用户名: 密码: 验证码:
界面组装配位聚合物纳米结构材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自上世纪60年代配位聚合物的概念被正式提出后,这种孕有巨大应用前景的新型化合物就一直受到成千上万研究者们的关注。配位聚合物是由过渡金属离子与有机配体通过配位键的作用,形成的一维(1D)、二维(2D)、或三维(3D)空间无限网络结构的聚合物或零维(0D)的寡聚物。配位聚合物除了可兼具金属离子和配体的性质之外,离子与配体之间的相互作用和聚合物中的空腔也都赋予了它更多的特殊性能。随着近年来分子材料和纳米科技的飞速发展,配位聚合物与分子组装和纳米技术的进一步交叉、融合为新型多功能材料的研发开启了又一扇新的大门。具有独特结构和性能的配位聚合物纳米材料,在光、电、磁学,催化,气体或溶剂分子的可逆吸附,分子/离子识别和交换,分子器件和分子机器的设计中都具有重要的研究意义和潜在的应用价值。
     本文旨在利用金属外层电子云构型差异与各种配体配位形式的不同,从分子层面设计构筑不同结构的配位聚合物纳米结构材料,并在气-液、固-液和液-液界面实现其组装。主要用于组装的是含吡啶基团的系列多齿配体如联吡啶,三吡啶基嗪类,四吡啶基卟啉等。在用超分子方法构建配位聚合物这一领域,科学家们也做了大量优秀的工作,但绝大多数都是使用溶液的方法进行合成,并利用X射线衍射等“宏观”的手段进行表征,缺乏微观形貌的直接观测和生长动力学方面的信息。本文中,配位聚合物纳米结构材料则是在两相界面这一独特的环境中进行组装。同其他方法相比,界面上具有流动性好、零缺陷等特点,无苛刻的反应条件和设备要求,是非常理想的组装媒介;同时,界面上得到配位聚合物并不溶于两相溶剂,所以非常容易实现产物的纯化和分离;此外,产物在离开界面后即停止反应,易于实现对于配位聚合物纳米晶生成的实时观测和表征;最后,通过调节反应相的浓度、反应时间等简单手段,即可实现对配位聚合物形貌的调控。界面组装的方法,为温和条件下组装配位聚合物纳米材料带来了新的思路,我们可以通过选择不同配位构型的过渡金属离子和不同取向的多齿配体分子,在两相界面设计构筑更多具有特殊结构的功能性配位聚合物纳米材料。
     根据实验中配体的选择,本文的研究内容主要分为两大部分,第一部分探讨了含有功能性配体四吡啶基卟啉(TPyP)的配位聚合物纳米晶在界面的组装及其在异相可控催化方面的初步应用,第二部分主要研究了含手性配体的配位聚合物、双金属配位聚合物的界面组装。具体内容和结果如下:
     第一部分
     1.以水-氯仿界面为组装环境,利用水相中过渡金属离子(Cd~(2+)、Ag~+、Hg~(2+)、PtCl_4~(2-),PtCl_6~(2-))和有机相中TPyP配体间的配位作用,在液-液界面处设计组装了一系列金属-多卟啉配位聚合物阵列纳米晶。使用Langmuir-Blodgett(LB)技术将所得的金属-多卟啉阵列纳米晶转移到各种固体基板上并进行表征。透射电镜(TEM)测试给出了金属-多卟啉配位聚合物纳米晶的形貌和生长过程动力学信息:X射线薄膜衍射(XRD)、电子衍射(ED)表征发现金属-多卟啉阵列纳米晶的在反应初期为单晶结构,后期则由于多个配位单元的结合、堆积形成了多晶结构;X射线光电子能谱(XPS)和紫外可见吸收光谱(UV-vis)的测试则确证了界面上的产物是金属离子和TPyP配体结合形成的金属-多卟啉阵列纳米晶。结果发现,金属-多卟啉阵列配位聚合物纳米晶的形貌与过渡金属离子核外电子云构型密切相关,八面体构型的Cd~(2+)、PtCl_6~(2-)和TPyP反应生成二维近正方结构,而四面体构型的Ag~+、Hg~(2+)和PtCl_4~(2-)与TPyP反应则生成一维棒状或线状结构。
     2.在上述液-液界面反应系统中引入双齿配体4,4'-bipyridyl(BPy),将BPy和四齿配体TPyP按照一定的摩尔比混溶于氯仿相中,同水相中的Hg~(2+)离子在两相界面进行组装,得到了具有新颖梳状结构的Hg-TPyP/BPy复合配位微/纳米结构。使用TEM、能谱(EDX)、XPS和UV-vis对该复合配位聚合物微/纳米结构材料进行表征分析后发现:这种微,纳米梳是由Hg~(2+)离子和TPyP,BPy两种配体复合配位而成的,其主干长度与有机相中(M)TPyP和BPy两种配体的摩尔比有关,而分枝的形貌则受到反应时间的影响;XRD和ED结果表明这种微/纳米梳呈单晶态,并具有和Hg-BPy类似的晶体结构。另外,替换配体的对比实验说明联吡啶中N给体取向和配体的结构在构筑Hg-(M)TPyP/Hg-BPy配位聚合物微/纳米梳时起到至关重要的作用,而TPyP环间的中央金属离子则对微/纳米梳的形貌没有明显影响。
     3.沿用液-液界面复合配位体系,将三吡啶基三嗪(TPyTa)和TPyP按照一定的摩尔比混溶于氯仿相中,与Hg~(2+)在水-氯仿界面自组装得到了外径约80nm,壁厚15~25nm,长度则在十几微米的Hg-TPyP/Hg-TPyTa复合配位聚合物纳米管。对比实验表明,仅有TPyP和TPyTa的摩尔比范围在1:3~1:4时,才有这种配位聚合物纳米管生成,当两种配体的摩尔比小于1:3或大于1:4,或者仅单一配体与Hg~(2+)离子发生界面反应时,均没有发现这种具有管状结构的配位聚合物纳米晶。XPS和元素分析的结果给出配位聚合物纳米管的组成成分,ED结果则证明纳米管的晶体结构与Hg-TPyTa配位聚合物相类似。紫外可见光谱和荧光光谱进一步论证了Hg-TPyP/Hg-TPyTa配位聚合物纳米管是由两种配体复合配位产生的,最终我们认为这种纳米管的形成机理,与Hg~(2+)离子同两种配体构成的TPyP-Hg-TPyTa非平面配位单元有直接关系。
     4.使用经聚吡啶(PVP)修饰的石英基片,通过层层组装的方法,在固-液界面组装得到了Pd-FeTPyP配位聚合物多层膜,并用UV-vis吸收光谱监测了此多层膜的组装过程。由于金属卟啉经常用于各种有机化合物的催化反应,我们这里也利用Pd-FeTPyP配位聚合物网络中的FeTPyP为催化剂,H_2O_2为氧化剂来催化氧化环辛烯。实验表明组装在石英基片上的Pd-FeTPyP配位聚合物层层组装膜可以稳定的存在于有机溶剂,酸性、碱性溶液和高温的环境中,这种性质就使修饰有Pd-FeTPyP的石英基片不会对反应溶液体系进行二次污染,可以作为独特的“催化剂开关”使用。GC-MS的测试表明,当负载有Pd-FeTPyP的石英基片插入含环辛烯和H_2O_2的反应系统中时,氧化反应开始,生成了氧化环辛烯,当此催化剂基片取出时,氧化反应停止。通过插入和取出Pd-FeTPyP配位聚合物催化剂基片,即可控制氧化反应的“开”和“关”,并且,此基片还可以进行重复使用,催化剂也易于再生。此外,我们通过Beer-Lambert定律计算出FeTPyP在基片表面的覆盖度,并推算出此异相催化体系要比相同溶液条件下进行的催化氧化反应具有更高的催化效率。
     第二部分
     1.合成了具有手性单元的配体R(S)-binaphthyl-bis(amidopyridyl)(R(S)BNBP)并将其铺展在K_2PdCl_4亚相表面,在气-液界面构筑了Pd-R(S)BNBP配位聚合物单层膜。π-A等温线的测试发现,RBNBP和SBNBP分子表现出了十分类似的单分子膜行为:在纯水表面,两者均不可形成稳定的单分子膜,而在K_2PdCl_4亚相,均形成了稳定的Pd-R(S)BNBP配位聚合物,单分子占有面积也均为1.2nm~2。对沉积有Pd-R(S)BNBP配位聚合物LB膜的固体基片进行了XPS的表征,确证了配位聚合物的元素组成。TEM测试发现界面上形成的Pd-R(S)BNBP配位聚合物是由大量粒径在20 nm左右的纳米点构成的,随着表面压的增大,这些纳米点进一步堆积、连接形成长度在几百纳米的纳米线结构。圆二色性光谱测试发现,相对处于溶液状态中的R(S)BNBP分子,Pd-R(S)BNBP配位聚合物LB膜的CD光谱有所变化,这可能与Pd-R(S)BNBP配位聚合物在气液界面的多种排列结构有关。
     2.根据文献中的方法合成了配体4'-(4-pyddyl)-2,2':6',2”-terpyridine(pyterpy),使用pyterpy和Fe(BF_4]_2进一步反应生成了配合物配体Fe(pyterpy)_2[BF_4]_2。将Fe(pyterpy)_2[BF_4]_2铺展在CdCl_2亚相表面,通过配合物配体中的两个对位吡啶基与Cd~(2+)离子间的配位作用,在气-液界面组装得到了Cd-Fe(pyterpy)_2双金属配位聚合物。π-A和A-t等温线的测试发现,在纯水亚相表面Fe(pyterpy)_2[BF_4]_2并不能够形成稳定的单分子膜,而在CdCl_2亚相上形成的这种双金属配位聚合物则十分稳定。将气-液界面得到的配位聚合物通过LB技术沉积到固体基片后,进行了XPS、UV-vis吸收光谱和TEM的测试,结果表明Cd-Fe(pyterpy)_2具有所预期的组分和双金属结构。用此双金属配位聚合物修饰电极进行的循环伏安测试显示了膜中Fe(Ⅱ)/Fe(Ⅲ)良好的可逆氧化还原过程,通过分析还得知聚合物中的Fe(Ⅱ)被氧化为Fe(Ⅲ)时,Cd-Fe(pyterpy)_2依然可以保持这种双金属配位的结构。
Coordination polymers are compounds with infinite one-,two-,and three-dimensional (1D,2D,and 3D) networks constructed from metal ions as connectors and ligands as linkers.They were first named in 1960s,since then great efforts have been made to design,synthesize,and assemble the coordination building blocks with desired architectural,physical,and chemical properties.Not only the inorganic-organic hybrid but also the porous structures make coordination polymers become one kind of unique functional materials toward wide applications of catalysis, chirality,conductivity,luminescence,magnetism,non-linear optics,porosity or zeolitic behavior,and molecular devices.
     In the present work,coordination polymer nanostructural materials were assembled at air-liquid,solid-liquid,and liquid-liquid interfaces.According to the geometric features of metal ions and multi-dentate ligands,we can achieve several kinds of coordination frameworks with different structures through the interfacial assembly. Metal ions such as Cd~(2+),Ag~+,Hg~(2+),and PdCl_4~(2-) were used as connectors and multi-dentate ligands containing pyridyl ligand such 4,4'-bipyridyl,tri(4-pyridyl)triazine, and tetra(4-pyridyl)porphyrin were used as linkers.Excellent works have been reported in the field of assembly coordination polymers,however,almost all of them focused on crystalline compounds and synthesized in solutions.The information of microscopic morphology and growth dynamics was lacking.Herein,the coordination polymer nanostructural materials were assembled at the interface in mild conditions.These interfaces provide defect-free junction,where the products are highly mobile and can rapidly achieve equilibrium.The coordination polymers assembled at the interface are unable to dissolve into solutions so that one can easily separate the products from the reactants.Furthermore,dynamics of the coordination polymer growth can be monitored by simply removing the products from the interface after appropriated reaction time.Finally,the structure of coordination polymer can be controlled by tailoring the interfacial reaction conditions such as reaction time, concentration of reagents,etc.Hence,the present interfacial assembly method could create a convenient route for construction of coordination polymers,leading to easily design and assembly unique coordination frameworks at the interface by selecting the connectors and linkers with different coordinate geometric features.
     This paper was divided into two major parts.In the first part,interfacial assembly of coordination polymer nanostructural materials containing porphyrin linkers were investigated.The second parts discussed the coordination polymers constructed by chiral ligand and metal-complex-like ligand at the air-water interface.
     PartⅠ.
     The water-chloroform interface was used as a mediator for assembly of metaltetrapyridylporphyrin (TPyP) coordination polymer nanocrystals,and the Langmuir-Blodgett (LB) method was used to transfer the nanocrystal layer to solid surfaces.The nanocrystal formation process and its frameworks were characterized by using transmission electron microscopy(TEM),electron diffraction(ED) and X-ray diffraction(XRD).It was found that single-/micro-crystals were formed at first,and then they grew into polycrystals.Moreover,X-ray photoelectron spectra(XPS) and UV-vis absorption spectra were used to analyze the composition and porphyrin arrangement of the nanocrystals.Rod-or wire-like nanocrystal frameworks could be formed by the interfacial coordination reaction of HgCl_2,AgNO_3 and K_2PtCl_4 with TPyP,and square nanocrystal formed by CdCl_2 and K_2PtCl_6 with TPyP.Based on the consideration of Hg~(2+),Ag~+ and PtCl_4~(2-)(tetrahedral) and of Cd~(2+) and PtCl_6~(2-) (octahedral) geometric features,it can be concluded that the frameworks of coordination polymers produced are dominant by the geometric features of the metal ions.
     Mixtures of 4,4'-bipyridyl(BPy) and TPyP chloroform solution were used for the liquid-liquid assembly with HgCl_2 aqueous solution,resulting in formation of comb-like micro-/nano-structural coordination polymers.Scan electron microscopic images revealed that the coordination polymer nanocombs assembled closely depended on the mixed molar ratios of TPyP to BPy in the reactants,as well as the interfacial reaction time.Both the XPS and energy dispersive X-ray(EDX) spectroscopic measurements confirmed that the as-prepared nanocombs were composed of Hg,Cl,C and N elements.When the 4,4'-bipyridyl ligand was replaced by its derivatives,2,2'-bipyridyl or 4,4'-trimethylenedipyridine,coordination polymer nanocombs could not be obtained.The central metal ions of TPyP had little influence on the nanocombs assembled.
     BPy was replaced by ligand tris(4-pyridyl)-1,3,5-triazine(TPyTa) and mixed with TPyP in chloroform solution with different molar ratios as organic phase.The mixture was reacted with Hg~(2+) at the water-chloroform interface and unique coordination polymer nanotubes were obtained.TEM images revealed that the outer diameter of the nanotubes was about 60~80 nm and inner diameter about 30~40 nm.The wall thickness of the nanotube was about 15~25 nm.Furthermore,the nanotubular structure formed only when the molar ratios of TPyP/TPyTa were in the range of 1:3 to 1:4.When the molar ratios of TPyP/TPyTa were below 1:2 or above 1:6, tubular structures were not found.Composition of the Hg-TPyP/Hg-TPyTa nanotubes was estimated by XPS and elemental analysis.ED,UV-vis,and fluorescence spectra confirmed that the as-prepared nanotubes were composed of TPyP and BPy ligands. The formation mechanism of the tubular structure was considered by rolling the TPyTa-Hg-TPyP nonplanar coordination unit.
     Layer-by-layer(LBL) assembly of Iron(Ⅲ) 5,10,15,20-tetra-(4-pyridyl)porphyrin (FeTPyP)as linkers and PdCl_4~(2-) as connectors was performed at solid-liquid interface. The assembly process was in situ investigated by UV-vis absorption spectra.It was found that the Pd-FeTPyP LBL films were stable at acidic,alkaline,and organic solvent,these properties made it possible for a catalyst system because the metalloporphyrins are effective catalysts for selective oxidation of alkanes and alkenes under mild conditions.GC-MS measurement found when the Pd-FeTPyP LBL films modified substrate was immersed in the cyclooctene solution with hydrogen peroxide as oxidant,epoxidation of cyclooctene could be observed;when the substrates were removed,the reaction stopped.That is,the oxidation reaction is easily switched "on" and "off",just by immersing or removing the multiporphyrin arrays modified substrates in or from the reaction system.According to the Beer-Lambert rule,we calculated that the catalytic efficiency of Pd-FeTPyP LBL film was higher than that for the FeTPyP in solution.
     PartⅡ
     Chiral linkers R(S)-binaphthyl-bis(amidopyridyl)[R(S)BNBP]were synthesized and used for construction of coordination polymers films with PdCl_4~(2-) at the air-liquid interface.The surface pressure-area isotherms indicated that the RBNBP and SBNBP presented very similar monolayer behavior.That is,stable monolayers of Pd-R(S)BNBP coordination polymer could be formed on the K_2PdCl_4 subphase surface instead of pure water surface.XPS measurement confirmed the elemental composition of the Pd-R(S)BNBP coordination polymer LB films.TEM images revealed that the films were composed of large amount of closely packed round domains,which were then connected into nanowires under high surface pressures. Circular dichroism(CD) spectra indicated the signals appeared in the range of 300~340 nm for the R(S)BNBP solution,but were silent in the Pd-R(S)BNBP films.New CD signals at about 240 nm were found in the Pd-R(S)BNBP coordination polymers. This difference of the CD signals might be due to the different arrangement of R(S)BNBP in Pd-R(S)BNBP coordination polymer LB films compared with that in solutions.
     4'-(4-pyridyl)-2,2':6',2"-terpyridine(pyterpy) was synthesized and used to form a complex-like coordination linker of Fe(pyterpy)_2[BF_4]_2 with Fe(BF_4]_2.Then,an interfacial assembly of bimetallic coordination polymer of Cd-Fe(pyterpy)_2 was performed at the air-liquid interface.The surface pressure-area and area-time isotherms indicated that stable monolayers of Fe(pyterpy)_2[BF_4]_2 could be formed on the 0.1 mol/L CdCl_2 subphase surface after an interfacial coordination reaction over 12 h,though it was difficult to form stable monolayers on the pure water surface.By using the LB method,monolayers of the Cd-Fe(pyterpy)_2 coordination polymers were transferred on the substrate surfaces,and characterized by using the UV-vis,XPS,as well as TEM.The spectral data revealed that the LB film was composed of C,Cl,Cd, N and Fe elements,which was in agreement with the composition of the coordination polymer.Electrochemical measurements revealed a couple of reversible wave corresponding to the iron(Ⅱ)/iron(Ⅲ) reduction-oxidation process in the films of the bimetallic coordination polymers.
引文
[1]孟庆金,戴安邦.配位化学的创始与现代化[M].北京:高等教育出版社,1998.
    [2]申泮文.无机化学[M].北京:化学工业出版社,2001:86-126.
    [3]孙为银.配位化学[M].北京:化学工业出版社,2004.
    [4]Batten S.R.,Robson R.Interpenetration Nets:Ordered,Periodic Engtanglement [J].Angew.Chem.Int.Ed.1998,37(11):1460-1494.
    [5]Robson R.A Net-Based Approach to Coordination Polymers[J].J.Chem.Soc.,Dalton Trans.2000,(21):3735-3744.
    [6]Kitagawa S.,Kitaura R.,Noro S.Functional Porous Coordination Polymers[J].Angew.Chem.Int.Ed.2004,43(18):2334-2375.
    [7]Janiak C.Engineering Coordination Polymers towards applications[J].Dalton Trans.2003,2781-2804.
    [8]Wojaczyski J.,Latos-Grayski L.Poly- and Oligometalloporphyrins Associated through Coordination[J].Coord.Chem.Rev.2000,204(1):113-171.
    [9]白春礼.分子科学前沿[M].北京:科学出版社,2007.
    [10]田禾,王利民(译).分子器件与分子机器-通向纳米世界的捷径[M].北京:化学工业出版社,2005.
    [11]司士辉.生物传感器[M].北京:化学工业出版社,2002.
    [12]刘育,张衡益,李莉,王浩.纳米超分子化学-从合成受体到功能组装体[M].北京:化学工业出版社,2004:160-178.
    [13]Mueller U.,Schubert M.,Teich F.,Puetter H.,Schierle-Arndt K.,Pastré J.Metal-Organic Frameworks-Prospective Industrial Applications[J].J.Mater.Chem.2006,16(7):626-636.
    [14]Uemura K.,Matsuda R.,Kitagawa S.Flexible Microporous Coordination Polymers[J].J.Solid State Chem.2005,178(8):2420-2429.
    [15]张琳萍,侯红卫,樊耀亭,程凤宏.配位聚合物[J].无机化学学报,2000,16(1):1-12.
    [16]隋爱香,徐兴玲,唐宗薰.一类新型的多孔材料一多孔配位聚合物[J].大学化学,2006,21(4):1-10.
    [17]朱敦如,周俊,杨捷,包魏魏,沈旋.纳米多孔配位聚合物的研究进展[J].南京工业大学学报,2007,29(3):104-110.
    [18]Fujita M.,Nagao S.,Ogura K.Guest-Induced Organization of a Three-Dimensional Palladium(Ⅱ) Cagelike Complex.A Prototype for "Induced-Fit" Molecular Recognition [J]. J. Am. Chem. Soc. 1995, 117(5): 1649-1650.
    
    [19] Hiraoka S., Fujita, M. Guest-Selected Formation of Pd(II)-Linked Cages from a Prototypical Dynamic Library [J]. J. Am. Chem. Soc. 1999, 121(43): 10239-10240.
    
    [20] Yoshizawa M., Kusukawa T., Fujita M., Yamaguchi K. Ship-in-a-Bottle Synthesis of Otherwise Labile Cyclic Trimers of Siloxanes in a Self-Assembled Coordination Cage [J]. J. Am. Chem. Soc. 2000, 122(26): 6311-6312.
    
    [21] Yoshizawa M., Ono K., Kumazawa K., Kato T., Fujita M. Metal-Metal d-d Interaction through the Discrete Stacking of Mononuclear M(II) Complexes (M= Pt, Pd, and Cu) within an Organic-Pillared Coordination Cage [J]. J. Am. Chem. Soc. 2005,127 (31): 10800 -10801.
    
    [22] Fujita M., Yu S.-Y, Kusukawa T., Funaki H., Ogura K., Yamaguchi K. Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules [J]. Angew. Chem. Int. Ed. 1998, 37(15): 2082-2085.
    
    [23] Yu S.-Y, Kusukawa T., Biradha K., Fujita M. Hydrophobic Assembling of a Coordination Nanobowl into a Dimeric Capsule Which Can Accommodate up to Six Large Organic Molecules [J]. J. Am. Chem. Soc. 2000,122(11): 2665-2666.
    
    [24] Sun W.-Y, Kusukawa T., Fujita, M. Electrochemically Driven Clathration/Declathration of Ferrocene and Its Derivatives by a Nanometer-Sized Coordination Cage [J]. J. Am. Chem. Soc. 2002,124(39): 11570-11571.
    
    [25] Kusukawa T., Fujita, M. Self-Assembled M6L4-Type Coordination Nanocage with 2,2'-Bipyridine Ancillary Ligands. Facile Crystallization and X-ray Analysis of Shape-Selective Enclathration of Neutral Guests in the Cage [J]. J. Am. Chem. Soc. 2002,124(45): 13576-13582.
    
    [26] Hong M., Zhao Y, Su W., Cao R., Fujita M., Zhou Z., Chan A. S. C. A Nanometer-Sized Metallosupramolecular Cube with Oh Symmetry [J]. J. Am. Chem. Soc. 2000,122(19): 4819-4820.
    
    [27] Mimura M., Matsuo T., Nakashima T., Matsumoto N. Zigzag-Chain and Cyclic-Tetrameric Compounds Derived by Deprotonation of Mononuclear Copper(II) Complexes with N,N'-Bis(2-substituted-imidazol-4-ylmethyl-idene)-1,4-diaminobutane (2-Substituent = H, Me): Synthesis, Characterization, Structure, Substituent Effect, and Interconvertibilit [J]. Inorg. Chem. 1998, 37(14): 3553-3560.
    [28] Pickering A. L., Long D.-L., Cronin, L. Coordination Networks through the Dimensions: From Discrete Clusters to 1D, 2D, and 3D Silver(I) Coordination Polymers with Rigid Aliphatic Amino Ligands [J]. Inorg. Chem. 2004, 43(16): 4953-4961.
    [29] Chen C.-Y., Cheng P.-Y., Wu H.-H., Lee H. M. Conformational Effect of 2,6-Bis(imidazol-1-yl)pyridine on the Self-Assembly of 1D Coordination Chains: Spontaneous Resolution, Supramolecular Isomerism, and Structural Transformation [J]. Inorg. Chem. 2007,46(14): 5691-5699.
    [30] Lewinski J., Dranka M., Bury W., Sliwinski W., Justyniak I., Lipkowski J. From Discrete Linear ZntBu2 Molecules to 1D Coordination Polymers and 2D Fabrics [J]. J. Am. Chem. Soc. 2007,129(11): 3096-3098.
    [31] Hong M., Su W., Cao R., Fujita M., Lu J. Assembly of Silver(I) Polymers with Helical and Lamellar Structures [J]. Chem.Eur. J. 2000,6(3): 427-431.
    [32] Ellis W. W., Schmitz M., Arif A. A., Stang P. J. Preparation, Characterization, and X-ray Crystal Structures of Helical and Syndiotactic Zinc-Based Coordination Polymers [J]. Inorg. Chem. 2000, 39(12): 2547-2557.
    [33] Yi L, Yang X., Lu T., Cheng P. Self-Assembly of Right-Handed Helical Infinite Chain, One- and Two-Dimensional Coordination Polymers Tuned via Anions [J]. Cryst. Growth Des. 2005, 5(3): 1215-1219.
    [34] Swift J. A., Ward M. D. Cooperative Polar Ordering of Acentric Guest Molecules in Topologically Controlled Host Frameworks [J]. Chem. Mater. 2000,12(6): 1501-1504.
    [35] Fujita M., Kwon Y. J., Sasaki O., Yamaguchi K., Ogura K. Interpenetrating Molecular Ladders and Bricks [J]. J. Am. Chem. Soc. 1995, 117(27): 7287-7288.
    [36] Ohi H., Tachi Y, Itoh S. Supramolecular and Coordination Polymer Complexes Supported by a Tripodal Tripyridine Ligand Containing a 1,3,5-Triethylbenzene Spacer [J]. Inorg. Chem. 2004,43 (15): 4561-4563.
    [37] Fujita M., Kwon Y. J., Washizu S., Ogura K. Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine [J]. J. Am. Chem. Soc. 1994, 116(3), 1151-1152.
    [38] Dong Y. B., Layland R. C, Pschirer N. G, Smith M. D., Bunz U. H. F., zur Loye H.-C. New Crystalline Frameworks Formed from 1,2-Bis(4-pyridyl)ethyne and Co(NO3)2:Interpenetrating Molecular Ladders and an Unexpected Molecular Parquet Pattern from T-Shaped Building Blocks[J].Chem.Mater.1999,11(6):1413-1415.
    [39]Biradha K.,Fujita M.Co-ordination Polymers Containing Square Grids of Dimension 15×15 A[J].J.Chem.Soc.,Dalton Trans.2000,(21):3805-3810.
    [40]Dong Y.-B.,Smith M.D.,zur Loye,H.-C.New Inorganic/Organic Coordination Polymers Generated from Bidentate Schiff-Base Ligands[J].Inorg.Chem.2000,39(21):4927-4935.
    [41]Ciurtin D.M.,Dong Y.-B.,Smith M.D.,Barclay T.,zur Loye H.-C.Two Versatile N,N'-Bipyridine-Type Ligands for Preparing Organic-Inorganic Coordination Polymers:New Cobalt- and Nickel-Containing Framework Materials[J].Inorg.Chem.2001,40(12):2825-2834.
    [42]Wen L.-L.,Dang D.-B.,Duan C.-Y.,Li,Y.-Z.,Tian Z.-F.,Meng Q.-J.1D Helix,2D Brick-Wall and Herringbone,and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide [J].Inorg.Chem.2005,44(20):7161-7170.
    [43]Kondo M.,Shimamura M.,Noro S.,Minakoshi S.,Asami A.,Seki K.,Kitagawa S.Microporous Materials Constructed from the Interpenetrated Coordination Networks.Structures and Methane Adsorption Properties[J].Chem.Mater.2000,12(5):1288-1299.
    [44]Noro S.,Kitagawa S.,Kondo M.,Seki K.A New,Methane Adsorbent,Porous Coordination Polymer[{CuSiF_6(4,4'-bipyridine)_2}_n].Acc.Chem.Res.2000,39(12):2081-2084.
    [45]Cui Y.,Ngo H.L.,White P.S.,Lin W.Hierarchical Assembly of Homochiral Porous Solids Using Coordination and Hydrogen Bonds[J].Inorg.Chem.2003,42(3):652-654.
    [46]Lu X.-Q.,Jiang J.-J.,Chen C.-L.,Kang B.-S.,Su C.-Y.3D Coordination Polymers with Nitrilotriacetic and 4,4'-Bipyridyl Mixed Ligands:Structural Variation Based on Dinuclear or Tetranuclear Subunits Assisted by Na-O and/or O-H…O Interactions[J].Inorg.Chem.2005,44(13):4515-4521.
    [47]Zang S.-Q.,Tao R.-J.,Wang Q.-L.,Hu N.-H.,Cheng Y.-X.,Niu J.-Y.,Liao D.-Z.Synthesis,Crystal Structure,and Magnetic Properties of {[Cu(oxbe)]Mn(H_2O)[Cu(oxbe)(DMF)]}_n·nDMF·nH_2O:From Dissymmetrical Mononuclear Entities to a 3D Heterometallic Supramolecular Coordination Polymer[J].Inorg.Chem. 2003,42(3):761-766.
    [48]Chen Z.-N.,Zhang H.-X.,Yu K.-B.,Kang B.-S.,Cai H.,Su C.-Y.,Wang T.-W.,Lu Z.-L.3D Extended Supramolecular Structures via H-Bonded Linkages of 2D Sheetlike or 1D Zigzag Coordination Polymers[J].Inorg.Chem.1998,37(19):4775-4781.
    [49]Blondeau P.,van der Lee A.,Barboiu M.Silver(Ⅰ) Coordination Polymers Containing Heteroditopic Ureidopyridine Ligands:The Role of Ligand Isomerism,Hydrogen Bonding,and Stacking Interactions[J].Inorg.Chem.2005,44(16):5649-5653.
    [50]Maji T.K.,Ohba M.,Kitagawa S.Transformation from a 2D Stacked Layer to 3D Interpenetrated Framework by Changing the Spacer Functionality:Synthesis,Structure,Adsorption,and Magnetic Properties[J].Inorg.Chem.2005,44(25):9225-9231.
    [51]Noro S.,Kitagawa S.,Nakamura T,Wada T.Synthesis and Crystallographic Characterization of Low-Dimensional and Porous Coordination Compounds Capable of Supramolecular Aromatic Interaction Using the 4,4'-Azobis(pyridine)Ligand[J].Inorg.Chem.2005,44(11):3960-3971.
    [52]Kitaura R.,Seki K.,Akiyama G.,Kitagawa S.Porous Coordination-Polymer Crystals with Gated Channels Specific for Supercritical Gases[J].Angew.Chem.Int.Ed.2003,42(4):428-431.
    [53]Du M.,Guo Y.-M.,Chen S.-T,,Bu X.-H.,Batten S.R.,Ribas J.,Kitagawa S.Preparation of Acentric Porous Coordination Frameworks from an Interpenetrated Diamondoid Array through Anion-Exchange Procedures:Crystal Structures and Properties[J].Inorg.Chem.2004,43(4):1287-1293.
    [54]Carlucci L.,Ciani Ca,Proserpio D.M.,Sironi A.Interpenetrating Diamondoid Frameworks of Silver(Ⅰ) Cations Linked by N,N-Bidentate Molecular Rods[J].J.Chem.Sot.,Chem.Commun.1994,(24):2755-2756
    [55]Carlucci L.,Ciani G.,Proserpio D.M.,Rizzato S.Three Novel Interpenetrating Diamondoid Networks from Self-Assembly of 1,12-Dodecanedinitrile with Silver(Ⅰ) Salts[J].Chem.Eur.J.2002,8(7):1519-1526.
    [56]Manson J.L.,Huang Q.-z.,Lynn J.W.,Koo H.-J.,Whangbo M.-H.,Bateman R.,Otsuka T.,Wada N.,Argyriou D.N.,Miller J.S.Long-Range Magnetic Order in Mn[N(CN)_2]_2(pyz) {pyz = pyrazine}.Susceptibility,Magnetization,Specific Heat,and Neutron Diffraction Measurements and Electronic Structure Calculations [J]. J. Am. Chem. Soc. 2001, 123(1): 162-172.
    
    [57] Manson J. L., Lancaster T., Schlueter J. A., Blundell S. J., Brooks M. L, Pratt F. L., Nygren C. L., Koo H.-J., Dai D., Whangbo M.-H. Characterization of the Crystal and Magnetic Structures of the Mixed-Anion Coordination Polymer Cu(HCO2)(NO3)(pyz) {pyz = Pyrazine} by X-ray Diffraction, ac Magnetic Susceptibility, dc Magnetization, Muon-Spin Relaxation, and Spin Dimer Analysis [J]. Inorg. Chem. 2007,46(1): 213-220.
    
    [58] Hoskins B. F., Robson R. Infinite Polymeric Frameworks Consisting Of Three Dimensionally Linked Rod-Like Segments [J]. J. Am. Chem. Soc. 1989, 111(15): 5962-5964.
    [59] Gardner G B., Venkataraman D., Moore J. S., Lee S. Spontaneous Assembly Of A Hinged Coordination Network. Nature. 1995, 374(6525): 792-795.
    [60] Kiang Y.-H., Gardner G B., Lee S., Xu Z., Lobkovsky E. B. Variable Pore Size, Variable Chemical Functionality, and an Example of Reactivity within Porous Phenylacetylene Silver Salts [J]. J. Am. Chem. Soc. 1999,121(36): 8204-8215.
    [61] Krishna Kumar R., Balasubramanian S., Goldberg I. Supramolecular Multiporphyrin Architecture. Coordination Polymers and Open Networks in Crystals of Tetrakis(4-cyanophenyl)- and Tetrakis(4-nitrophenyl)metallo-porphyrin [J]. Inorg. Chem. 1998, 37(3): 541-552.
    
    [62] Kawata S., Breeze S. R., Wang S., Greedan J. E., Raju N. P. Structural Interconversion Facilitated by a Bifunctional Ligand: A Covalently Linked 2D Cu" Sheet [Cu(3-pyOH)2(O2CCF3)2] nand a Hydrogen-Bond Linked 2D CuII Sheet [Cu(3-pyOH2)(O2CCF3)2(thf) 2]n. Chem. Commun. 1997(7), 717-719.
    
    [63] Cui Y., Ngo H. L., Lin W. Self-Assembly of Nanoscale, Porous T-Symmetric Molecular Adamantanoids [J]. Inorg. Chem. 2002,41(23): 5940-5942.
    [64] Shmilovits M., Vinodu M., Goldberg I. Coordination Polymers of Tetra(4-carboxyphenyl)porphyrins Sustained by Tetrahedral Zinc Ion Linkers [J]. Crystal Growth & Design. 2004,4 (3): 633 -638.
    
    [65] Li D., Shi W.-J., Hou L. Coordination Polymers of Copper(I) Halides and Neutral Heterocyclic Thiones with New Coordination Modes [J]. Inorg. Chem. 2005,44(11): 3907-3913.
    
    [66] Eisler D. J., Puddephatt R. J. Structure and Dynamics of Tetrakis(thiophosphinato)resorcinarene Complexes of Silver(I), Gold(I), and Palladium(II) [J]. Inorg. Chem. 2006,45(18): 7295-7305.
    [67]Goodman D.C.,Farmer P.J.,Darensbourg M.Y.,Reibenspies J.H.A Coordination Polymer of Nickel(Ⅱ) Based on a Pentadentate N,S,and O Donor Ligand[J].Inorg.Chem.1996,35(17):4989-4994.
    [68]Tong M.-L.,Chen X.M.,Yu X.-L.,Mak T.C.W.A Novel Two-Dimensional Rectangular Network.Synthesis And Structure of {[Cu(4,4-bpy)(pyz)(H_2O)_2][PF_6]_2}_n(4,4'-bpy = 4,4'-bipyridine,pyz = pyrazine)[J].J.Chem.Soc.,Dalton Trans.1998,(1):5-6.
    [69]Tong M.-L.,Chen H.-J.,Chen X.-M.Molecular Ladders with Multiple Interpenetration of the Lateral Arms into the Squares of Adjacent Ladders Observed for[M_2(4,4'-bpy)_3(H_2O)_2(phba)_2](NO_3)_2·4H_2O(M = Cu~(2+) or Co~(2+);4,4'-bpy = 4,4'-Bipyridine;phba = 4-Hydroxybenzoate)[J].Inorg.Chem.2000,39(10):2235-2238.
    [70]Tong M.-L.,Ye B.-H.,Cai J.-W.,Chen X.-M.,Ng S.W.Clathration of Two-Dimensional Coordination Polymers:Synthesis and Structures of [M(4,4'-bpy)_2(H_2O)_2](ClO_4)_2·(2,4'-bpy)_2·H_2O and[Cu(4,4'-bpy)_2(H_2O)_2](ClO_4)_4·(4,4'-H_2Bpy)(M = Cd~(Ⅱ),Zn~(Ⅱ) and bpy = Bipyridine)[J].Inorg.Chem.1998,37(11):2645-2650.
    [71]Biradha K.,Fujita M.Selective Formation Of Rectangular Grid Coordination Polymers With Grid Dimensions 10 × 15,10 × 20 and 15 × 20 A[J].Chem.Commun.2001,(1):15-16.
    [72]Genre C.,Matouzenko G.S.,Jeanneau E.,Luneau D.A Spin-Crossover Iron(Ⅱ)Coordination Polymer with the 8-Aminoquinoline Ligand:Synthesis,Crystal Structure and Magnetic Properties of[Fe(aqin)_2(4,4'-bpy)](ClO_4)_2·2EtOH(aqin = 8-aminoquinoline,4,4'-bpy = 4,4'-bipyridyl)[J].New J.Chem.2006,30(11):1669-1674.
    [73]Lo S.M.-F.,Chui S.S.-Y.,Shek L.-Y.,Lin Z.,Zhang X.X.,Wen G.-h.,Williams I.D.Solvothermal Synthesis of a Stable Coordination Polymer with Copper-Ⅰ-Copper-Ⅱ Dimer Units:[Cu_4{1,4-C_6H_4(COO)_2}_3(4,4'-bipy)_2]_n[J].J.Am.Chem.Soc.2000,122(26):6293-6294.
    [74]Tao J.,Zhang Y.,Tong M.-L.,Chen X.-M.,Yuen T.,Lin C.L.,Huang X.,Li,J.A Mixed-Valence Copper Coordination Polymer Generated by Hydrothermal Metal/Ligand Redox Reactions[J].Chem.Commun.2002,(13):1342-1343.
    [75]Dong Y.-B.,Cheng J.-Y.,Huang R.-Q.,Smith M.D.,zur Loye,H.-C.Self-Assembly of Coordination Polymers from AgX(X = SbF_6~-,PF_6~-,and CF_3SOf) and Oxadiazole-Containing Ligands[J].Inorg.Chem.2003,42(18):5699-5706.
    [76]Dong Y.-B.,Smith M.D.,zur Loye H.-C.Metal-Containing Ligands for Mixed-Metal Polymers:Novel Cu(Ⅱ)-Ag(Ⅰ) Mixed-Metal Coordination Polymers Generated from[Cu(2-methylpyrazine-5-carboxylate)_2(H_2O)]·3H_2O and Silver(Ⅰ) Salts[J].Inorg.Chem.2000,39(9):1943-1949.
    [77]Caducei L.,Ciani G.,Porta F.,Proserpio D.M.,Santagostini L.Crystal Engineering of Mixed-Metal Ru-Ag Coordination Networks by Using the trans-[RuCl_2(pyz)_4](pyz=pyrazine) Building Block[J].Angew.Chem.Int.Ed.2002,41(11):1907-1911.
    [78]沈家骢 等.超分子层状结构一组装与功能[M].北京:科学出版社,2004.
    [79]Aoyagi M.,Biradha K.,Fujita M.Quantitative Formation of Coordination Nanotubes Templated by Rodlike Guests[J].J.Am.Chem.Soc.1999,121(32):7457-7458.
    [80]Lu J.Y.,Babb A.M.A Simultaneous Reduction,Substitution,and Self-Assembly Reaction under Hydrothermal Conditions Afforded the First Diiodopyridine Copper(Ⅰ) Coordination Polymer[J].Inorg.Chem.2002,41(6):1339-1341.
    [81]Hu X.-X.,Xu J.-Q.,Cheng P.,Chen X.-Y.,Cui X.-B.,Song J.-F.,Yang G.-D.,Wang,T.-G.A New Route for Preparing Coordination Polymers from Hydrothermal Reactions Involving in Situ Ligand Synthesis[J].Inorg.Chem.2004,43(7):2261-2266.
    [82]Wang,Y.-T.,Fan H.-H.,Wang H.-Z.,Chen X.-M.A Solvothermally in Situ Generated Mixed-ligand Approach for NLO-Active Metal-Organic Framework Materials[J].Inorg.Chem.2005,44(12):4148-4150.
    [83]Wu T.,Yi B.-H.,Li D.Two Novel Nanoporous Supramolecular Architectures Based on Copper(Ⅰ) Coordination Polymers with Uniform(8,3) and(8~210) Nets:In Situ Formation of Tetrazolate Ligands[J].Inorg.Chem.2005,44(12):4130-4132.
    [84]Hong X.-L.,Li Y.-Z.,Hu H.,Pan Y.,Bai J.,You X.-Z.Synthesis,Structure,Luminescence,and Water Induced Reversible Crystal-to-Amorphous Transformation Properties of Lanthanide(Ⅲ) Benzene-1,4-dioxylacetates with a Three-Dimensional Framework[J].Cryst.Growth Des.2006,6(6):1221-1226.
    [85]Sun J.,Zhou Y.,Fang Q.,Chen Z.,Weng L.,Zhu G.,Qiu S.,Zhao D. Construction of 3D Layer-Pillared Homoligand Coordination Polymers from a 2D Layered Precursor[J].Inorg.Chem.2006.45(21):8677-8684.
    [86]Zheng S.-L.,Tong M.-L.,Tan S.-D.,Wang Y.,Shi J.-X.,Tong Y.-X.,Lee H.K.,Chen X.-M.Syntheses,Structures,and Properties of Three Novel Coordination Polymers of Silver(Ⅰ) Aromatic Carboxylates with Hexamethylenetetramine Exhibiting Unique Metal- Interaction[J].Organometallics.2001,20(25):5319-5325.
    [87]Lin Y.,Skaff H.,Emrick T.,Dinsmore A.D.,Russell T.P.Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces[J].Science.2003,299(5604):226-229.
    [88]Qian D.J.,Nakarnura C.,Miyake J.Multiporphyrin Array from Interfacial Metal-Mediated Assembly and Its Langmuir-Blodgett Films[J].Langmuir.2000,16(24):9615-9619.
    [89]Qian D.J.,Nakamura C.,Miyake J.Spectroscopic Studies of the Multiporphyrin Arrays at the Air-Water Interface and in Langmuir-Blodgett Films[J].Thin Solid Films.2001,397(1-2):266-275.
    [90]Qian D.J.,Chen H.T.,Chen H.T.,Liu B.,Xiang X.M.,Wakayama T.,Nakamura C.,Miyake J.Monolayers and Langmuir-Blodgett Films of Palladium-Mediated Multiporphyfin Arrays with Different Central Ions[J].Colloid Surf.A,Physicochem.Eng.Asp.2006,284:180-186.
    [91]Qian D.J.,Nakamura C.,Miyake J.Layer-By-Layer Assembly of Metal-Mediated Multiporphyfin Arrays[J].Chem.Commun.2001,(22):2312-2313.
    [92]Liu B.,Qian D.-J.,Huang H.-X.,Wakayama T.,Hara S.,Huang W.,Nakamura C.,Miyake J.Controllable Growth of Well-Defined Regular Multiporphyrin Array Nanocrystals at the Water-Chloroform Interface[J].Langmuir.2005,21(11):5079-5084.
    [93]Liu B.,Qian D.-J.,Chen M.,Wakayama T.,Nakamura C.,Miyake J.Metal-Mediated Coordination Polymer Nanotubes of 5,10,15,20-tetrapyridylporphine and tris(4-pyridyl)-1,3,5-triazine at the Water-Chloroform Interface[J].Chem.Commun.2006,(30):3175-3177.
    [94]Liu B.,Chen M.,Nakamura C.,Miyake J.,Qian D.J.Coordination Polymer Nanocombs Self-Assembled at the Water-Chloroform Interface[J|.New J.Chem.2007,31(6):1007-1012.
    [95]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001.
    [96]Roubeau O.,Natividad E.,Agricole B.,Ravaine S.Formation,Structure,and Morphology of Triazole-Based Langmuir-Blodgett Films[J].Langmuir.2007,23(6):3110-3117.
    [97]Qian D.J.,Wakayama T.,Nakamura C.,Miyake J.″Single″ Pd(0) Atom Encapsulated in Multiporphyrin Arrays as a Highly Efficient Heterogeneous Catalyst[J].J.Phys.Chem.B.2003,107(15):3333-3335.
    [98]Yogev D.,Efrima S.Novel Silver Metal Liquidlike Films[J].J.Phys.Chem.1988,92(20):5754-5760.
    [99]Rao C.N.R.,Kulkami G.U.,Thomas P.J.,Agrawal V.V.,Saravanan P.Films of Metal Nanocrystals Formed at Aqueous-Organic Interfaces[J].J.Phys.Chem.B.2003,107(30):7391-7395.
    [100]Wyrwa D.,Beyer N.,Schmid G.One-Dimensional Arrangements of Metal Nanoclusters[J].Nano Lett.2002,2(4):419-421.
    [101]Rautaray D.,Banpurkar A.,Salnkar S.R.,Limaye A.V.,Ogale S.,Sastry M.BaSO_4 Crystals Grown at an Expanding Liquid-Liquid Interface in a Radial Hele-Shaw Cell Show Spontaneous Large-Scale Assembly into Filaments[J].Cryst.Growth Des.2003,3(4):449-452.
    [102]穆翠枝,徐峰,雷威.功能金属-有机骨架材料的应用[J].化学进展,2007,19(9):1345-1356.
    [103]Seo J.S.,Whang D.,Lee H.,Jun S.M.,Oh J.,Jeon Y.J.,Kim K.A Homochiral Metal-Organic Porous Material for Enantioselective Separation and Catalysis [J].Nature.2000,404(6781):982-985.
    [104]Tabellion F.M.,Seidel S.R.,Arif A.M.,Stang P.J.Discrete Supramolecular Architecture vs Crystal Engineering:The Rational Design of a Platinum-Based Bimetallic Assembly with a Chairlike Structure and Its Infinite,Copper Analogue[J].J.Am.Chem.Soe.2001,123(31):7740-7741.
    [105]Dong Y.-B.,Jin G.-X.,Smith M.D.,Huang R.-Q.,Tang B.,zur Loye H.-C.[Ag_2(C_(33)H_(26)N_2O_2)(H_2O)_2(SO_3CF_3)_2]·0.5C_6H_6:A Luminescent Supramolecular Silver(Ⅰ) Complex Based on Metal-Carbon and Metal-Heteroatom Interactions [J].Inorg.Chem.2002,41(19):4909-4914.
    [106]Evans O.R.,Lin W.Crystal Engineering of NLO Materials Based on Metal-Organic Coordination Networks[J].Acc.Chem.Res.2002,35(7): 511-522.
    [107]Hou H.,Meng X.,Song Y.,Fan Y.,Zhu Y.,Lu H.,Du C.,Shao W.Two-Dimensional Rhombohedral Grid Coordination Polymers [M(bbbt)2(NCS)2]n(M = Co,Mn,or Cd;bbbt= 1,1'-(1,4-butanediyl)bis-1H-benzotriazole):Synthesis,Crystal Structures,and Third-Order Nonlinear Optical Properties[J].Inorg.Chem.2002,41(15):4068-4075.
    [108]Yaghi O.M.,O'Keeffe M.,Ockwig N.W.,Chae H.K.,Eddaoudi M.,Kim J.Reticular Synthesis And The Design Of New Materials.Nature.423,705-714.
    [109]Zhao X.,Xiao B.,Fletcher A.J.,Thomas K.M.,Bradshaw D.,Rosseinsky M.J.Hysteretic Adsorption and Desorption of Hydrogen by Nanoporous Metal-Organic Frameworks[J].2004,306:1012-1015.
    [110]朱静 等.纳米材料和器件[M].北京:清华大学出版社,2003.
    [111]http://isiknowledge.com/[OL]检索词条为:TS=(coordination polymer~*)AND TS=nano~*.2008.
    [112]Sun X.,Dong S.,Wang E.Coordination-Induced Formation of Submicrometer-Scale,Monodisperse,Spherical Colloids of Organic-Inorganic Hybrid Materials at Room Temperature[J].J.Am.Chem.Soc.2005,127(38):13102-13103.
    [113]Ni,Z.,Masel R.I.Rapid Production of Metal-Organic Frameworks via Microwave-Assisted Solvothermal Synthesis[J].J.Am.Chem.Soc.2006,128(38):12394-12395.
    [114]Rieter W.J.,Taylor K.M.L.,An H.,Lin W.,Lin W.Nanoscale Metal-Organic Frameworks as Potential Multimodal Contrast Enhancing Agents[J].J.Am.Chem.Soc.2006,128(28),9024-9025.
    [115]Jung S.,Oh M.Monitoring Shape Transformation from Nanowires to Nanocubes and Size-Controlled Formation of Coordination Polymer Particles [J].Angew.Chem.Int.Ed.2008,47(11):2049-2051.
    [116]Niu H.J.,Gao M.Y.Diameter-Tunable CdTe Nanotubes Templated by 1D Nanowires of Cadmium Thiolate Polymer[J].Angew.Chem.Int.Ed.2006,45(39):6462-6466.
    [117]Imaz I.,Maspoch D.,Rodriguez-Blanco C.,Perez-Faleon J.M.,Campo J.,Ruiz-Molina D.Valence-Tautomeric Metal-Organic Nanopartieles[J].Angew.Chem.Int.Ed.2008,47(10):1857-1860.
    [1]孙为银.配位化学[M].北京:化学工业出版社,2004.
    [2]田禾,王利民(译).分子器件与分子机器-通向纳米世界的捷径[M].北京:化学工业出版社,2005.
    [3]刘育,张衡益,李莉,王浩.纳米超分子化学-从合成受体到功能组装体[M].北京:化学工业出版社,2004:160-178.
    [4]陈海涛.界面组装金属-多卟啉阵列结构[D].上海:复旦大学,2006.
    [5]吴迪,吴健.卟啉的分子自组装[J].化学世界,2004,10:551-555.
    [6]王树军,阮文娟,朱志昂.卟啉组装体的结构、功能和性质[J].化学通报,2005,3:161-166.
    [7]Holten D.,Bocian D.F.,Lindsey J.S.Probing Electronic Communication in Covalently Linked Multiporphyrin Arrays.A Guide to the Rational Design of Molecular Photonic Devices[J].Acc.Chem.Res.2002,35(1):57-69.
    [8]Aim T.K.,Yoon Z.S.,Flwang I.W.,Lim J.K.,Rhee FI.,Joo T.,Sim E.,Kim S.K.,Aratani N.,Osuka A.,Kim D.Effect of Conformational Heterogeneity on Excitation Energy Transfer Efficiency in Directly meso-meso Linked Zn(Ⅱ)Porphyrin Arrays[J].J.Phys.Chem.B.2005,109(22):11223-11230.
    [9]Balaban T S.Tailoring Porphyrins and Chlorins for Self-Assembly in Biomimetic Artificial Antenna Systems[J].Acc.Chem.Res.2005,38(8):612-623.
    [10]Ogoshi H,Mizutani T.Multifunctional and Chiral Porphyrins:Model Receptors for Chiral Recognition[J].Acc.Chem.Res.1998,31(2):81-89.
    [11]Kitagawa S.,Kitaura R.,Noro S.Functional Porous Coordination Polymers[J].Angew.Chem.Int.Ed.2004,43(18):2334-2375.
    [12]Wojaczyski J.,Latos-Grayski L.Poly- and Oligometalloporphyrins Associated through Coordination[J].Coord.Chem.Rev.2000,204(1):113-171.
    [13]Imamura T.,Fukushima K.Self-Assembly of Metallopyridylporphyrin Oligomers[J].Coord.Chem.Rev.2000,198(1):133-156.
    [14]Susumu K.,Shimidzu K.,Tanaka K.,Segawa H.Synthesis of Novel Porphyrin Arrays Directly-Linked through the Meso-Carbons[J].Tetrahedron Lett.1996,37(46):8399-8402.
    [15]Khoury R.G.,Jaquinod L.,Smith K.M.Rational Approach to the Synthesis of meso-meso(5,5) Linked bis-porphyrins[J].Chem.Commun.1997,(11):1057-1058.
    [16] Nakano A., Osuka A., Yamazaki I., Yamazaki T., Nishimura Y. Windmill-Like Porphyrin Arrays as Potent Light-Harvesting Antenna Complexes [J]. Angew. Chem. Int. Ed. 1998,37(21): 3023-3027.
    [17] Angiolillo P. J., Lin V. S.-Y, Vanderkooi J. M., Therien M. J. EPR Spectroscopy and Photophysics of the Lowest Photoactivated Triplet State of a Series of Highly Conjugated (Porphinato)Zn Arrays [J]. J. Am. Chem. Soc. 1995, 117(50): 12514-12527.
    [18] Anderson H. L. Conjugated Porphyrin Ladders [J]. Inorg. Chem. 1994, 33(5): 972-981.
    [19] Piet J. J., Taylor P. N., Anderson H. L, Osuka A., Warman J. M. Excitonic Interactions in the Singlet and Triplet Excited States of Covalently Linked Zinc Porphyrin Dimers [J]. J. Am. Chem. Soc. 2000, 122(8): 1749-1757.
    [20] Youngblood W. J., Gryko D. T., Lammi R. K., Bocian D. F., Holten D., Lindsey J. S. Glaser-Mediated Synthesis and Photophysical Characterization of Diphenylbutadiyne-Linked Porphyrin Dyads [J]. J. Org. Chem. 2002, 67(7): 2111-2117.
    [21] Crossley M. J., Bum P. L. An Approach to Porphyrin-based Molecular Wires: Synthesis of a bis(porphyrin)tetraone and Its Conversion to a Linearly Conjugated Tetrakisporphyrin System [J]. J. Chem. Soc, Chem. Commun. 1991, (21): 1569-1570.
    [22] Lu T. X., Reimers J. R., Crossley M. J., Hush N. S. Rigid Fused Oligoporphyrins as Potential Versatile Molecular Wires. 1. Geometry and Connectivity of 1,4,5,8-Tetraazaanthracene-Bridged Systems [J]. J. Phys. Chem. 1994,98(46): 11878-11884.
    [23] Crossley M. J., Burn P. L., Langford S. J., Prashar J. K. Porphyrins with Appended Phenanthroline Units: a Means by Which Porphyrin -Systems can be Connected to an External Redox Centre [J]. J. Chem. Soc, Chem. Commun. 1995, (18):1921-1924.
    [24] Azumi R., Matsumoto M., Kuroda S., King L. G, Crossley M. J. Orientation Change of Dimer-Type Porphyrin in Langmuir-Blodgett Films Caused by a Trigger Molecule [J]. Langmuir 1995,11(10): 4056-4060.
    [25] Jaquinod L., Siri O., Khoury R. J. Linear Fused Oligoporphyrins: Potential Molecular Wires with Enhanced Electronic Communication between Bridged Metal Ions [J]. Chem. Commun., 1998, (12): 1261-1262.
    [26]Vicente M.G.H.,Cancilla M.T.,Lebrilla C.B.,Smith K.M.Cruciform Porphyrin Pentamers IJl.Chem.Commun.1998,(21):2355-2357.
    [27]白春礼.分子科学前沿[M].北京:科学出版社,2007.
    [28]Ikeda C.,Tanaka Y.,Fujihara T.,Ishii Y.,Ushiyama T.,Yamamoto K.,Yoshioka N.,Inoue H.Self-Assembly of a Porphyrin Array via the Molecular Recognition Approach:Synthesis and Properties of a Cyclic Zinc(Ⅱ) Porphyrin Trimer Based on Coordination and Hydrogen Bonding[J].Inorg.Chem.2001,40(14):3395-3405.
    [29]Kumar A.A.,Giribabu L.,Reddy D.R.,Maiya B.G.New Molecular Arrays Based on a Tin(Ⅳ) Porphyrin Scaffold[Jl.Inorg.Chem.2001,40(26):6757-6766.
    [30]George S.,Goldberg I.Self-Assembly of Supramoleeular Porphyrin Arrays by Hydrogen Bonding:New Structures and Reflections[J].Cryst.Growth Des.2006,6(3):755-762.
    [31]Wagner R.W.,Johnson T.E.,Lindsey J.S.Soluble Synthetic Multiporphyrin Arrays.1.Modular Design and Synthesis[J].J.Am.Chem.Soc.1996,118(45):11166-11180.
    [32]Shi X.,Barkigia K.M.,Fajer J.,Drain C.M.Design and Synthesis of Porphyrins Beating Rigid Hydrogen Bonding Motifs:Highly Versatile Building Blocks for Self-Assembly of Polymers and Discrete Arrays[J].J.Org.Chem.2001,66(20):6513-6522.
    [33]Sessler J.L.,Wang B.,Harriman A.Photoinduced Energy Transfer in Associated,But Noncovalently-linked Photosynthetic Model Systems[J].J.Am.Chem.Soc.1995,117(2):704-714.
    [34]Bhyrappa P.,Wilson S.R.,Susliek K.S.Hydrogen-Bonded Porphyrinic Solids:Supramolecular Networks of Octahydroxy Porphyrins[J].J.Am.Chem.Soc.1997,119(36):8492-8502.
    [35]Barkigia K.M.,Nurco D.J.,Renner M.W.,Melamed D.,Smith K.M.,Fajer J.Multiconformational Surfaces in Porphyrins:Previews into Excited-State Landscapes[J].J.Phys.Chem.B.1998,102(1):322-326.
    [36]Uno H.,Masumoto A.,Ono N.Hexagonal Columnar Porphyrin Assembly by Unique Trimeric Complexation of a Porphyrin Dimer with π-π Stacking:Remarkable Thermal Behavior in a Solid[J].J.Am.Chem.Soc.2003,125(40):12082-12083.
    [37] Micali N., Romeo A., Lauceri R., Purrello R., Mallamace F., Scolaro L. M. Fractal Structures in Homo- and Heteroaggregated Water Soluble Porphyrins [J]. J. Phys. Chem. B. 2000, 104(40): 9416-9420.
    [38] Kojima T., Harada R., Nakanishi T., Kaneko K., Fukuzumi S. Porphyrin Nanotubes Based on Self-Assembly of Mo(V)-Dodecaphenylporphyrin Complexes and Inclusion of Mo-Oxo Clusters: Synthesis and Characterization by X-ray Crystallography and Transmission Electron Microscopy [J]. Chem. Mater. 2007,19(1): 51-58.
    [39] Wang Z., Medforth C. J., Shelnutt J. A. Porphyrin Nanotubes by Ionic Self-Assembly [J]. J. Am. Chem. Soc. 2004,126(49): 15954-15955.
    [40] Hunter C. A., Sarson L. D. Self-Assembly of a Dimeric Porphyrin Host [J]. Angew. Chem. Int. Ed. 1994,33(22): 2313-2316.
    [41] Hunter C. A., Hyde R. K. Photoinduced Energy and Electron Transfer in Supramolecular Porphyrin Assemblies [J]. Angew. Chem. Int. Ed. 1996, 35(17): 1936-1939.
    [42] Chi X., Guerin A. J., Haycock R. A., Hunter C. A., Sarson L. D. Self-Assembly of Macrocyclic Porphyrin Oligomers [J]. J. Chem. Soc, Chem. Commun. 1995, (24):2567-2568.
    [43] Michelsen U., Hunter C. A. Self-Assembled Porphyrin Polymers [J]. Angew. Chem. Int. Ed. 2000, 39(4): 764-767.
    [44] Haycock R. A.,Ulrike, Hunter C. A., James D. A., Michelsen U., Sutton L. R. Self-Assembly of Oligomeric Porphyrin Rings [J]. Org. Lett. 2000, 2(16): 2435-2438.
    [45] Kumar R. K., Goldberg I. Supramolecular Assembly of Heterogeneous Multiporphyrin Arrays - Structures of [{ZnII(tpp)}2(tpyp)] and the Coordination Polymer [{[MnIII(tpp)]2(tpyp)(ClO4)2}∞] [J]. Angew. Chem. Int. Ed. 1998, 37(21): 3027-3030.
    [46] Drain C. M., Lehn J. -M. Self-assembly of Square Multiporphyrin Arrays by Metal Ion Coordination [J]. J. Soc. Chem., Chem. Commun. 1994, (19):2313-2316.
    [47] Cheng K. F., Thai N. A., Grohmann K., Teague L. C, Drain C. M. Tessellation of Porphyrazines with Porphyrins by Design [J]. Inorg. Chem. 2006, 45(17): 6928-6932.
    [48] Milic T., Garno J. C., Batteas J. D., Smeureanu G, Drain C. M. Self-Organization of Self-Assembled Tetrameric Porphyrin Arrays on Surfaces [J]. Langmuir, 2004,20(10): 3974-3983.
    [49] Drain C. M., Nifiatis F., Vasenko A., Batteas J. D. Porphyrin Tessellation by Design: Metal-Mediated Self-Assembly of Large Arrays and Tapes [J]. Angew. Chem. Int. Ed. 1998,37(17): 2344-2347.
    [50] Diskin-Posner Y., Goldberg I. Porphyrin sieves. Designing Open Networks of Tetra(carboxyphenyl)porphyrins by Extended Coordination through Sodium Ion Auxiliaries [J]. New J. Chem. 2001,25(7): 899-904.
    [51] Lin Y., Skaff H., Emrick T, Dinsmore A. D., Russell T. P. Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces [J]. Science. 2003, 299(5604): 226-229.
    [52] Qian D. J., Nakamura C, Miyake J. Multiporphyrin Array from Interfacial Metal-Mediated Assembly and Its Langmuir-Blodgett Films [J]. Langmuir. 2000,16(24): 9615-9619.
    [53] Schick G A., Schreiman I. C, Wagner R. W., Lindsey J. S., Bocian D. F. Spectroscopic Characterization of Porphyrin Monolayer Assemblies [J]. J. Am. Chem. Soc. 1989,111(4): 1344-1350.
    [54] Kasha M. Radiat. Res. 1963,20: 66-71.
    [55] Chou H, Chen C -T, Stork K F, Bohn P. W., Suslick K. S. Langmuir-Blodgett Films of Amphiphilic Push-Pull Porphyrins [J]. J. Phys. Chem. 1994, 98(2): 383-385
    [56] Qian D. J., Nakamura C, Miyake J. Spectroscopic Studies of the Multiporphyrin Arrays at the Air-Water Interface and in Langmuir-Blodgett Films [J]. Thin Solid Films. 2001, 397(1-2): 266-275.
    [57] Ruggles J. L., Foran G J., Tanida H., Nagatani H., Jimura Y, Watanabe I., Gentle I. R. Interfacial Behavior of Tetrapyridylporphyrin Monolayer Arrays [J]. Langmuir. 2006, 22(2): 681-686.
    [58] Qian D. J., Chen H. T, Chen H. T., Liu B, Xiang X. M., Wakayama T., Nakamura C., Miyake J. Monolayers and Langmuir-Blodgett Films of Palladium-Mediated Multiporphyrin Arrays with Different Central Ions [J]. Colloid Surf. A, Physicochem. Eng. Asp. 2006, 284: 180-186.
    [59] Qian D. J., Nakamura C, Miyake J. Layer-By-Layer Assembly of Metal-Mediated Multiporphyrin Arrays [J]. Chem. Commun. 2001, (22): 2312-2313.
    [60] Liu H. G, Feng X. S, Zhang L. J, Jiang J. Z., Lee Y. I, Jang K. W., Qian D. J., Yang K. Z. Supramolecular Assemblies of Eu(Tpyp)Pc at the Air/Water and Air/Cd2+ Aqueous Solution Interfaces [J]. Mater. Lett. 2003, 57(15): 2156-2161.
    
    [61] Li D. Q., Swanson B. I., Robinson J. M., Hoffbauer M. A. Porphyrin Based Self-Assembled Monolayer Thin Films: Synthesis and Characterization [J]. J. Am. Chem. Soc. 1993, 115(15): 6975-6980.
    
    [62] Qian D.-J., Nakamura C, Ishida T., Wenk S.-O., Wakayama T., Takeda S., Miyake J. Palladium-Mediated Stepwise Assembly of Three-Dimensional Organized Multiporphyrin Arrays Directly on Solid Substrates [J]. Langmuir. 2002,18(26): 10237-10242.
    
    [63] Rao C. N. R., Kulkarni G U., Thomas P. J., Agrawal V. V., Saravanan P. Films of Metal Nanocrystals Formed at Aqueous-Organic Interfaces [J]. J. Phys. Chem. B. 2003,107(30): 7391-7395.
    
    [64] Eugster N., Fermin D. J., Girault H. H. Photoinduced Electron Transfer at Liquid(?)Liquid Interfaces: Dynamics of the Heterogeneous Photoreduction of Quinones by Self-Assembled Porphyrin Ion Pairs [J]. J. Am. Chem. Soc. 2003, 125(16): 4862-4869.
    [1]白春礼.分子科学前沿[M].北京:科学出版社,2007:58-78.
    [2]Kitagawa S.,Kitaura R.,Noro S.Functional Porous Coordination Polymers[J].Angew.Chem.Int.Ed.2004,43(18):2334-2375.
    [3]刘育,张衡益,李莉,王浩.纳米超分子化学-从合成受体到功能组装体[M].北京:化学工业出版社,2004.
    [4]田禾,王利民(译).分子器件与分子机器-通向纳米世界的捷径[M].北京:化学工业出版社,2005.
    [5]Wojaczyski J.,Latos-Grayski L.Poly- and Oligometalloporphyrins Associated through Coordination[J].Coord.Chem.Rev.2000,204(1):113-171.
    [6]Imamura T.,Fukushima K.Self-Assembly of Metallopyridylporphyrin Oligomers[J].Coord.Chem.Rev.2000,198(1):133-156.
    [7]Ruggles J.L.,Foran G.J.,Tanida H.,Nagatani H.,Jimura Y.,Watanabe I.,Gentle I.R.Interfacial Behavior of Tetrapyridylporphyrin Monolayer Arrays[J].Langmuir.2006,22(2):681-686.
    [8]Ohmura T.,Usuki A.,Fukumori K.,Ohta T.,Ito M.,Tatsumi K.New Porphyrin-Based Metal-Organic Framework with High Porosity:2-D Infinite 22.2-A Square-Grid Coordination Network[J].Inorg.Chem.2006,45(20):7988-7990.
    [9]Ring D.J.,Aragoni M.C.,Champness N.R.,Wilson C.A Coordination Polymer Supramolecular Isomer Formed from a Single Building Block:an Unexpected Porphyrin Ribbon Constructed from zinc(tetra(4-pyridyl)porphyrin)[J].Cryst.Eng.Comm.2005,7,621-623.
    [10]Qian D.J.,Nakamura C.,Miyake J.Multiporphyrin Array from Interfacial Metal-Mediated Assembly and Its Langmuir-Blodgett Films[J].Langmuir.2000,16(24):9615-9619.
    [11]Qian D.J.,Nakamura C.,Miyake J.Spectroscopic Studies of the Multiporphyrin Arrays at the Air-Water Interface and in Langmuir-Blodgett Films[J].Thin Solid Films.2001,397(1-2):266-275.
    [12]Qian D.-J.,Nakamura C.,Ishida T.,Wenk S.-O.,Wakayama T.,Takeda S.,Miyake J.Palladium-Mediated Stepwise Assembly of Three-Dimensional Organized Multiporphyrin Arrays Directly on Solid Substrates[J].Langmuir.2002,18(26):10237-10242.
    [13]Qian D.J.,Wakayama T.,Nakamura C.,Miyake J.″Single″ Pd(0) Atom Encapsulated in Multiporphyrin Arrays as a Highly Efficient Heterogeneous Catalyst [J]. J. Phys. Chem. B. 2003,107(15): 3333-3335.
    [14] Hagrman D., Hagrman P. J., Zubieta J. Solid-State Coordination Chemistry: The Self-Assembly of Microporous Organic-Inorganic Hybrid Frameworks Constructed from Tetrapyridylporphyrin and Bimetallic Oxide Chains or Oxide Clusters [J]. Angew. Chem. Int. Ed. 1999, 38(21): 3165-3168.
    [15] Drain C. M., Nifiatis F., Vasenko A., Batteas J. D. Porphyrin Tessellation by Design: Metal-Mediated Self-Assembly of Large Arrays and Tapes [J]. Angew. Chem. Int. Ed. 1998,37(17): 2344-2347.
    [16] Sharma C. V. K., Broker G A., Rogers R. D. Polymorphous One-Dimensional Tetrapyridylporphyrin Coordination Polymers which Structurally Mimic Aryl Stacking Interactions. J. Solid State Chem. 2000,152(1): 253-260.
    [17] Milic T., Garno J. C, Batteas J. D., Smeureanu G, Drain C. M. Self-Organization of Self-Assembled Tetrameric Porphyrin Arrays on Surfaces [J]. Langmuir, 2004, 20(10): 3974-3983.
    [18] Sharma C. V. K., Broker G A., Huddleston J. G, Baldwin J. W., Metzger R. M., Roger R. D. Design Strategies for Solid-State Supramolecular Arrays Containing Both Mixed-Metalated and Freebase Porphyrins [J]. J. Am. Chem. Soc. 1999,121(6):1137-1144.
    [19] Carlucci L., Ciani G, Proserpio D. M., Porta F. Open Network Architectures from the Self-Assembly of AgNO3 and 5,10,15,20-Tetra(4-pyridyl)porphyrin (H2tpyp) Building Blocks: The Exceptional Self-Penetrating Topology of the 3D Network of [Ag8(ZnIItpyp)7(H2O)2](NO3)8 [J]. Angew. Chem. Int. Ed. 2003, 42(3): 317-322.
    [20] Janiak C. Engineering Coordination Polymers towards applications [J]. Dalton Trans. 2003, 2781-2804.
    
    [21] http://srdata.nist.gov/xps/bindE_query_res.asp [DB].
    [22] Choudhury B., Weedon A.C., Bolton J.R. Langmuir. Effects of Molecular Organization on Photophysical Behavior. 1. Steady-State Fluorescence and Fluorescence Quantum Yield Studies of Langmuir-Blodgett Monolayers of Some Surfactant Porphyrins [J]. 1998,14(21): 6192-6198.
    [23] Khairutdinov R. F., Serpone N. Photoluminescence and Transient Spectroscopy of Free Base Porphyrin Aggregates [J]. J. Phys. Chem. B. 1999, 103(5): 761-769.
    [24] Qian D. J., Planner A., Miyake J., Frcakowiak D. Photothermal Effects and Fluorescence Spectra of Tetrapyridylporphyrins [J]. J. Photochem. Photobiol. A. 2001,144(2-3): 93-99.
    [1]Hu J.,Odom T.W.,Lieber C.M.Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes[J].Acc.Chem.Res.1999,32(5):435-445.
    [2]Gao P.,Liu M.Compression Induced Helical Nanotubes in a Spreading Film of a Bolaarnphiphile at the Air/Water Interface[J].Langmuir.2006,22(16):6727-6729.
    [3]Gao P.,Zhan C.,Liu M.Controlled Synthesis of Double- and Multiwall Silver Nanotubes with Template Organogel from a Bolaamphiphile[J].Langmuir.2006,22(2):775-779.
    [4]Jiao T.,Liu M.Supramolecular Assemblies of a New Series of Gemini-Type Schiff Base Amphiphiles at the Air/Water Interface:In Situ Coordination,Interfaeial Nanoarchitectures,and Spacer Effect[J].Langmuir.2006,22(11):5005-5012.
    [5]Hong B.H.,Lee J.Y.,Lee C.-W.,Kim J.C.,Bae S.C.,Kim K.S.Self-Assembled Arrays of Organic Nanotubes with Infinitely Long One-Dimensional H-Bond Chains[J].J.Am.Chem.Soc.2001,123(43):10748-10749.
    [6]Huang H.,Yang S.,Gong J.,Liu H.,Duan J.,Zhao X.,Zhang R.Controllable Assembly of Aligned ZnO Nanowires/Belts Arrays[J].J.Phys.Chem.B.2005,109(44):20746-20750.
    [7]Yan H.,He R.,Johnson J.,Law M.,Saykally R.J.,Yang P.Dendritic Nanowire Ultraviolet Laser Array[J].J.Am.Chem.Soc.2003,125(16):4728-4729.
    [8]Hao Y.,Meng G,Wang Z.L.,Ye C.,Zhang L.Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS:The Role of Mass Diffusion in Vapor-Liquid-Solid Growth[J].Nano Lett.2006,6(8):1650-1655.
    [9]Han W.-Q.,Chang C.W.,Zettl A.Encapsulation of One-Dimensional Potassium Halide Crystals within BN Nanotubes[J].Nano Lett.2004,4(7):1355-1357.
    [10]Tong M.-L.,Chen H.-J.,Chen X.-M.Molecular Ladders with Multiple Interpenetration of the Lateral Arms into the Squares of Adjacent Ladders Observed for[M2(4,4'-bpy)_3(H_2O)_2(phba)_2](NO_3)_2·4H_2O(M = Cu~(2+) or Co~(2+);4,4'-bpy = 4,4'-Bipyridine;phba = 4-Hydroxybenzoate)[J].Inorg.Chem.2000,39(10):2235-2238.
    [11]Tong M.-L.,Ye B.-H.,Cai J.-W.,Chen X.-M.,Ng S.W.Clathration of Two-Dimensional Coordination Polymers: Synthesis and Structures of [M(4,4'-bpy)2(H2O)2](ClO4)2·(2,4'-bpy)2·H2O and [Cu(4,4'-bpy)2(H2O)2] (ClO4)4·(4,4'-H2Bpy) (M = CdII, ZnII and bpy = Bipyridine) [J]. Inorg. Chem. 1998, 37(11): 2645-2650.
    [12] Colacio E., Lloret F., Navarrete M., Romerosa A., Stoeckli-Evans H., Suarez-Varela J. 2D and 3D Coordination Polymers Based on 2,2'-Bipyrimidine and Cyanide Bridging Ligands Incorporating Coordinated and Guest Ammonia Molecules. Synthesis, Crystal Structures, Magnetic Properties and Thermal analysis of {[Ni(CN)4]2[(Ni(NH3)2)2(bpym)]·2H2O}n and {[Cu2(CN)2 (bpym)]·NH3}n [J]. New J. Chem. 2005,29(9): 1189-1194.
    [13] Genre C, Matouzenko G S., Jeanneau E., Luneau D. A Spin-Crossover Iron(II) Coordination Polymer with the 8-Aminoquinoline Ligand: Synthesis, Crystal Structure and Magnetic Properties of [Fe(aqin)2(4,4'-bpy)](ClO4)2·2EtOH (aqin = 8-aminoquinoline, 4,4'-bpy = 4,4'-bipyridyl) [J]. New J. Chem. 2006, 30(11): 1669-1674.
    [14] Drain C. M., Lehn J. -M. Self-assembly of Square Multiporphyrin Arrays by Metal Ion Coordination [J]. J. Soc. Chem., Chem. Commun. 1994, (19):2313-2316.
    [15] Drain C. M., Nifiatis R, Vasenko A., Batteas J. D. Porphyrin Tessellation by Design: Metal-Mediated Self-Assembly of Large Arrays and Tapes [J]. Angew. Chem. Int. Ed. 1998, 37(17): 2344-2347.
    [16] Cheng K. R, Thai N. A., Grohmann K., Teague L. C, Drain C. M. Tessellation of Porphyrazines with Porphyrins by Design [J]. Inorg. Chem. 2006, 45(17): 6928-6932.
    [17] Sharma C. V. K., Broker G A., Huddleston J. G, Baldwin J. W., Metzger R. M., Roger R. D. Design Strategies for Solid-State Supramolecular Arrays Containing Both Mixed-Metalated and Freebase Porphyrins [J]. J. Am. Chem. Soc. 1999,121(6):1137-1144.
    [18] Wang Z., Medforth C. J., Shelnutt J. A. Porphyrin Nanotubes by Ionic Self-Assembly [J]. J. Am. Chem. Soc. 2004,126(49): 15954-15955.
    [19] Wang Z., Medforth C. J., Shelnutt J. A. Self-Metallization of Photocatalytic Porphyrin Nanotubes [J]. J. Am. Chem. Soc. 2004,126(51): 16720-16721.
    [20] Wang Z., Li Z., Medforth C. J., Shelnutt J. A. Self-Assembly and Self-Metallization of Porphyrin Nanosheets [J]. J. Am. Chem. Soc. 2007, 129(9):2440-2441.
    [21]Ruggles J.L.,Foran G.J.,Tanida H.,Nagatani H.,Jimura Y.,Watanabe I.,Gentle I.R.Interracial Behavior of Tetrapyridylporphyrin Monolayer Arrays[J].Langrnuir.2006,22(2):681-686.
    [22]Qian D.J.,Nakamura C.,Miyake J.Multiporphyfin Array from Interfacial Metal-Mediated Assembly and Its Langrnuir-Blodgett Films[J].Langmuir.2000,16(24):9615-9619.
    [23]Qian D.J.,Wakayama T.,Nakamura C.,Miyake J.″Single″ Pd(0) Atom Encapsulated in Multiporphyrin Arrays as a Highly Efficient Heterogeneous Catalyst[J].J.Phys.Chem.B.2003,107(15):3333-3335.
    [24]Zheng W.P.,Shannon M.M.,Sheng D.,Douglas H.L.Nanowire Array Gratings with ZnO Combs[J].Nano Lett.2005,5(4):723-727.
    [25]Leung Y.H.,Djurisic A.B.,Gao J.,Xie M.H.,Wei Z.F.,Xu S.J.,Chan W.K.Zinc Oxide Ribbon and Comb Structures:Synthesis and Optical Properties[J].Chem.Phys.Lett.2004,394(4-6):452-457.
    [26]Ma C.,Moore D.,Li J.,Wang Z.L.Nanobelts,Nanocombs,and Nanowindmills of Wurtzite ZnS[J].Adv.Mater.2003,15(3):228-231.
    [27]Yin L.-W.,Bando Y.,Zhu Y.-C.,Li M.-S.,Li Y.-B.,Golberg D.Growth and Field Emission of Hierarchical Single-Crystalline Wurtzite A1N Nanoarchitectures[J].Adv.Mater.2005,17(1):110-114.
    [28]Manna S.C.,Konar S.,Zangrando E.,Okamoto K.,Ribas J.,Chaudhuri N.R.MnⅡ/CoⅡ-Terephthalate Frameworks Containing Dipyridine Coligands:Syntheses,Crystal Structures,Magnetic Behaviors,and Thermal Studies[J].European Journal of Inorganic Chemistry.2005,22:4646-4654.
    [1]Iijima S.Helical Microtubules of Graphitic Carbon[J].Nature 1991,354:56-58.
    [2]Steinhart M.,Wehrspohn R.B.,Gosele U.,Wendorff J.H.Nanotubes by Template Wetting:A Modular Assembly System[J].Angew.Chem.Int.Ed.2004,43(11):1334-1344.
    [3]John G,Mason M.,Ajayan P.M.,Dordick J.S.Lipid-Based Nanotubes as Functional Architectures with Embedded Fluorescence and Recognition Capabilities[J].J.Am.Chem.Soc.2004,126(46):15012-15013.
    [4]Avouris P.Molecular Electronics with Carbon Nanotubes[J].Acc.Chem.Res.2002,35(12):1026-1034.
    [5]Hochbaum,A.I.,Fan,R.,He,R.,Yang,P.Controlled Growth of Si Nanowire Arrays for Device Integration[d].Nano.Lett.2005,5(3):457-460.
    [6]Goldberger,J.,Sirbuly,D.J.,Law,M.,Yang,P.ZnO Nanowire Transistors[J].J.Phys.Chem.B 2005,109(1):9-14.
    [7]Tremel W.Inorganic Nanotubes[J].Angew.Chem.Int.Ed.1999,38(15):2175-2179.
    [8]Li W.,Wang X.,Li Y.Single-Step in situ Synthesis of Double Bond-Grafted Yttrium-Hydroxide Nanotube Core-Shell Structures[J].Chem.Commum.2004,(2):164-166.
    [9]Homer,M.J.;Holman,K.T.;Ward,M.D.Lamellae-Nanotube Isomerism in Hydrogen-Bonded Host Frameworks[J].Angew.Chem.Int.Ed.2001,40(21):4045-4048.
    [10]Kim,Y.;Mayer,M.F.;Zimmerman,S.C.A New Route to Organic Nanotubes from Porphyrin Dendrimers[J].Angew.Chem.Int.Ed.2003,42(10):1121-1126.
    [11]Day T.M.,Wilson N.R.,Maepherson J.V.Electrochemical and Conductivity Measurements of Single-Wall Carbon Nanotube Network Electrodes[J].J.Am.Chem.Soc.2004,126(51):16724-16725.
    [12]Zheng B.,Lu C.,Gu G.,Makarovski A.,Finkelstein G,Liu J.Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor[J].Nano Lett.2002,2(8):895-898.
    [13]Wu G.,Zhang L.,Cheng B.,Xie T.,Yuan X.Synthesis of Eu_2O_3 Nanotube Arrays through a Facile Sol-Gel Template Approach[J].J.Am.Chem.Soc. 2004,126(19): 5976-5977.
    
    [14] Lee S. B., Koepsel R., Stolz D. B., Warriner H. E., Russell A. J. Self-Assembly of Biocidal Nanotubes from a Single-Chain Diacetylene Amine Salt [J]. J. Am. Chem. Soc. 2004,126(41): 13400-13405.
    
    [15] Nuraje N., Banerjee I. A., MacCuspie R. I., Yu L., Matsui H. Biological Bottom-Up Assembly of Antibody Nanotubes on Patterned Antigen Arrays [J]. J. Am. Chem. Soc. 2004, 126(26): 8088-8089.
    
    [16] Rosenthal-Aizman K., Svensson G, Unden A. Self-Assembling Peptide Nanotubes from Enantiomeric Pairs of Cyclic Peptides with Alternating D and L Amino Acid Residues [J]. J. Am. Chem. Soc. 2004, 126(11): 3372-3373.
    
    [17] Reches M., Gazit E. Formation of Closed-Cage Nanostructures by Self-Assembly of Aromatic Dipeptides [J]. Nano. Lett. 2004,4(4): 581-585.
    
    [18] Euliss L. E., Grancharov S. G, O'Brien S., Deming T. J., Stucky G D., Murray C. B., Held G A. Cooperative Assembly of Magnetic Nanoparticles and Block Copolypeptides in Aqueous Media [J]. Nano. Lett. 2003, 3(11): 1489-1493.
    
    [19] Wang L.-S., Lee C.-Y., Chiu H.-T. New Nanotube Synthesis Strategy -Application of Sodium Nanotubes Formed inside Anodic Aluminium Oxide as a Reactive Template [J]. Chem. Commum. 2003, (15): 1964-1966.
    
    [20] Harada R., Matsuda Y., Okawa H., Kojima T. A Porphyrin Nanotube: Size-Selective Inclusion of Tetranuclear Molybdenum-Oxo Clusters [J]. Angew. Chem. Int. Ed. 2004,43(14): 1825-1828.
    
    [21] Yamaguchi T., Tashiro S., Tominaga M., Kawano M., Ozeki T., Fujita M. A 3.5-nm Coordination Nanotube [J]. J. Am. Chem. Soc. 2004, 126(35): 10818-10819.
    
    [22] Tashiro S., Tominaga M., Kusukawa T., Kawano M., Sakamoto S., Yamaguchi K., Fujita M. PdII-Directed Dynamic Assembly of a Dodecapyridine Ligand into End-Capped and Open Tubes: The Importance of Kinetic Control in Self-Assembly [J]. Angew. Chem. Int. Ed. 2003, 42(28): 3267-3270.
    
    [23] Milic T, Garno J. C, Batteas J. D., Smeureanu G, Drain C. M. Self-Organization of Self-Assembled Tetrameric Porphyrin Arrays on Surfaces [J]. Langmuir, 2004,20(10): 3974-3983.
    
    [24] Sharma C. V. K., Broker G A., Huddleston J. G, Baldwin J. W., Metzger R. M., Rogers R. D. Design Strategies for Solid-State Supramolecular Arrays Containing Both Mixed-Metalated and Freebase Porphyrins [J]. J. Am. Chem. Soc.1999,121(6):1137-1144.
    [25]Wang Z.,Medforth C.J.,Shelnutt J.A.Porphyrin Nanotubes by Ionic Self-Assembly[J].J.Am.Chem.Soc.2004,126(49):15954-15955.
    [26]Sun W.-Y.,Kusukawa T.,Fujita,M.Electrochemically Driven Clathration/Declathration of Ferrocene and Its Derivatives by a Nanometer-Sized Coordination Cage[J].J.Am.Chem.Soc.2002,124(39):11570-11571.
    [27]Dror Y.,Salalha W.,Khalfin R.L,Cohen Y.,Yarin A.L.,Zussman E.Carbon Nanotubes Embedded in Oriented Polymer Nanofibers by Electrospinning[J].Langmuir.2003,19(17):7012-7020.
    [28]Qian D.J.,Nakamura C.,Miyake J.Spectroscopic Studies of the Multiporphyrin Arrays at the Air-Water Interface and in Langmuir-Blodgett Films[J].Thin Solid Films.2001,397(1-2):266-275.
    [29]Dong Y.-B.,Smith M.D.,zur Loye H.-C.[Cu(2-pyrazineearboxylato)_2HgI_2].HgI_2:An Open Noninterpenetrating Cu~(Ⅱ)-Hg~(Ⅱ) Mixed-Metal Cuboidal Framework Encapsulating Nearly Linear HgI_2 Guest Molecules[J].Angew.Chem.Int.Ed.2000,39(23):4271-4273.
    [30]Su C.-Y.,Smith M.D.,zur Loye H.-C.Columnar Supramolecular Architecture Self-Assembled from S_4-Symmetric Coordination Nanotubes Encapsulating Neutral Guest Molecules[J].Angew.Chem.Int.Ed.2003,42(34):4085-4089.
    [31]Fujita M.,Yu S.-Y.,Kusukawa T.,Funaki H.,Ogura K.,Yamaguchi K.Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules[J].Angew.Chem.Int.Ed.1998,37(15):2082-2085.
    [32]S.-Y.Yu,T.Kusukawa,K.Biradha,M.Fujita Hydrophobic Assembling of a Coordination Nanobowl into a Dimeric Capsule Which Can Accommodate up to Six Large Organic Molecules[J].J.Am.Chem.Soc.2000,122(11):2665-2666.
    [1]Murakami Y.,Konishi K.Remarkable Co-catalyst Effect of Gold Nanoclusters on Olefin Oxidation Catalyzed by a Manganese-Porphyrin Complex[J].J.Am.Chem.Soc.2007,129(46):14401-14407.
    [2]Zhu Y.,Silverman R.B.Model Studies for Heme Oxygenase-Catalyzed Porphyrin Meso Hydroxylation[J].Org.Lett.2007,9(7):1195-1198.
    [3]Nam W.,Lim M.H.,Moon S.K.,Kim C.Participation of Two Distinct Hydroxylating Intermediates in Iron(Ⅲ) Porphyrin Complex-Catalyzed Hydroxylation of Alkanes[J].J.Am.Chem.Soc.2000,122(44):10805-10809.
    [4]Hamaker C.G.,Mirafzal G.A.,Woo,L.K.Catalytic Cyclopropanation with Iron(Ⅱ) Complexes[J].Organometallics.2001,20(24):5171-5176.
    [5]Murakami Y.,Konishi K.Remarkable Co-catalyst Effect of Gold Nanoclusters on Olefin Oxidation Catalyzed by a Manganese-Porphyrin Complex[J].J.Am.Chem.Soc.2007,129(46):14401-14407.
    [6]Mbuvi H.M.,Woo L.K.,Catalytic C-H Insertions Using Iron(Ⅲ) Porphyrin Complexes[J].Organometallics.2008,ASAP Article:DOI:10.1021/om7007502.
    [7]Cheng G.,Mirafzal G.A.,Woo L.K.Iron Porphyrin-Catalyzed Olefination of Carbonyl Compounds with Ethyl Diazoacetate[J].Organometallics.2003,22(7):1468-1474.
    [8]李臻,夏春谷.金属卟啉催化烯烃环氧化及反应机理研究[J].化学进展,2002,14(5):384-390.
    [9]王临红,李红旗,柯明,赵锁奇,范志明.金属卟啉络合物催化氧化烷烃的研究概况[J].天然气化工,2001,26(3):53-56.
    [10]刘小秦.金属卟啉催化烷烃氧化研究及工业应用进展[J].合成纤维工业,2003,26(3):35-37.
    [11]Groves J.T.,Nemo T.E.,Myers R.S.Hydroxylation and epoxidation catalyzed by iron-porphine complexes.Oxygen transfer from iodosylbenzene[J].J.Am.Chem.Soc.1979,101(4):1032-1033.
    [12]Groves J.T.,Haushalter R.C.,Nakamura M.,Nemo T.E.,Evans B.J.High-valent iron-porphyrin complexes related to peroxidase and cytochrome P-450[J].J.Am.Chem.Soc.1981,103(10):2884-2886.
    [13]Groves J.T.,Nemo T.E.Aliphatic hydroxylation catalyzed by iron porphyrin complexes[d].J.Am.Chem.Soc.1983,105(20):6243-6248.
    [14]Stephenson N.A,Bell A.T.A Study of the Mechanism and Kinetics of Cyclooctene Epoxidation Catalyzed by Iron(Ⅲ) Tetrakispentafluorophenyl Porphyrin[J].J.Am.Chem.Soc.2005,127(24):8635-8643.
    [15]Stephenson N.A,Bell A.T.Influence of Solvent Composition on the Kinetics of Cyclooctene Epoxidation by Hydrogen Peroxide Catalyzed by Iron(Ⅲ)[tetrakis(pentafluorophenyl)]Porphyrin Chloride[(F20TPP)FeCl][J].Inorg.Chem.2006,45(6):2758-2766.
    [16]阳卫军 郭灿城.金属卟啉化合物及其对烷烃的仿生催化氧化[J].应用化学,2004,21(6):541-545.
    [17]Guo C.-C.,Liu X.-Q.,Liu Y.,Liu Q.,Chu M.-F.,Zhang X.-B.Studies of Simple μ-oxo-bisiron(Ⅲ)porphyrin as Catalyst of Cyclohexane Oxidation with Air in Absence of Cocatalysts or Coreduetants[J].Journal of Molecular Catalysis A:Chemical.2003,192:289-294.
    [18]Guo C.-C.,Peng Q.,Liu Q.,Jiang G.Selective Oxidation of Ethylbenzene with Air Catalyzed by Simple μ-oxo Dimeric Metalloporphyrins under Mild Conditions in the Absence of Additives[J].Journal of Molecular Catalysis A:Chemical.2003,192:295-302.
    [19]Leadbeater N.E.,Marco M.Preparation of Polymer-Supported Ligands and Metal Complexes for Use in Catalysis[J].Chem.Rev.2002,102(10):3217-3274.
    [20]Nestler O.,Severin K.A Ruthenium Porphyrin Catalyst Immobilized in a Highly Cross-linked Polymer[J].Org.Lett.2001,3(24):3907-3909.
    [21]Yu X.-Q.,Huang J.-S.,Yu W.-Y.,Che C.-M.Polymer-Supported Ruthenium Porphyrins:Versatile and Robust Epoxidation Catalysts with Unusual Selectivity[J].J.Am.Chem.Soc.2000,122(22):5337-5342.
    [22]Liu C.-J.,Yu.W.-Y.,Li S.-G.,Che C.-M.Ruthenium mesoTetrakis (2,6-dichlorophenyl)porphyrin Complex Immobilized in Mesoporous MCM-41 as a Heterogeneous Catalyst for Selective Alkene Epoxidations[J].J.Org.Chem.1998,63(21):7364-7369.
    [23]Chen R.,Bronger R.P.J.,Kamer P.C.J.,van Leeuwen P.W.N.M.,Reek J.N.H.Noncovalent Anchoring of Homogeneous Catalysts to Silica Supports with Well-Defined Binding Sites[J].J.Am.Chem.Soc.2004,126(44):14557-14566.
    [24]De Vos D.E.,Dams M.,Sels B.F.,Jacobs P.A.Ordered Mesoporous and Microporous Molecular Sieves Functionalized with Transition Metal Complexes as Catalysts for Selective Organic Transformations [J]. Chem. Rev. 2002, 102(10): 3615-3640.
    [25] Qian D.-J., Nakamura C, Ishida T, Wenk S.-O., Wakayama T, Takeda S., Miyake J. Palladium-Mediated Stepwise Assembly of Three-Dimensional Organized Multiporphyrin Arrays Directly on Solid Substrates [J]. Langmuir. 2002,18(26): 10237-10242.
    [26] Qian D. J., Wakayama T., Nakamura C, Miyake J. "Single" Pd(0) Atom Encapsulated in Multiporphyrin Arrays as a Highly Efficient Heterogeneous Catalyst [J]. J. Phys. Chem. B. 2003,107(15): 3333-3335.
    [1]白春礼.分子科学前沿[M].北京:科学出版社,2007:58-78.
    [2]尤田耙.手性化合物的现代研究方法[M].合肥:中国科技大学出版社,1993.
    [3]Janiak C.Engineering Coordination Polymers towards applications[J].Dalton Trans.2003,2781-2804.
    [4]Kiang Y.-H.,Gardner G.B.,Lee S.,Xu Z.,Lobkovsky,E.B.Variable Pore Size,Variable Chemical Functionality,and an Example of Reactivity within Porous Phenylacetylene Silver Salts[J].J.Am.Chem.Soc.1999,121(36):8204-8215.
    [5]Mironov Y.V.,Naumov N.G.,Brylev K.A.,Efremova O.A.,Fedorov V.E.,Hegetschweiler K.Rhenium-Chalcogenide-Cyano Clusters,Cu~(2+) Ions,and 1,2,3,4-Tetraaminobutane as Molecular Building Blocks for Chiral Coordination Polymers[J].Angew.Chem.Int.Ed.2004,43(10):1297-1300.
    [6]Cui Y.,Lee S.J.,Lin,W.Interlocked Chiral Nanotubes Assembled from Quintuple Helices[J].J.Am.Chem.Soc.2003,125(20):6014-6015.
    [7]Cui Y.,Ngo H.L.,Lin W.A Homochiral Triple Helix Constructed from an Axially Chiral Bipyridine[J].Chem.Commun.2003,(12):1388-1389.
    [8]Pschirer N.G.,Ciurtin D.M.,Smith M.D.,Bunz U.H.F.,zur Loye H.-C.Noninterpenetrating Square-Grid Coordination Polymers With Dimensions of 25×25 A~2 Prepared by Using N,N'-Type Ligands:The First Chiral Square-Grid Coordination Polymer[J].Angew.Chem.Int.Ed.2004,41(4):583-585.
    [9]Sasa M.,Tanaka K.,Bu X.-H.,Shiro M.,Shionoya M.Spontaneously Resolved Chiral Interpenetrating 3-D Nets with Two Different Zinc Coordination Polymers[J].J.Am.Chem.Soc.2001,123(43):10750-10751.
    [10]Gao E.-Q.,Yue Y.-F.,Bai S.-Q.,He Z.,Yan C.-H.From Aehiral Ligands to Chiral Coordination Polymers:Spontaneous Resolution,Weak Ferromagnetism,and Topological Ferdmagnetism[J].J.Am.Chem.Soc.2004,126(5):1419-1429.
    [11]Liu Y.-Y.,Huang Y.-Q.,Shi W.,Cheng P.,Liao D.-Z.,Yan S.-P.Syntheses,Structures,and Characterization of a Series of Novel Zinc(Ⅱ) and Cadmium(Ⅱ)Compounds Based on 2,6-Di-(1,2,4-triazole-4-yl)pyridine[J].Cryst.Growth Des.2007,7(8):1483-1489.
    [12]Wen L.-L.,Dang D.-B.,Duan C.-Y.,Li Y.-Z.,Tian Z.-F.,Meng Q.-J.1D Helix,2D Brick-Wall and Herringbone,and 3D Interpenetration d10 Metal-Organic Framework Structures Assembled from Pyridine-2,6-dicarboxylic Acid N-Oxide [J]. Inorg. Chem. 2005,44(20): 7161-7170.
    [13] Zhai X., Zhang L., Liu M. Supramolecular Assemblies between a New Series of Gemini-Type Amphiphiles and TPPS at the Air/Water Interface: Aggregation, Chirality, and Spacer Effect [J]. J. Phys. Chem. B. 2004,108(22): 7180-7185.
    [14] Yuan J., Liu M. Chiral Molecular Assemblies from a Novel Achiral Amphiphilic 2-(Heptadecyl) Naphtha[2,3]imidazole through Interfacial Coordination [J]. J. Am. Chem. Soc. 2003,125(17): 5051-5056.
    [15] Guo P., Liu, M. Fabrication of Chiral Langmuir-Schaefer Films of Achiral Amphiphilic Schiff Base Derivatives through an Interfacial Organization [J]. Langmuir. 2005, 21(8): 3410-3412.
    [16] Guo Z., Yuan J., Cui Y, Chang F., Sun W., Liu M. Supramolecular Assemblies of a Series of 2-Arylbenzimidazoles at the Air/Water Interface: In Situ Coordination, Surface Architecture and Supramolecular Chirality [J]. Angew. Chem. Int. Ed. 2005,11(14): 4155-4162.
    [17] Burchell T. J., Puddephatt R. J. Self-Assembly of Chiral Coordination Polymers and Macrocycles: A Metal Template Effect on the Polymer-Macrocycle Equilibrium [J]. Inorg. Chem. 2005,44(10): 3718-3730.
    [18] Lee S. J., Kim J. S., Lin W. Chiral Molecular Squares Based on Angular Bipyridines: Self-Assembly, Characterization, and Photophysical Properties [J]. Inorg. Chem. 2004,43(21): 6579-6588.
    [1]Kitagawa S.,Kitaura R.,Noro S.Functional Porous Coordination Polymers[J].Angew.Chem.Int.Ed.2004,43(18):2334-2375.
    [2]Yeung W.-F.,Man W.-L.,Wong W.-T.,Lau T.-C.,Gao S.Ferromagnetic Ordering in a Diamond-Like Cyano-Bridged Mn~(Ⅱ)Ru~(Ⅲ) Bimetallic Coordination Polymer[J].Angew.Chem.Int.Ed.2001,40(16):3031-3033.
    [3]Horikoshi R.,Mochida T.,Moriyama H.Synthesis and Characterization of Redox-Active Coordination Polymers Generated from Ferrocene-Containing Bridging Ligands[J].Inorg.Chem.2002,41(11):3017-3024.
    [4]Noro S.,Kitagawa S.,Yamashita M.,Wada T.New Microporous Coordination Polymer Affording Guest-Coordination Sites at Channel Walls[J].Chem.Commun.2002,(3):222-223.
    [5]Liu W.,Song Y.,Li Y.,Zou Y.,Dang D.,Ni C.,Meng Q.Self-Assembly of a 1D Heterotrimetallic Cu(Ⅱ)-Sr(Ⅱ)-Na(Ⅰ) Propeller-like Chiral Coordination Polymer with Ferromagnetic Interactions[J].Chem.Commun.2004,(20):2348-2349.
    [6]Dong Y.-B.,Zhao X.,Tang B.,Wang H.-Y.,Huang R.-Q.,Smith M.D.,zur Loye H.-C.Novel Organic-Inorganic Composite Coordination Polymers Generated from New Multidentate Schiff-base Ligand and Ag(Ⅰ) salts[J].Chem.Commun.2004,(2):220-221.
    [7]Zang S.-Q.,Tao R.-J.,Wang Q.-L.,Hu N.-H.,Cheng Y.-X.,Niu J.-Y.,Liao D.-Z.Synthesis,Crystal Structure,and Magnetic Properties of {[Cu(oxbe)]Mn(H_2O)[Cu(oxbe)(DMF)]}n·nDMF·nH_2O:From Dissymmetrical Mononuclear Entities to a 3D Heterometallic Supramolecular Coordination Polymer[J1.Inorg.Chem.2003,42(3):761-766.
    [8]Agusti G.,Munoz M.C.,Gaspar A.B.,Real,J.A.Spin-Crossover Behavior in Cyanide-bridged Iron(Ⅱ)-Gold(Ⅰ) Bimetallic 2D Hofmann-like Metal-Organic Frameworks[J].Inorg.Chem.2008,47(7):2552-2561.
    [9]Dong Y.-B.,Cheng J.-Y.,Huang R.-Q.,Smith M.D.,zur Loye,H.-C.Self-Assembly of Coordination Polymers from AgX(X = SbF_6~-,PF_6~-,and CF_3SO_3~-) and Oxadiazole-Containing Ligands[J].Inorg.Chem.2003,42(18):5699-5706.
    [10]Dong Y.-B.,Smith M.D.,zur Loye H.-C.Metal-Containing Ligands for Mixed-Metal Polymers:Novel Cu(Ⅱ)-Ag(Ⅰ) Mixed-Metal Coordination Polymers Generated from [Cu(2-methylpyrazine-5-carboxylate)2(H2O)]·3H2O and Silver(I) Salts [J]. Inorg. Chem. 2000, 39(9): 1943-1949.
    [11] Constable E. C, Thompson A. M. W. C. Ligand Reactivity in Iron(II) Complexes of 4-(4-pyridyl)-2,2 : 6,2-terpyridine [J]. J. Chem. Soc. Dalton Trans. 1992, (20): 2947-2950.
    [12] Hou L, Li D., Shi W.-J, Yin Y.-G, Ng S. W. Ligand-Controlled Mixed-Valence Copper Rectangular Grid-Type Coordination Polymers Based on Pyridylterpyridine [J]. Inorg. Chem. 2005,44(22): 7825-7832.
    [13] Constable E. C, Housecraft C. E., Neuburger M., Schaffner S., Schaper F. The Solid-State Structure of bis(4'-(4-pyridyl)-2,2':6',2"-terpyridine)ruthenium hexafluorophosphate nitrate - An Expanded 4,4'-bipyridine [J].. Inorg. Chem. Commun. 2006, 9(6): 616-619.
    [14] Constable E. C, Dunphy E. L., Housecroft C. E., Kylberg W., Neuburger M., Schaffher S., Schofield E. R., Smith C. B. Structural Development of Free or Coordinated 4'-(4-Pyridyl)-2,2':6',2"-terpyridine Ligands through N-Alkylation: New Strategies for Metallamacrocycle Formation [J]. Chem. Eur. J. 2006, 12(17): 4600-4610.
    [15] Qian D. J., Nakamura C, Miyake J. Multiporphyrin Array from Interfacial Metal-Mediated Assembly and Its Langmuir-Blodgett Films [J]. Langmuir. 2000,16(24): 9615-9619.
    [16] Qian D. J., Nakamura C, Miyake J. Spectroscopic Studies of the Multiporphyrin Arrays at the Air-Water Interface and in Langmuir-Blodgett Films [J]. Thin Solid Films. 2001, 397(1-2): 266-275.
    [17] Chou H., Chen C.-T., Storck K.F., Bohn P.W., Suslick K.S. Langmuir-Blodgett Films of Amphiphilic Push-Pull Porphyrins [J]. J. Phys. Chem. 1994, 98(2): 383-385.
    [18] Choudhury B., Weedon A.C., Bolton J.R. Langmuir. Effects of Molecular Organization on Photophysical Behavior. 1. Steady-State Fluorescence and Fluorescence Quantum Yield Studies of Langmuir-Blodgett Monolayers of Some Surfactant Porphyrins [J]. 1998, 14(21): 6192-6198.
    [19] Wang Z., Xiong R. -G, Foxman B. M., Wilson S. R., Lin W. Two- and Three-Dimensional Cadmium Coordination Polymers Based on N,N-(2-Pyridyl)-(4-pyridylmethyl)amine [J]. Inorg. Chem. 1999, 38(7): 1523-1528.
    [19] Meng X., Song Y., Hou H., Han H., Xiao B., Fan Y, Zhu Y. Hydrothermal Syntheses, Crystal Structures, and Characteristics of a Series of Cd-btx Coordination Polymers (btx = 1,4-Bis(triazol-1-ylmethyl)benzene) [J]. Inorg. Chem. 2004,43(11): 3528-3536.
    [20] Sharma C. V. K., Broker G. A., Huddleston J. G, Baldwin J. W., Metzger R. M, Roger R. D. Design Strategies for Solid-State Supramolecular Arrays Containing Both Mixed-Metalated and Freebase Porphyrins [J]. J. Am. Chem. Soc. 1999,121(6):1137-1144.
    [21] Constable E. C, Thompson A. M. W. C. Pendant-functionalised ligands for metallosupramolecular assemblies; ruthenium(II) and osmium(II) complexes of 4-(4-pyridyl)-2,2 : 6,2-terpyridine [J]. J. Chem. Soc. Dalton Trans. 1994, (9): 1409-1418.
    [22] Qian D. J., Nakamura C, Miyake J. Monolayers of a Series of Viologen Derivatives and the Electrochemical Properties in Langmuir-Blodgett Films [J]. Thin Solid Films. 2000,374(1): 125-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700