V G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui, Q.;Baboul,A.G.;Clifrord,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G;Liashenko,A.; Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.; Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.; Gonzalez,C.;Pople,J.A.Gaussian03;Gaussian,Inc.:Pittsburgh PA,2003.
    [26]Becke,A.D.,Chem.Phys.1993,98,5648.
    [27]Lee,C.;Yang,W.;Parr,R.G Phys.Rev.B 1988,37,785.
    [28]Reiher,M.;Salomon,O.;Hess,B.A.Theor. Chem.Acc.2001,107,48.
    [29]Perdew,J.P;Burke,K.;Wang,Y Phys.Rev.B 1996,54,16533.
    [30]Becke,A.D.Phys.Rev. 1988,38,3098.
    [31]Cances,M.T.;Mennucci,B.;Tomasi,J.J.Chem.Phys.1997,107,3032.
    [32]Mennucci,B.;Tomasi,J.,Chem.Phys.1997,106,5151.
    [33]Mennucci,B.;Cances,J.;Tomasi,M.T,Phys.Chem.B 1997,101,10506.
    [34]Glendening,E.D.;Badenhoop,J.K.;Reed,A.E.;Carpenter, J.E.;Bohmann,J.A.;Morales, C.M.;Weinhold,F NBO 5.0,Theoretical Chemistry Institute:University of Wisconsin, Madison,2001.
    [35]Goldberg,D.P.;Telser,J.;Krzystek,J.;Montalban,A.G;Brunel,L.C.;Barrett,A.G M.; Hoffman,B.M.J.Am.Chem.Soc.1997,119,8722.
    [36]Krzystek,J.;Telser,J.;Pardi,L.A.;Goldberg,D.P.;Hoffman,B.M.;Brunel,L.C.Inorg. Chem.1999,38,6121.
    [37]Collins,T.J.;Gordon-Wylie,S.W.J.Am.Chem.Soc.1989,111,4511.
    [38]Collins,T J.;Powell,R.D.;Slebodnick,C.;Uffelman,E.S.J.Am.Chem.Soc.1990,112, 899.
    [39]Mandimutsira, B. S.; Ramdhanie, B.; Todd, R. C.; Wang, H. L.; Zareba, A. A.; Czemuszewicz, R. S.; Goldberg, D. P. J. Am. Chem. Soc.2002,124,15170.
    [40]Workman, J. M.; Powell, R. D.; Procyk, A. D.; Collins, T. J.; Bocian, D. F. Inorg. Chem.1992, 31,1548.
    [41]Caputo, R. E.; Willett, R. D.; Muir, J. A. Acta. Cryst. B 1976,32,2639.
    [42]Glendening, E. D.; Weinhold, F. J. Comput. Chem.1998,19,593.
    [43]Glendening, E. D.; Weinhold, F. J. Comput. Chem.1998,19,610.
    [44]Glendening, E. D.; Badenhoop, J. K.; Weinhold, F. J. Comput. Chem.1998,19,628.
    [1]Ainsworth, S. J. C&EN, March 1992,2,9.
    [2]de Almeida, L. A. L.; Deep, G. S.; Lima, A. M. N.; Khrebtov, I. A.; Malyarov, V. G.; Neff, H. Appl. Phys. Lett.2004,85,3605.
    [3]Whittingham, M. S. Chem. Rev.2004,104,4271.
    [4]Krusin-Elbaum, L.; D. Newns, M.; Zeng, H.; Derycke, V.; Sun, J. Z.; Sadstrom, R. Nature 2004,431,672.
    [5]Nijhuis, T. A.; Makkee, M.; Mouljin, J. A.; Weckhuysen, B. M. Ind. Eng. Chem. Res.2006, 45,3447.
    [6]Weckhuysen, B. M.; Keller, D. E. Catal. Today 2003,78,25.
    [7]Thiele, G. F.; Roland, E.J. Mol. Catal. A 1997,117,351.
    [8]Jenzer, G.; Mallat, T.; Maciejewski, M.; Eigenmann, F.; Baiker, A. App. Catal. A 2001,208, 125.
    [9]Chen, M. S.; Goodman, D. W. Science,2004,306,252.
    [10]Nijhuis, T. A.; Visser, T.; Weckhuysen, B. M. Angew. Chem.2005,117,1139.
    [11]Lee, S.; Molina, L. M.; Lopez, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S. Angew. Chem.2009,121,1495.
    [12]Dibenedetto, A.; Aresta, M.; Fragale, C; Distaso, M.; Pastore, C.; Venezia, A. M.; Liu, C.-J.; Zhang, M. Catal. Today 2008,137,44.
    [13]Qi, C.; Okumura, M.; Akita, T.; Haruta, M. Appl. Catal.A 2004,263,19.
    [14]Zwijnenburg, A.; Makkee, M.; Moulijn, J. A. Appl. Catal. A 2004,270,49.
    [15]Feyel, S.; Dobler, J.; Schroder, D.; Sauer, J.; Schwarz, H. Angew. Chem.2006,118,4793.
    [16]Justes, D. R.; Mitric, R.; Moore, N. A.; Bonacic-Koutecky, V.; Castleman Jr., A. W. J. Am. Chem. Soc.2003,125,6289.
    [17]Dong, F.; Heinbuch, S.; Xie, Y.; Bernstein, E. R.; Rocca, J. J.; Wang, Z.-C.; Ding, X.-L.; He, S.-G. J. Am. Chem. Soc.2008,130,1932.
    [18]Gracia, L.; Sambrano, J. R.; Andres, J.; Beltran, A. Organmetallics 2006,25,1643.
    [19]Fielicke, A.; Mitric, R.; Meijer, G; Bonacic-Koutecky, V.; von Helden, G J. Am. Chem. Soc. 2003,125,15716.
    [20]Bell, R. C.; Castleman Jr., A. W. J. Phys. Chem. A 2002,106,9893.
    [21]Feyel, S.; Schroder, D.; Schwarz, H. J. Phys. Chem. A 2006,110,2547.
    [22]Feyel, S.; Schwarz, H.; Schroder, D.; Daniel, C.; Hartl, H.; Dobler, J.; Sauer, J.; Santambrogio, G.; Woste, L.; Asmis, K. R. Chem. Phys. Chem.2007,8,1640.
    [23]Zemski, K. A.; Justes, D. R.; Castleman Jr., A. W. J. Phys. Chem. A 2001,105,10237.
    [24]Li, S.; Mirabal, A.; Demuth, J.; Woste, L.; Siebert, T.J. Am. Chem. Soc.2008,130.16832.
    [25]Santambrogio, G.; Brummer, M.; Woste, L.; Dobler, J.; Sierka, M.; Sauer, J.; Meijer, G.; Asmis, K. R. Phys. Chem. Chem. Phys.2008,10,3992.
    [26]Grasselli, R. K. Handbook of Heterogeneous Catalysis, Ertl, G.; Knoezinger, H.; Weitkamp, J. ed. VCH:Verlagsgesellschaft mbH, Weinheim,1997.
    [27]Grasselli, R. K. Top. Catal.2002,21,79.
    [28]Fattore, V.; Fuhrman, Z. A.; Manara, G.; Notarj, B. J. Catal.1975,37,223.
    [29]Dadyburjor, D. B.; Jewur, S. S.; Ruckenstein, E. Catal. Rev.1979,19,293.
    [30]Carbucicchio, M.; Centi, G.; Forzatti, P.; Trifiro, F.; Villa, P. L. J. Catal.1987,107,307.
    [31]Lieto, J. M.; Bielsa, R.; Kremenic, G.; Fierro, J.; Stud, L. Surf. Sci.Catal.1990,55,295.
    [32]He, D.; Ueda, W.; Moro-Oka, Y. Catal. Lett.1992,12,35.
    [33]Schultz, K. H.; Cox, D. F. J. Catal.1993,143,464.
    [34]Moro-oka, Y.; Ueda, W. Adv. Catal.1995,40,233.
    [35]Zhao, C.; Wachs, I. E. Catal. Today 2006,118,332.
    [36]Sampson, R. J.; Shooter, D. Oxid. Combust. Rev.1965,1,225.
    [37]Voge, H. H.; Adams, C. R.Adv. Catal.1967,77,151.
    [38]Sachtler, W. M. H. Catal. Rev.1970,4,27.
    [39]Margolis, L. Y. Catal. Rev.1973,8,241.
    [40]Hucknall, D. J. Selective Oxidation of Hydrocarbons, Academic Press:New York,1974.
    [41]Arora, N.; Deo, G.; Wachs, I. E.; Hirt, A. M. J. Catal.1995,159,1.
    [42]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador,P.;Dannenberg,J.J.;Zakrzewski,V G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui, Q.;Baboul,A.G;Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.; Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y; Nanayakkara,A.;Challacombe,M.;Gill,P M.W.;Johnson,B.;Chen,W.;Wong,M.W.; Gonzalez,C.;Pople,J.A.Gaussian03;Gaussian,Inc.:Pittsburgh PA,2003.
    [43]Lee,C.;Yang,W.;Parr, R.G Phys.Rev.B 1988,37,785.
    [44]Becke,A.D.J.Chem.Phys.1993,98,5648.
    [45]Schafer,A.;Huber,C.;Ahlrichs,R.J.Chem.Phys.1994,100,5829.
    [46]Fukui,K.J.Phys.Chem.1970,74,4161.
    [47]Gonzalez,C.;Schlegel,H.B.J.Chem.Phys.1989,90,2154.
    [48]Gonzalez,C.;Schlegel,H.B.J.Phys.Chem.1990,94,5523.
    [49]Bachmann,H.G.;Ahmed,F. R.;Barnes,W. H.Z. Kristakkogr.,Kristallgeom.,Kristallphs., Kristallchem.1961,115,110.
    [50]Rudnyi,E.B.;Kaibicheva,E.A.;Sidorov,L.N.J.Chem.Thermdyn.1993,25,929.
    [51]Wu,H.;Wang,L.-S.J.Chem.Phys.1996,105,102237.
    [52]Vyboishchikov,S.F.;Sauer,J.Phys.Chem.A 2000,104,10913.
    [53]Li,H.-B.;Tian,S.X.;Yang,J.Chem.Eur.J.2009,15,10747.
    [54]Aso,I.;Furukawa,S.;Yamazoe,N.;Seiyama,T.J.Catal. 1980,64,29.
    [1]Brookhart, M.; Green, M. L. H. J. Organomet. Chem.1983,250,395.
    [2]Brookhart, M; Green, M. L. H.; Wong, L. L. Prog. Inorg. Chem.1988,36,1.
    [3]Placa, S. L.; Ibers, J. A. Inorg. Chem.1965,4,778.
    [4]Trofimenko, S. J. Am. Chem. Soc.1968,90,4754.
    [5]Trofimenko, S. Inorg. Chem.1970,9,2493.
    [6]Cotton, F. A.; LaCour, T.; Stanislowski, A. G. J. Am. Chem. Soc.1974,96,5074.
    [7]Cotton, F. A.; Day, V. W. J. Chem. Soc. Chem. Commun.1974,415.
    [8]Kaufmann, E.; Raghavachari, K.; Reed, A. E.; Schleyer, P. v. R. Organometallics 988,7, 1597.
    [9]Brookhart, M.; Green, M. L. H.; Parkin, G. Proc. Natl. Acad. Sci.2007,104,6908.
    [10]Schneider, J. J. Angew. Chem. Int. Ed.1996,35,1068.
    [11]Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G Principles and Applications of Organotransition Metal Chemistry; University Science Books; Mill Valley, CA,1987.
    [12]Fellmann, J. D.; Schrock, R. R.; Traficante, D. D. Organometallics 1982,1,481.
    [13]Brookhart, M.; Lincoln, D. M.; Bennett, M. A.; Pelling, S. J. Am. Chem. Soc.1990,112, 2691.
    [14]Burger, B. J.; Thompson, M. E.; Cotter, W. D.; Bercaw, J. E. J. Am. Chem. Soc.1990,112, 1566.
    [15]Grubbs, R. H.; Coates, G. W. Acc. Chem. Res.1996,29,85.
    [16]Hirano, M.; Shibasaki, T.; Komiya, S.; Bennett, M. A. Organometallics 2002,21,5738.
    [17]Stewart, R. F.; Davidson, E. R.; Simpson, W. T. J. Chem. Phys.1965,42,3175.
    [18]Coppens, P. X-Ray Charge Densities and Chemical Bonding, Oxford University Press, New York,1997.
    [19]Berry, A.; Dawoodi, Z.; Derome, A. E.; Dickinson, J. M.; Downs, A. J.; Green, J. C.; Green, M. L. H.; Hare, P. M.; Payne, M. P.; Rankin, D. W. H.; Robertson, H. E. J. Chem. Soc. Chem. Commun.1986,520.
    [20]Blom, R.; Rypdal, K.; Mena, M.; Royo, P.; Serrano, R. J. Organomet. Chem.1990,391,47.
    [21]Brookhart, M.; Green, M. L. H.; Pardy, R. B. A. J. Chem. Soc. Chem. Commun.1983,691.
    [22]Green, M. L. H.; Hughes, A. K.; Popham, N. A.; Stephens, A. H. H.; Wong, L.-L.J. Chem. Soc. Dalton Trans.1992,3077.
    [23]Haaland, A.; Scherer, W.; Ruud, K.; McGrady, G. S.; Downs, A. J.; Swang, O. J. Am. Chem. Soc.1998,120,3762.
    [24]Fryzuk, M. D.; Johnson, S. A.; Rettig, S. J. J. Am. Chem. Soc.2001,123,1602.
    [25]Lukens, W. W.; Smith, M. R.; Andersen, R. A. J. Am. Chem. Soc.1996,118,1719.
    [26]Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc.1987,109,203.
    [27]Jordan, R. F.; Bradley, P. K.; Baenziger, N. C.; LaPointe, R. E. J. Am. Chem. Soc.1990,112, 1289.
    [28]McGrady, G. S.; Downs, A. J.; Hamblin, J. M.; McKean, D. C. Organometallics 1995,14, 3783.
    [29]Robertson, A. H. J.; McQuillan, G. P.; McKean, D. C. J. Chem. Soc. Dalton Trans.1995, 3941.
    [30]Conroy-Lewis, F. M.; Mole, L.; Redhouse, A. D.; Litster, S. A.; Spencer, J. L. J. Chem. Soc. Chem. Commun.1991,1601.
    [31]McGrady, G. S.; Downs, A. J.; Haaland, A.; Scherer, W.; McKean, D. C. J. Chem. Soc. Chem. Commun.1997,1547.
    [32]McKean, D. C.; McGrady, G. S.; Downs, A. J.; Scherer, W.; Haaland, A. Phys. Chem. Chem. Phys.2001,3,2781.
    [33]Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am.Chem. Soc.1992,114,8687.
    [34]Kawamura-Kuribayashi, H.; Koga, N.; Morokuma, K. J. Am. Chem. Soc.1992,114,2359.
    [35]Koga, N.; Morokuma, K. Chem. Rev.1991,91,823.
    [36]Yoshida, T.; Koga, N.; Morokuma, K. Organometallics 1995,14,146.
    [37]Woo, T. K.; Fan, L.; Ziegler, T. Organometallics 1994,13,432.
    [38]Fan, L.; Harrison, D.; Woo, T. K.; Ziegler, T. Organometallics 1995,14,2018.
    [39]Margl, P.; Deng, L.; Ziegler, T. J. Am. Chem. Soc.1999,121,154.
    [40]Margl, P.; Deng, L.; Ziegler, T. Organometallics 1998,17,933.
    [41]Obara, S.; Koga, N.; Morokuma, K. J. Organomet. Chem.1984,270, C33.
    [42]Cooper, A. C.; Clot, E.; Huffinann, J. C.; Streib, W. E.; Maseras, F.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc.1999,121,97.
    [43]Ujaque, G.; Cooper, A. C.; Maseras, F.; Eisenstein, O.; Caulton, K. G. J. Am. Chem. Soc. 1998,120,361.
    [44]Huang, D.; Sreib, W. E.; Bollinger, J. C; Caulton, K. G.; Winter, R. F.; Scheiring, T. J. Am. Chem. Soc.1999,121,8087.
    [45]Etienne, M.; Carfagna, C.; Lorente, P.; Mathieu, R.; de Montauzon, D. Organometallics 1999, 18,3075.
    [46]Cini, R.; Cavaglioni, A. Inorg. Chem.1999,38,3751.
    [47]Ruiz, E.; Salahub, D. R.; Vela, A. J. Phys. Chem.1996,100,12265.
    [48]Green, M. L. H.; Hughes, A. K. J. Chem. Soc. Chem. Commun.1991,1231.
    [49]Berger, S.; Bock, W.; Frenking, G.; Jonas, V.; MRller, F. J. Am. Chem. Soc.1995,117,3820.
    [50]Eisenstein, O.; Jean, Y. J. Am. Chem. Soc.1985,107,1177.
    [51]Williamson, R. L.; Hall, M. B. J. Am. Chem. Soc.1988,110,4428.
    [52]P.; Knappe, Rbch, N. J. Organomet. Chem.1989,359, C5.
    [53]Jonas, V.; Boehme, C.; Frenking, G. Inorg. Chem.1996,35,2097.
    [54]Field, C. F.; Green, J. C.; Kaltsoyannis, N.; McGrady, G. S.; Moody, A. N.; Siggel, M.; de Simone, M. J. Chem. Soc. Dalton Trans.1997,213.
    [55]Demolliens, A.; Jean, Y.; Eisenstein, O. Organometallics 1986,5,1457.
    [56]Weiss, H.; Haase, F.; Ahlrichs, R. Chem. Phys. Lett.1992,194,492.
    [57]Endo, J.; Koga, N.; Morokuma, K. Organometallics 1993,12,2777.
    [58]Munakata, H.; Ebisawa, Y.; Takashima, Y.; Wrinn, M. C.; Scheiner, A. C.; Newsam, J. M. Catal. Today 1995,23,402.
    [59]Koga, N.; Obara, S.; Morokuma, K.J. Am. Chem. Soc.1984,106,4625.
    [60]Brammer, L.; Zhao, D.; Ladipo, F. T.; Braddock-Wilking, J. Acta. Cryst.1995, B51,632.
    [61]Braga, D.; Grepioni, F.; Biradha, K.; Desiraju, G. R. J. Chem. Soc. Dalton. Trans.1996, 3925.
    [62]Braga, D.; Grepioni, F.; Tedesco, E. Organometallics 1997,16,1846.
    [63]Scherer, W.; McGrady, G. S. Angew. Chem. Int. Ed.2004,43,1782.
    [64]Scherer, W.; Sirsch, P.; Shorokhov, D.; Tafipolsky, M.; McGrady, G. S.; Gullo, E. Chem. Eur. J.2003,9,6057.
    [65]Popelier, P. L. A.; Logothetis, G. J. Organomet. Chem.1998,555,101.
    [66]Lein, M. Coord. Chem. Rev.2009,253,625.
    [67]Tomaszewski, R.; Hyla-Kryspin, I.; Mayne, C. L.; Arif, A. M.; Gleiter, R.; Ernst, R. D.J. Am.
    Chem.Soc.1998,120,2959.
    [68]Kaupp,M.Chem.Eur.J.1998,4,2059.
    [69]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G. E.;Robb,M.A.;Cheeseman,J.R.; Montgomery,Jr. J.A.;Vreven,T;Kudin,K.N.;Burant,J.C.;Millam,J.M.;Iyengar,S.S.; Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.;Scalmani,G.;Rega,N.;Petersson,G. A.; Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.; Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Klene,M.;Li,x.;Knox,J.E.;Hratchian,H. P.;Cross,J.B.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin, A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Voth,G. A.; Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui, Q.;Baboul,A.G;Clifrord,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.; Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.; Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.; Gonzalez,C.;Pople,J.A.Gaussian03;Gaussian,Inc.:Pittsburgh PA,2003.
    [70]Glendening,E.D.;Badenhoop,J.K.;Reed,A.E.;Carpenter,J.E.;Bohmann,J.A.;Morales, C.M.;Weinhold,F. NBO5.0,Theoretical Chemistry Institure:University of Wisconsin, Madison,2001.
    [1]Scheiner, S. Hydrogen Bonding, Oxford University Press:New York,1997.
    [2]Jeffrey, G. A. An Introduction to Hydrogen Bonding, Coford University Press:New York, 1997.
    [3]Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond, Oxford University Press:Oxford,1999.
    [4]Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond, Freeman, W. H. ed. San Francisco, CA,1960.
    [5]Kollman, P. A.; Allen, L. C. Chem. Rev.1972,72,283.
    [6]Jeffrey, G. A.; Saenger, W. Hydrogen Bonding in Biological Structures, Springer-Verlag: Berlin, Germany,1991.
    [7]Steiner, T. Angew. Chem. Int. Ed.2002,41,48.
    [8]Hadzi, D. Theoretical Treatments of Hydrogen Bonding, John Wiley & Sons:New York, 1997.
    [9]Hobza, P.; Spirko, V.; Selzle, H. L.; Schlag, E. W. J. Phys. Chem. A 1998,102,2501.
    [10]Hobza. P.; Havlas, Z. Chem. Rev.2000,100,4253.
    [11]Caminati, W.; Melandri, S.; Moreschini, P.; Favero, P. G. Angew. Chem. Int. Ed.1999,38, 2924.
    [12]Hobza, P.; Havlas, Z. Chem. Phys. Lett.1999,303,447.
    [13]Van der Veken, B. J.; Herrebout, W. A.; Szostak, R.; Shchepkin, D. N.; Havlas, Z.; Hobza, P. J. Am. Chem. Soc.2001,123,12290.
    [14]Delanoye, S. N.; Herrebout, W. A.; Van der Veken, B. J. J. Am. Chem.Soc.2002,124,7490.
    [15]Hobza, P.; Havlas, Z. Theor. Chem. Acc.2002,108,325.
    [16]Delanoye, S. N.; Herrebout, W. A.; Van der Veken, B. J. J. Am. Chem. Soc.2002,124,11854.
    [17]Matsuura, H.; Yoshida, H.; Hieda, M.; Yamanaka, S.; Harada, T.; Shinya, K.; Ohno, K. J. Am. Chem. Soc.2003,125,13910.
    [18]Alonso, J. L.; Antolinez, S.; Blanco, S.; Lesarri, A.; Lopez, J. C.; Caminati,W. J. Am. Chem. Soc.2004,126,3244.
    [19]Diana, E.; Stanghellini, P. L. J. Am. Chem. Soc.2004,126,7418.
    [20]Castellano, R. K. Curr. Org. Chem.2004,8,845.
    [21]Kryachko, E. S. Hydrogen Bonding-New Insights, Grabowski, S. J., Ed.; Springer:
    Dordrecht,The Netherlands,2006.
    [22]Alabugin,I.V.;Manoharan,M.;Peaboby,S.;Weinhold,F.J.Am.Chem.Soc.2003,125, 5973.
    [23]McDowell,S.A.C.;Buckingham,A.D.J.Am.Chem.Soc.2005,127,15515.
    [24]Hamilton,E.J.M.;Kultyshev,R.G.;Du,B.;Meyers,E.A.;Liu,S.;Hadad,C.M.;Shore,S. G. Chem.Eur.J.2006,12,2571.
    [25]Li,H.Z.;Min,D.H.;Shore,S.G.;Lipscomb,W.N.;Yang,W.Inorg.Chem.2007,46,3956.
    [26]Head-Gordon,M.;Pople,J.A.;Frisch,M.J.Chem.Phys.Lett.1988,153,503.
    [27]Simon,S.;Duran,M.;Dannenberg,J.J.J.Chem.Phys.1996,,105,11024.
    [28]Cizek,J.Adv.Chem.Phys.1969,14, 35.
    [29]Pople,J.A.;Krishnan,R.;Schlegel,H.B.;Binkley,J.S.Int.J.Quantum Chem.1978,14, 545.
    [30]Bartlett,R.J.;Purvis,G. D.Int.Quantum Chem.1978,14,516.
    [31]Weinhold,F.;Landis,C.Valency and Bonding,Cambridge University Press:Cambridge, 2005.
    [32]Bader,R.F.W.Atoms in Molecules:A Quantum Theory,Clarendon:Oxford,1990.
    [33]Popelier,P.Atoms in Molecules:An Introduction,Prentice-Hall:Harlow,2000.
    [34]Frisch,M.J.;Trucks,G W.;Schlegel,H.B.;Scuseria,G E.;Robb,M.A.;Cheeseman,J.R.; Montgomery,Jr. J.A.;Vreven,T.;Kudin,K.N.;Burant,J.C.;Millam,J.M.;Iyengar,S.S.; Tomasi,J.;Batone,V.;Mennucci,B.;Cossi,M.;Scalmani,G.;Rega,N.;Petersson,G A.; Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.; Nakajima,T.;Honda,Y.;Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H. P.;Cross,J.B.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin, A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y;Morokuma,K.;Voth,G A.; Salvador,P.;Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui, Q.;Baboul,A.G;Clifford,S.;Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.; Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y; Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.; Gonzalez,C.;Pople,J.A.Gaussian03.;Gaussian,Inc.:Pittsburgh PA,2003.
    [35]AIM 2000:A Program to Analyze and Visualize Atoms in Molecules; see
    http://www.aim2000.de/.
    [36]Glendening, E. D.; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Weinhold, F. NBO5.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI,2001.
    [37]Boys, S. F.; Bernardi, F. Mol. Phys.1970,9,553.
    [38]Desiraju, G. R.Acc. Chem. Res.2002,35,565.
    [39]Jeziorski, B.; Moszynski, R.; Szalewicz, K. Chem. Rev.1994,94,1887.
    [40]Jeziorski, B.; Moszynski, R.; Ratkiewicz, A.; Rybak, S.; Szalewicz, K.; Williams, H.L. Methods and Techniques in Computational Chemistry, Clementi, E. ed. STEF:Cagliari, 1993.
    [41]Data are from the NIST webbook http://webbook.nist.org/chemistry. Cyclobutadiene:Kohn, D. W.; Chen, P. J. Am. Chem. Soc.1993,115,2844.
    [42]1,3-Cyclopentadiene:Kiselev, V. D.; Sakhabutdinov, A. G.;Shakirov, I. M.; Zverev, V. V.; Konovalov, A. I. Zh. Org. Khim.1992,228,2244.
    [43]Benzene:Nemeth, G. I.; Selzle, H. L.; Schlag, E. W. Chem.Phys. Lett.1993,215,151.
    [44]Joseph, J.; Jemmis, E. D. J. Am. Chem. Soc.2007,129,4620.
    [45]Gothelf, K. V.; Jorgensen, K. A. Chem. Rev.1998,98,863.
    [46]Bouchard, G.; Pagliara, A.; Carrupt, P. A.; Testa, B.; Gobry, V.; Girault, H. P. Pharm. Res. 2002,19,1150.
    [47]Theodore, T. R.; Van Zandt, R. L.; Carpenter, R. H. Cancer Biother. Radio.1997,12,351.
    [48]Biegle, A.; Mathis, A.; Galin, J.-C.; Macromol. Chem. Phys.1999,200,1393.
    [49]Locke, M. J.; Mclver, Jr., R. T. J. Am. Chem. Soc.1983,105,4226.
    [50]Chapo, C. J.; Paul, J. B.; Provencal, R. A.; Roth, K.; Saykally, R. J. J. Am. Chem. Soc.1998, 120,12956.
    [51]Jensen, J. H.; Gordon, M. S.J. Am. Chem. Soc.1991,113,7917.
    [52]Csaszar, A. G. J. Am. Chem. Soc.1992,114,9568.
    [53]Hu, C.-H.; Schaefer Ⅲ, H. F. J. Am. Chem. Soc.1993,115,1347.
    [54]Ding, Y.; Krogh-Jespersen, K. Chem. Phys. Lett.1992,199,261.
    [55]Bachrach, S. M. J. Phys. Chem. A 2008,112,3722.
    [56]Tian, S. X.; Sun, X.; Cao, R.; Yang, J. J. Phys. Chem. A 2009,113,480.
    [57]Wu, R.; McMahon, T. B. Angew. Chem.2007,119,3742.
    [58]Wu, R.; McMahon, T. B. J. Am. Chem. Soc.2008,130,3065.
    [59]Bush, M. F.; Oomens, J.; Sakally, R. J.; Williams, E. R. J. Am. Chem. Soc.2008,130,6463.
    [60]Jockusch, R. A.; Lemoff, A. S.; Williams, E. R. J. Am. Chem. Soc.2001,123,12255.
    [61]Zhang, K.; Zimmerman, D. M.; Chung-Phillips, A.; Casssdy, C. J. Am. Chem. Soc.1993,115, 10812.
    [62]Kass, S. R. J. Am. Chem. Soc.2005,127,13098.
    [63]Yang, G.; Zu, Y.; Liu, C;. Fu, Y.; Zhou, L. J. Phys. Chem. B 2008,112,7104.
    [64]Tian, S. X. J. Phys. Chem. B 2004,108,20388.
    [65]Fanfrlik, J.; Lepsik, M.; Horinek, D.; Havlas, Z.; Hobza, P. Chem. Phys. Chem.2006,7,1100.
    [66]Fanfrlik, J.; Hnyk, D.; Lepsik, M.; Hobza, P. Phys. Chem.Chem. Phys.2007,9,2085.
    [67]Wong, H. S.; Tolpin, E. I.; Lipscomb, W. N. J. Med. Chem.1974,17,792.
    [68]Sneath, R. L.; Jr., Soloway, A. H.; Dey, A. S. J. Med. Chem.1974,17,796.
    [69]Cigler, P.; Kozisek, M.; Rezacova, P.; Brynda, J.; Otwinowski, Z.; Pokorna, J.; Plesek, J.; Gruner, B.; Doleckova-Maresova, L.; Masa, M.; Sedlacek, J.; Bodem, B.; Krausslich, H. G.; Kral, V.; Konvalinka, J. Proc. Natl. Acad. Sci.2005,102,15394.
    [70]Belkova, N. V.; Shubina, E. S.; Epstein, L. M. Acc. Chem. Res.2005,38,624.
    [71]Richardson, T. B.; de Gala, S.; Crabtree, R. H.; Siegbahn, P. E. M. J. Am. Chem. Soc.1995, 117,12875.
    [72]Popelier, P. L. A. J. Phys. Chem. A 1998,102,1873.
    [73]Gutowski, M.; Skurski, P.; Simons, J.J. Am. Chem. Soc.2000,122,10159.
    [74]Rodriguez-Santiago, L.; Sodupe, M.; Oliva, A.; Bertran, J. J. Phys. Chem. A 2000,104,1256.
    [75]Diken, E. G.; Headrick, J. M.; Johnson, M. A. J. Chem. Phys.2004,120,9899.
    [76]Diken, E. G.; Headrick, J. M.; Johnson, M. A. J. Chem. Phys.2005,122,224317.
    [77]Xu, S.; Nilles, M.; Bowen, Jr., K. H. J. Chem. Phys.2003,119,10696.
    [78]Ahn, D.-S.; Kang, A.-R.; Lee, S.; Kim, B.; Kim, S. K.; Neuhauser, D.J. Chem. Phys.2005, 722,084310.
    [79]Haranczyk, M.; Gutowski, M. J. Chem. Phys.2008,128,125101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700