用户名: 密码: 验证码:
金属配合物配体上离子取代基对其催化活性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用传统有机取代基修饰金属配合物配体一直是大家广泛应用的增强催化剂活性的方法。但由于在金属配合物配体上变换不同传统有机取代基的困难性以及传统有机取代基的修饰较难改变金属配合物催化剂的可回收套用能力,因而学术界和工业界一直在努力寻求一种有效的方法来解决上述两个问题。用离子取代基修饰金属配合物催化剂配体是最近这一领域研究的热点。通过调节不同的阴阳离子组合可以使催化剂从低极性溶剂转移到高极性溶剂,因而这种配体被离子取代基修饰过的金属配合物可以方便的分离与循环套用。最近,这种通常被用来使均相催化剂在水中可溶解或者可回收的离子取代基又被用来改善催化剂催化活性。虽然人们已经清楚配体上的离子取代基可以改变催化剂的溶解能力,但是离子取代基对于金属配合物催化剂催化能力的影响并不清楚。因而对金属配合物配体上的离子取代基对其催化活性的研究将会非常有意义。
     本论文主要设计和合成了三类新型的乙酰丙酮类金属配合物催化剂。它们最大的特点是离子型取代基与配体是以共轭双键连接,因此阴阳离子相互作用可以传递到金属中心。本文将此类型的催化剂应用于催化分子氧氧化4.甲基愈创木酚的反应中,并对氧化条件,反应机理,产物分离以及反应体系的循环套用等方面进行了研究。同时本文还研究了影响配体上含离子取代基的金属配合物催化剂催化活性的因素。
     本文首先设计和合成了两类配体上含阳离子型离子取代基的乙酰丙酮类金属配合物Co-[Salen-X][Y]2(X=Py, Mim; Y=PF6-,ClO4-, BF4-,NO3-, Br-, BPh4-)和[Co(acac-Mim)2][Y]2(Y=Cl-, NO3-,BF4-, PF6-, ClO4-和一类配体上含阴离子型离子取代基的乙酰丙酮类金属配合物[X][Co(F6-acac)3](X=NH4+, C2Py+, N4,4,4,4+, C4Mim+, P4,4,4,10+)。通过常规的分析手段如红外光谱,质谱,核磁共振波谱,原子吸收光谱确定了这些金属配合物的分子结构。同时本文还培养出配体[Salen-Py][Br2]2,金属配合物Cu-[Salen-Mim][Br]2、Cu-[Salen-Py][NO3]2、 Cu-[Salen-Py][BPh4]2的单晶,通过X射线分析进一步证实了上述化合物的分子结构。
     接下来本文用一种配体上含吡啶盐阳离子型离子取代基的钴席夫碱催化剂Co-[Salen-Py][PF6]2催化分子氧氧化4.甲基愈创木酚的反应,发现离子取代基和传统的吸电子有机取代基一样是通过降低金属配合物的活性中心金属的电子密度来增强催化剂的催化活性的。相对于配体上无离子取代基的乙酰丙酮金属配合物Co(acacen),配体上含离子取代基的金属配合物Co-[Salen-Py][PF6]2具有更高的催化活性。通过对氧化反应条件优化,本文中的工艺路线可以使氧化底物4-甲基愈创木酚的转化率达到99.9%,产物香兰素的选择性达到90%。与此同时,使用乙二醇和水的混合溶剂产物香兰素可以以钠盐的形式通过简单的结晶进行分离。含有大量NaOH的结晶母液(NaOH/4-甲基愈创木酚=2.38/1)可以至少成功套用3次,因而当结晶母液套用时反应中所加的NaOH/底物的摩尔比从3.3:1降低到1.05:1。这种工艺方法为工业上提供了一种潜在的更为绿色的途径去制备香兰素。对反应机理的研究,发现本文中的氧化反应机理为自由基链反应机理。
     最后,本文研究了配体上的离子取代基的反离子对金属配合物催化剂催化活性的影响。对配体上含阳离子型离子取代基和阴离子型离子取代基的反离子进行了研究,发现改变与配体相连离子取代基的反离子对催化剂的催化活性改变不是很大。为了更进一步研究离子取代基的反离子对催化剂金属中心的电子影响,通过量化计算利用密度泛函的方法对上述催化剂的简化模型(离子取代基单取代的苯)的C-3NBO电荷密度进行了理论研究。研究结果发现与配体相连的离子取代基不论是阳离子型还是阴离子型都是吸电子型取代基,都不同程度的降低了金属配合物的中心金属的电子密度。但变化不同反离子对金属中心电子密度的影响并不是很大。不同中心金属和不同溶剂对该类催化剂催化活性影响的实验结果的得出,发现改变催化剂的中心金属比改变离子取代基的反离子可以更加有效的增强催化剂活性。
     总的来说,本论文以配体上含离子取代基的乙酰丙酮类金属配合物催化分子氧氧化4-甲基愈创木酚为研究对象,开发和合成了三类新型的配体上含离子取代基的乙酰丙酮类金属配合物催化剂。至少在乙酰丙酮类金属配合物中阳离子型取代基和阴离子型取代基都是吸电子型取代基,离子取代基的反离子可以适度的调节催化剂的催化活性。这些研究结果可以为今后更好地利用离子取代基来设计高效的催化剂奠定基础。同时利用该类含离子取代基的乙酰丙酮催化剂催化氧化4-甲基愈创木酚制备香兰素的研究为香兰素的对甲酚工艺的产业化也提供了一定的技术支持。
Conventional organic substituents on the ligand of metal complex catalysts have long been widely used to tune their activities and selectivities. Due to the difficult to synthesis different conventional organic substituents on the ligand of metal complex and this type of catalysts are also not easily recovered, it needs an efficient method to solve the problems mentioned above for both academia and industry. Modifying the ligand of metal complex by ionic compound is a recent development in this field. These metal complex catalysts with ionic substituents on the ligand are easily retrieved and recycled because their solubility can be adjusted by using different cation-anion combinations, enabling phase separation from less polar organic solvents to aqueous media. Recently, ionic substituents, which usually enable the homogeneous catalyst dissolved in water and recovered, are also involved to improve the activity of catalyst. Though it has been well known that ionic substituents on the ligand can change catalyst solubility, it is still unclear how exactly it influences their catalytic ability. Hence, the research of the effect of ionic substituent on the ligand on the catalytic activity is necessary.
     We designed and synthesized three types of acetylacetone metal complexes catalysts. The most appealing features of the catalysts were that the ionic substituent connected with the metal center by conjugated double bond, thus the cation-anion interaction could easily deliver to the metal center. The catalysts were used in the allylic oxidation of4-methyl guaiacol, and the oxidation reaction conditions, reaction mechanism, Vanillin isolation and reaction medium recycling were researched. We also studied the influences on the catalytic activity of catalysts with ionic substituents on the ligand.
     In this dissertation, two types of acetylacetone metal complexes catalysts with cationic ionic substituents on the ligand Co-[Salen-X][Y]2(X=Py, Mim; Y=PF6-, ClO4-, BF4-, NO3-, Br-, BPh4-) and [Co(acac-Mim)2][Y]2(Y=Cl-, NO3-, BF4-,PF6-, C1O4-) and one types of acetylacetone metal complexes catalysts with anionic ionic substituents on the ligand [X][Co(F6-acac)3](X=NH4+, C2Py+, N44,4,4,4+, C4Mim+, P4,4,4,10+) were designed and synthesized. These metal complexes were charactered by IR, MS and element analysis to check the molecular structure. At the same time, to further prove the identity of these complexes, we have succeeded obtain the single crystal for Cu-[Salen-Mim][Br]2, Cu-[Salen-Py][NO3]2,[Salen-Py][Br2]2, Cu-[Salen-Py][BPh4]2for X-ray analysis.
     Later on, a cobalt Schiff base catalyst with ionic substituents on the ligand Co-[Salen-Py][PF6]2was used for the oxidation of4-methyl guaiacol to vanillin. The results showed that the catalytic activities of this modified catalysts were significantly improved compared with their unmodified counterpart. Tentative reaction mechanism research indicated that the electron-withdrawing pyridinium substituent on the ligand of Co(acacen) is responsible for the high selectivity of vanillin. Meanwhile, utilizing ethylene glycol and water as solvent, vanillin can be isolated by simple crystallization in the form of a sodium salt, and the mother liquid of the crystallization, with a large amount of NaOH (the mole ratio of NaOH/4-methyl guaiacol=2.38/1), can be successfully recycled at least three times, thereby decreasing the mole ratio of base/substrate from3.3:1to1.05:1when the mother liquid of crystallization was recycled. This strategy provides a potentially greener alternative for the synthesis of vanillin in industry.
     At last, the influences on the catalyst reactivity of the catalysts with ionic substituents on the ligand by changing the counter ions of the ionic substituents were explored. No matter what kinds of counter ions were changed--cationic or anionic, we still found that the counter ions were only moderate improved the activity. To further investigate the electronic effect of different counter ions of ionic substituents on the central metal of the catalyst, the NBO charge of C-3in the simply model of the real catalysts (ionic substituent-monosubtituted benzenes) was investigated by means of quantum chemical calculations utilizing Density Functional Theory (DFT). The result shown that the cationic ionic substituents and the anionic ionic substituents are electron-withdrawing substituents, the counter ions of ionic substituents also have moderate effect on electron density on the central metal. The inflence of different central metals and solvents on the catalytic activity of the acetylacetone metal complexes catalysts with imidazolium ionic substituents on the ligand were investigated. The result indicated that changed the central metal was a more effective method than change the counter ions of the ionic substituents to improve the catalytic activity.
     In short, the oxidation of4-methyl guaiacol to vanillin by the metal complexes with ionic substituents on the ligand was studied, and three types of acetylacetone metal complexes catalysts with ionic substituents on the ligand were involved. The cationic ionic substituents and the anionic ionic substituents are electron-withdrawing substituents, and the counter ions of the ionic substituents were only moderate improved the activity may enlighten us to use the ionic substituents to design novel and efficient catalysts. At the same time, the oxidation4-methyl guaiacol to vanillin by the acetylacetone metal complexes with ionic substituents on the ligand is a potentially greener alternative for the synthesis of the vanillin in industry.
引文
[1]阿纳斯塌斯,沃纳(著),李朝军,王东(译),绿色化学--理论与应用,科学出版社,2002.
    [2]张治国,“5R”理论框架下的循环经济发展模式探讨,科技创业月刊,2006,11,179-180.
    [3]闵恩泽,傅军,绿色化学的进展,岩矿测试,1999,18,81-86.
    [4]陆熙炎,绿色化学与有机合成及有机合成中的原子经济性,化学进展,1998,10,123-130.
    [5]沈师孔,闵恩泽,烃类晶格氧选择氧化,化学进展,1998,10,137-145.
    [6]佘远斌,范莉莉,张燕慧,宋旭锋,金属卟啉仿生催化绿色合成对硝基苯甲醛的新方法,化工学报,2004,55,2032-2037.
    [7]H.R. Hobbs, N.R. Thomas, Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions, Chem. Rev.,2007,107,2786-2820.
    [8]J.G. Huddleston, H.D. Willauer, R.P. Swatloski, A.E. Visser, R.D. Rogers, Room temperature ionic liquids as novel media for 'clean' liquid-liquid extraction, Chem. Commun., 1998,20,1765-1766.[9]胡兴邦,绿色空气氧化催化剂的设计、合成及应用,[博士论文],杭州2007.
    [10]李晓岩,绿色化学三大重点研究领域,中国化工报,2002.
    [11]T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen, Chem. Rev.,2005,105,2329-2363.
    [12]B. Meunier, Metalloporphyins as versatile catslysts for oxidation reactions and oxidayive DNA cleacage, Chem. Rev.,1992,92,1411-1456.
    [13]G.J. ten Brink, I. Arends, R.A. Sheldon, Green, catalytic oxidation of alcohols in water, Science,2000,287,1636-1639.
    [14]W. Guan, C. Wang, X. Yun, X. Hu, Y. Wang, H. Li, A mild and efficient oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone in ionic liquids, Catal. Commun.,2008,9 1979-1981.
    [15]毛建拥,空气氧化β-异佛尔酮过程中的催化剂开发及机理探讨,[博士论文],杭州2009.
    [16]R.A. Sheldon, I. Arends, Organocatalytic oxidations mediated by nitroxyl radicals, Adv. Synth. Catal.,2004,346,1051-1071.
    [17]Y. Li, X. Yan, G. Jiang, Q. Liu, J. Song, C. Guo, Toluene oxyfunctionalization with air over metalloporphyrins and reaction condition optimization, Chin. J. Chem. Eng.,2007,15, 453-457.
    [18]N. Yingnan, L. Xiaoyu, W. Libo, H. Zhijun, J. Tao, Ethylene oligomerization catalyzed by novel iron complex/MAO, Chemical Industry and Engineering Progress,2006,25,680-683.
    [19]W. Bing, H. Zhiwen, Z. Hailing, Y. Hailiang, H. Xiaofang, Z. Dianbo, W. Junmin, Oxidation of catechol catalyzed by beta-cyclodextrin-Cu and its reaction kinetics, Journal of Chemical Industry and Engineering (China),2009,60,1459-1465.
    [20]C. Hongxia, N. Lei, N. Yingnan, J. Tao, Investigation of propylene oligomerization catalyzed by novel post transition metal nickel complex/methylaluminoxane catalyst, Chemical Industry and Engineering Progress,2008,27,1805-1820.
    [21]H. Ji, X. Xu, M. Xun, Z. Jing, Synthesis of beta-diketones containing alkyl substituent and their Titanium complexes for syndiotatic polymerization of styrene, Chemical Industry and Engineering Progress,2003,22,850-853.
    [22]S.P. Flanagan, P.J. Guiry, Substituent electronic effects in chiral ligands for asymmetric catalysis, J. Organomet. Chem.,2006,691,2125-2154.
    [23]P.C. Mhring, N.J. Coville, Group 4 metallocene polymerisation catalysts:quantification of ring substituent steric effects, Coordin. Chem. Rev.,2006,250,18-35.
    [24]T. Nyokong, Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines, Coord. Chem. Rev.,2007,251,1707-1722.
    [25]P. Deck, Perfluoroaryl-substituted cyclopentadienyl complexes of transition metals, Coord. Chem. Rev.,2006,250,1032-1055.
    [26]R. Sebesta, I. Kmentova, S. Toma, Catalysts with ionic tag and their use in ionic liquids, Green Chem.,2008,10,484-496.
    [27]K.H. Shaughnessy, Hydrophilic ligands and their application in aqueous phase metal catalyzed reactions, Chem. Rev.,2009,109,643-710.
    [28]B. Ni, A.B. Headley, Ionic-liquid-supported (ILS) catalysts for asymmetric organic synthesis, Chem. Eur. J.,2010,16,4426-4436.
    [29]C. Huo, T.H. Chan, A novel liquid phase strategy for organic synthesis using organic ions as soluble supports, Chem. Soc. Rev.,2010,39,2977-3006.
    [30]W. Miao, T.H. Chan, Ionic-liquid-supported synthesis:A novel liquid-phase strategy for organic synthesis, Acc. Chem. Res.,2006,39,897-908.
    [31]N. Audic, H. Clavier, M. Mauduit, J.C. Guillemin, An ionic liquid-supported ruthenium carbene complex:A robust and recyclable catalyst for ring closing olefin metathesis in ionic liquids, J. Am. Chem. Soc.,2003,125,9248-9249.
    [32]S. Chen, J.H. Kim, K.Y. Ryu, W. Lee, J. Hong, S. Lee, Novel imidazolium ion tagged Ru-carbene complexes:synthesis and applications for olefin metathesis in ionic liquid, Tetrahedron,2009,65,3397-3403.
    [33]T.J. Geldbach, P.J. Dyson, A versatile ruthenium precursor for biphasic catalysis and its application in ionic liquid biphasic transfer hydrogenation:Conventional vs task specific catalysts, J. Am. Chem. Soc.,2004,126,8114-8115.
    [34]H. Wakamatsu, Y. Saito, M. Masubuchi, R. Fujita, Synthesis of imidazolium tagged ruthenium carbene complex:Remarkable activity and reusability in regard to olefin metathesis in ionic liquids, Synlett.,2008,110,1805-1808.
    [35]L. Dai, X. Li, H. Yuan, X. Li, Z. Li, D. Xu, F. Fei, Y. Liu, J. Zhang, Z. Zhou, Ionic salt tagged ferrocenyl diphosphine imine ligands and their application to palladium catalyzed asymmetric allylic etherification, Tetrahedron-Asymmetry,2011,22,1379-1389.
    [36]T.J. Geldbach, G. Laurenczy, R. Scopelliti, P.J. Dyson, Synthesis of imidazolium tethered ruthenium(II)-arene complexes and their application in biphasic catalysis, Organometallics, 2006,25,733-742.
    [37]Y.Q. Cai, Y. Lu, Y. Liu, G.H. Gao, Imidazolium ionic liquid-supported diol:An efficient and recyclable phosphine-free ligand for palladium catalyzed heck reaction, Catal. Lett.,2007, 119,154-158.
    [38]G. Yang, X. Hu, Y. Wu, C. Liu, Z. Zhang, Phenol oxidation catalyzed by a simple water-soluble copper catalyst with an imidazole salt tag, Catal. Commun.,2012,26,132-135.
    [39]C. Thurier, C. Fischmeister, C. Bruneau, H. Olivier, P.H. Dixneuf, Ionic imidazolium containing ruthenium complexes and olefin metathesis in ionic liquids, J. Mol. Catal. A:Chem., 2007,268,127-133.
    [40]C.S. Consorti, G.L.P. Aydos, G. Ebeling, J. Dupont, Ionophilic phosphines:Versatile ligands for ionic liquid biphasic catalysis, Org. Lett.,2008,10,237-240.
    [41]Y.Q. Peng, Y.Q. Cai, G.H. Song, J. Chen, Ionic liquid grafted Mn(III)-Schiff base complex: A highly efficient and recyclable catalyst for the epoxidation of chalcones, Synlett.,2005,56, 2147-2150.
    [42]K. Song, H. Gao, F. Liu, J. Pan, L. Guo, S. Zai, Q. Wu, Ionic liquid-supported bis-(salicylaldimine) Nickel complexes:robust and recyclable catalysts for ethylene oligomerization in biphasic solvent system, Catal. Lett.,2009,131,566-573.
    [43]Q.W. Yao, Y.L. Zhang, Olefin metathesis in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate using a recyclable Ru catalyst:Remarkable effect of a designer ionic tag, Angew. Chem. Int. Ed.,2003,42,3395-3398.
    [44]S. Doherty, P. Goodrich, C. Hardacre, J.G. Knight, M.T. Nguyen, V.I. Parvulescu, C. Paun, Recyclable copper catalysts based on imidazolium-tagged bis(oxazolines):A marked enhancement in rate and enantioselectivity for Diels-Alder reactions in ionic liquid, Adv. Synth. Catal.,2007,349,951-963.
    [45]S. Doherty, P. Goodrich, C. Hardacre, V. Parvulescu, C. Paun, Efficient heterogeneous asymmetric catalysis of the Mukaiyama aldol reaction by silica-and ionic liquid-supported Lewis acid copper(Ⅱ) complexes of bis(oxazolines), Adv. Synth. Catal.,2008,350,295-302.
    [46]R. Wang, J. Xiao, B. Twamley, J.n.M. Shreeve, Efficient Heck reactions catalyzed by a highly recyclable palladium(Ⅱ) complex of a pyridyl-functionalized imidazolium-based ionic liquid, Org. Biomol. Chem.,2007,5,671-678.
    [47]J.C. Xiao, B. Twamley, J.M. Shreeve, An ionic liquid coordinated palladium complex:A highly efficient and recyclable catalyst for the heck reaction, Org. Lett.,2004,6,3845-3847.
    [48]X. Hu, J. Mao, Y. Sun, H. Chen, H. Li, Acetylacetone-Fe catalyst modified by imidazole ionic compound and its application in aerobic oxidation of β-isophorone, Catal. Commun.,2009, 10,1908-1912.
    [49]R.R. Dykeman, N. Yan, R. Scopelliti, P.J. Dyson, Enhanced rate of arene hydrogenation with imidazolium functionalized bipyridine stabilized rhodium nanoparticle catalysts, Inorg. Chem.,2011,50,717-719.
    [50]S.G. Lee, Y.J. Zhang, J.Y. Piao, H. Yoon, C.E. Song, J.H. Choi, J. Hong, Catalytic asymmetric hydrogenation in a room temperature ionic liquid using chiral Rh-complex of ionic liquid grafted 1,4-bisphosphine ligand, Chem. Commun.,2003,2624-2625.
    [51]S.J. Ding, M. Radosz, Y.Q. Shen, Ionic liquid catalyst for biphasic atom transfer radical polymerization of methyl methacrylate, Macromolecules,2005,38,5921-5928.
    [52]B. Gadenne, P. Hesemann, J.J.E. Moreau, Easily recoverable BINOL ligand with ionic tag for asymmetric catalysis, Tetrahedron-Asymmetry,2005,16,2001-2006.
    [53]Z. Zhou, Z. Li, X. Hao, X. Dong, X. Li, L. Dai, Y. Liu, J. Zhang, H. Huang, X. Lia, J. Wang, Recyclable copper catalysts based on imidazolium-tagged C(2)-symmetric bis(oxazoline) and their application in D-A reactions in ionic liquids, Green Chem.,2011,13,2963-2971.
    [54]Z. Zhou, Z. Li, X. Hao, J. Zhang, X. Dong, Y. Liu, W. Sun, D. Cao, J. Wang, Catalytic effect and recyclability of imidazolium-tagged bis(oxazoline) based catalysts in asymmetric Henry reactions, Org. Biomol. Chem.,2012,10,2113-2118.
    [55]D.J.M. Snelders, C. Burg, M. Lutz, A.L. Spek, G. van Koten, R.J.M.K. Gebbink, Structure-activity relationships of oligocationic, ammonium functionalized triarylphosphines as ligands in the Pd-catalyzed Suzuki-Miyaura reaction, Chemcatchem,2012,2,1425-1437.
    [56]L. Gulajski, A. Michrowska, R. Bujok, K. Grela, New tunable catalysts for olefin metathesis:Controlling the initiation through electronic factors, J. Mol. Catal. A:Chem.,2006, 254,118-123.
    [57]A. Michrowska, L. Gulajski, Z. Kaczmarska, K. Mennecke, A. Kirschning, K. Grela, A green catalyst for green chemistry:Synthesis and application of an olefin metathesis catalyst bearing a quaternary ammonium group, Green Chem.,2006,8,685-688.
    [58]L. Gulajski, A. Michrowska, J. Naroznik, Z. Kaczmarska, L. Rupnicki, K. Grela, A highly active aqueous olefin metathesis catalyst bearing a quaternary ammonium group, Chemsuschem, 2008,1,103-109.
    [59]H. Zhang, Y. Liu, Y. Lu, X. He, X. Wang, X. Ding, Epoxidations catalyzed by an ionic manganese(Ⅲ) porphyrin and characterization of manganese(Ⅴ, Ⅳ)-oxo porphyrin complexes by UV-vis spectrophotometer in ionic liquid solution, J. Mol. Catal. A:Chem.,2008,287, 80-86.
    [60]J.P. Jordan, R.H. Grubbs, Small molecule N-heterocyclic carbene containing olefin metathesis catalysts for use in water, Angew. Chem. Int. Ed.,2007,46,5152-5155.
    [61]M. Lombardo, M. Chiarucci, C. Trombini, A recyclable triethylammonium ion-tagged diphenylphosphine palladium complex for the Suzuki-Miyaura reaction in ionic liquids, Green Chem.,2009,11,574-579.
    [62]Z. Xi, H.S. Bazzi, J.A. Gladysz, Analogs of Grubbs1 second generation catalyst with hydrophilic phosphine ligands:Phase transfer activation of ring closing alkene metathesis, Org. Lett.,2011,13,6188-6191.
    [63]W. Wu, S. Chen, F. Tsai, Recyclable and highly active cationic 2,2'-bipyridyl palladium(II) catalyst for Suzuki cross-coupling reaction in water, Tetrahedron Lett.,2006,47,9267-9270.
    [64]W. Wang, J. Wu, C. Xia, F. Li, Reusable ammonium salt-tagged NHC-Cu(I) complexes: preparation and catalytic application in the three component click reaction, Green Chem.,2011, 13,3440-3445.
    [65]D.J.M. Snelders, R. Kreiter, J.J. Firet, G. van Koten, R.J.M.K. Gebbink, Fast Suzuki-Miyaura cross-coupling reaction with hexacationic triarylphosphine Bn-Dendriphos as ligand, Adv. Synth. Catal.,2008,350,262-266.
    [66]W. Liu, Q. Wan, Y. Liu, Oxidation of ethylbenzene (derivatives) catalyzed by a functionali-zed ionic liquid combined with cationic (tetrakis(N-methyl-4-pyridinium)porphyrinato) manganese(III) and anionic phosphotungstate, Monatsh. Chem.,2010,141,859-865.
    [67]Y. Liu, H. Zhang, Y. Lu, Y. Cai, X. Liu, Mild oxidation of styrene and its derivatives catalyzed by ionic manganese porphyrin embedded in a similar structured ionic liquid, Green Chem.,2007,9,1114-1119.
    [68]Q. Wan, Y. Liu, The ionic palladium porphyrin as a highly efficient and recyclable catalyst for heck reaction in ionic liquid solution under aerobic conditions, Catal. Lett.,2009,128, 487-492.
    [69]P. Zhang, C. Wang, Z. Chen, H. Li, Acetylacetone-metal catalyst modified by pyridinium salt group applied to the NHPI-catalyzed oxidation of cholesteryl acetate, Catal. Sci. Technol., 2011,1,1133-1137.
    [70]X. Yun, X. Hu, Z. Jin, J. Hu, C. Yan, J. Yao, H. Li, Copper-salen catalysts modified by ionic compounds for the oxidation of cyclohexene by oxygen, J. Mol. Catal. A:Chem.,2010, 327,25-31.
    [71]E.M. Serwicka, J. Poltowicza, K.T. Bahranowski, Z. Olejniczak, W. Jones, Cyclohexene oxidation by Fe-, Co-, and Mn-metalloporphyrins supported on aluminated mesoporous silica, Appl. Catal. A.,2004,275,9-14.
    [72]D. Rix, F. Caijo, I. Laurent, L. Gulajski, K. Grela, M. Mauduit, Highly recoverable pyridinium-tagged Hoveyda-Grubbs pre-catalyst for olefin metathesis. Design of the boomerang ligand toward the optimal compromise between activity and reusability, Chem. Commun.,2007, 3771-3773.
    [73]D. Rix, H. Clavier, Y. Coutard, L. Gulajski, K. Grela, M. Maudint, Activated pyridinium tagged ruthenium complexes as efficient catalysts for ring closing metathesis, J. Organomet. Chem.,2006,691,5397-5405.
    [74]E. Borre, F. Caijo, C. Crevisy, M. Mauduit, Design of imidazolium-and pyridinium-tagged Ruthenium pre-catalysts for olefin metathesis in ionic liquids, Chim. Oggi.,2009,27 20-24.
    [75]S. Nakagaki, A.R. Ramos, F.L. Benedito, P.G. Peralta, A.J.G. Zarbin, Immobilization of iron porphyrins into porous vycor glass:characterization and study of catalytic activity, J. Mol. Catal. A:Chem.,2002,185,203-210.
    [76]B. Bahramian, V. Mirkhani, S. Tangestaninejad, M. Moghadam, Catalytic epoxidation of olefins and hydroxylation of alkanes with sodium periodate by water soluble manganese(III)salen, J. Mol. Catal. A:Chem.,2006,244,139-145.
    [77]P. Guerreiro, V. Ratovelomanana, J.P. Genet, P. Dellis, Recyclable diguanidinium-BINAP and PEG-BINAP supported catalysts:syntheses and use in Rh(Ⅰ) and Ru(Ⅱ) asymmetric hydrogenation reactions, Tetrahedron Lett.,2001,42,3423-3426.
    [78]P. Machnitzki, M. Tepper, K. Wenz, O. Stelzer, E. Herdtweck, Water soluble phosphines-Part XII. Pd catalyzed P-C coupling reactions:a novel synthetic route to cationic phosphines with para-and meta-guanidiniumphenyl moieties, J. Organomet. Chem.,2000,602,158-169.
    [79]G.J. Tenbrink, I. Arends, G. Papadogianakis, R.A. Sheldon, Catalytic conversions in water. Part 10. Aerobic oxidation of terminal olefins to methyl ketones catalysed by water soluble palladium complexes, Chem. Commun.,1998,112,2359-2360.
    [80]G.J. Tenbrink, I. Arends, R.A. Sheldon, Green, catalytic oxidation of alcohols in water, Science,2000,287,1636-1639.
    [81]K.A. Srinivas, A. Kumar, S.M.S. Chauhan, Epoxidation of alkenes with hydrogen peroxide catalyzed by iron(Ⅲ) porphyrins in ionic liquids, Chem. Commun.,2002,52,2456-2457.
    [82]N. Jain, A. Kumar, S.M.S. Chauhan, Metalloporphyrin and heteropoly acid catalyzed oxidation of C=NOH bonds in an ionic liquid:biomimetic models of nitric oxide synthase, Tetrahedron Lett.,2005,46,2599-2602.
    [83]B.M. Choudary, T. Ramani, H. Maheswaran, L. Prashant, K.V.S. Ranganath, K.V. Kumar, Catalytic asymmetric epoxidation of unfunctionalised olefins using silica, LDH and resin-supported sulfonato-Mn(salen) complex, Adv. Synth. Catal.,2006,348,493-498.
    [84]D.E. Blair, H. Diehl, Sulfonic acid derivatives of 1,10-phenanthroline, Anal. Chem.,1961, 33,867.
    [85]Y.P. Ma, H. Liu, L. Chen, X. Cui, J. Zhu, J.E. Deng, Asymmetric transfer hydrogenation of prochiral ketones in aqueous media with new water-soluble chiral vicinal diamine as ligand, Org. Lett.,2003,5,2103-2106.
    [86]R. Huang, K.H. Shaughnessy, Water soluble palladacycles as precursors to highly recyclable catalysts for the suzuki coupling of aryl bromides in aqueous solvents, Inorg. Chem., 2006,25,4105-4112.
    [87]S.S. Pawar, L.S. Uppalla, M.S. Shingare, S.N. Thore, Sodium 2-(2-pyridin-3-ylethylamino) ethyl sulfonate:an efficient ligand and base for palladium-catalyzed Suzuki reaction in aqueous media, Tetrahedron Lett.,2008,49,5858-5862.
    [88]C. Fleckenstein, S. Roy, S. Leuthaeusser, H. Plenio, Sulfonated N-heterocyclic carbenes for Suzuki coupling in water, Chem. Commun.,2007,118,2870-2872.
    [89]B.P. Buffin, J.P. Clarkson, N.L. Belitz, A. Kundu, Pd(II)-biquinoline catalyzed aerobic oxidation of alcohols in water, J. Mol. Catal. A:Chem.,2005,225,111-116.
    [90]E. Genin, R. Amengual, V. Michelet, M. Savignac, A. Jutand, L. Neuville, J.P. Genet, A novel water soluble m-TPPTC ligand:Steric and electronic features-Recent developments in Pd-and Rh-catalyzed C-C bond formations, Adv. Synth. Catal.,2004,346,1733-1741.
    [91]R. Amengual, E. Genin, V. Michelet, M. Savignac, J.P. Genet, Convenient synthesis of new anionic water soluble phosphanes and applications in inter-and intramolecular Heck reactions, Adv. Synth. Catal.,2002,344,393-398.
    [92]B.P. Buffin, A. Kundu, Synthesis, characterization, and crystal structure of platinum(II) and palladium(II) chlorides with an acidic alpha diimine ligand, Inorg. Chem. Commun.,2003,6, 680-684.
    [93]G. Fremy, Y. Castanet, R. Grzybek, E. Monflier, A. Mortreux, A.M. Trzeciak, J.J. Ziolkowski, A new, highly selective, water soluble rhodium catalyst for methyl acrylate hydroformylation, J. Organomet. Chem.,1995,505,11-16.
    [94]V. Penicaud, C. Maillet, P. Janvier, M. Pipelier, B. Bujoli, New water soluble diamine complexes as catalysts for the hydrogenation of ketones under hydrogen pressure, Eur. J. Org. Chem.,1999,89,1745-1748.
    [95]C. Maillet, T. Praveen, P. Janvier, S. Minguet, M. Evain, C. Saluzzo, M.L. Tommasino, B. Bujoli, Synthesis of a new water soluble C-2 symmetric chiral diamine:Preliminary investigation of its catalytic properties for asymmetric hydrogenation under biphasic conditions, J. Org. Chem.,2002,67,8191-8196.
    [96]S. Bischoff, M. Kant, Water soluble rhodium/phosphonate-phosphine catalysts for hydroformylation, Catal. Today,2001,66,183-189.
    [97]P. Zhang, Y. Gong, Y. Lv, Y. Guo, Y. Wang, C. Wang, H. Li, Ionic liquids with metal chelate anions, Chem. Commun.,2012,48,2334-2336.
    [98]C. Hansch, A. Leo, R.W. Taft, A Survey of hammett substituent constants and resonance and field parameters, Chem. Rev.,1991,9,1165-195.
    [99]T.M. Krygowski, B.T. Stepien, Sigma- and Pi-electron delocalization:Focus on substituent effects, Chem. Rev.,2005,105,3482-3512.
    [100]R.K. Raju, J.W.G. Bloom, Y. An, S.E. Wheeler, Substituent effects on non-covalent Interactions with aromatic rings:Insights from computational chemistry, Chemphyschem,2011, 12,3116-3130.
    [101]A. Michrowska, L. Gulajski, Z. Kaczmarska, K. Mennecke, A. Kirschning, K. Grela, A green catalyst for green chemistry:Synthesis and application of an olefin metathesis catalyst bearing a quaternary ammonium group, Green Chem,2006,8,685-688.
    [102]J.C. Xiao, B. Twamley, J.M. Shreeve, An ionic liquid-coordinated palladium complex:A highly efficient and recyclable catalyst for the heck reaction, Org. Lett.,2004,6,3845-3847.
    [103]C.S. Consorti, G.L.P. Aydos, G. Ebeling, J. Dupont, Ionophilic phosphines:Versatile ligands for ionic liquid biphasic catalysis, Org. Lett.,2008,10,237-240.
    [104]J. Wang, H. Feng, R. Qin, H. Fu, M. Yuan, H. Chen, X. Li, Asymmetric hydrogenation of aromatic ketones catalyzed by achiral monophosphine TPPTS-stabilized Ru in ionic liquids, Tetrahedron-Asymmetry,2007,18,1643-1647.
    [105]D. Rix, F. Caijo, I. Laurent, L. Gulajski, K. Grela, M. Mauduit, Highly recoverable pyridinium-tagged Hoveyda-Grubbs pre-catalyst for olefin metathesis. Design of the boomerang ligand toward the optimal compromise between activity and reusability, Chem. Commun.,2007, 3771-3773.
    [106]G.J. ten Brink, I. Arends, G. Papadogianakis, R.A. Sheldon, Catalytic conversions in water. Part 10. Aerobic oxidation of terminal olefins to methyl ketones catalysed by water soluble palladium complexes, Chem. Commun.,1998,2359-2360.
    [107]E. Genin, R. Amengual, V. Michelet, M. Savignac, A. Jutand, L. Neuville, J.P. Genet, A novel water-soluble m-TPPTC ligand:Steric and electronic features-Recent developments in Pd-and Rh-catalyzed C-C bond formations, Adv. Synth. Catal.,2004,346,1733-1741.
    [108]R. Amengual, E. Genin, V. Michelet, M. Savignac, J.P. Genet, Convenient synthesis of new anionic water-soluble phosphanes and applications in inter-and intramolecular Heck reactions, Adv. Synth. Catal.,2002,344,393-398.
    [109]I.D. Kostas, A.G. Coutsolelos, G. Charalambidis, A. Skondra, The first use of porphyrins as catalysts in cross-coupling reactions:a water soluble palladium complex with a porphyrin ligand as an efficient catalyst precursor for the Suzuki-Miyaura reaction in aqueous media under aerobic conditions, Tetrahedron Lett.,2007,48,6688-6691.
    [110]L. Gulajski, K. Grela, The influence of the anionic counter ion on the activity of ammonium aubstituted Hoveyda-Type olefin metathesis catalysts in aqueous media, in:Green Metathesis Chemistry:Great Challenges in Synthesis, Catalysis and Nanotechnology,2011, 49-56.
    [111]H. J. Zhang, Y. Liu, Y. Lu, X. S. He, X. Wang, X. Ding, Epoxidations catalyzed by an ionic manganese(Ⅲ) porphyrin and characterization of manganese(V, IV)-oxo porphyrin complexes by UV-vis spectrophotometer in ionic liquid solution, J. Mol. Catal. A:Chem.,2008, 287,80-86.
    [112]X. Hu, C. Liu, Y. Wu, Z. Zhang, Structure-reactivity relationships of metalloporphyrin modified by ionic liquid and its analogue, J. Phys. Chem. C.,2011,115,23913-23921.
    [113]H. Clavier, N. Audic, J.C. Guillemin, M. Mauduit, Olefin metathesis in room temperature ionic liquids using imidazolium tagged ruthenium complexes, J. Organomet. Chem.,2005,690, 3585-3599.
    [114]V. Penicaud, C. Maillet, P. Janvier, M. Pipelier, B. Bujoli, New water-soluble diamine complexes as catalysts for the hydrogenation of ketones under hydrogen pressure, Eur. J. Org. Chem.,1999,1745-1748.
    [115]R. Amengual, V. Michelet, J.P. Genet, New studies of Rh-catalyzed addition of boronic acids under basic conditions in aqueous medium, Tetrahedron Lett.,2002,43,5905-5908.
    [116]R.H. Wang, M.M. Piekarski, J.M. Shreeve, Pyrazolyl functionalized 2-methylimidazolium-based ionic liquids and their palladium(II) complexes as recyclable catalysts, Org. Biomol. Chem.,2006,4,1878-1886.
    [117]J.C. Xiao, J.M. Shreeve, Synthesis of 2,2'-biimidazolium-based ionic liquids:Use as a new reaction medium and ligand for palladium catalyzed Suzuki cross-coupling reactions, J. Org. Chem.,2005,70,3072-3078.
    [118]香兰素,精细化工原料及中间体,2004,15-16.
    [119]S.R. Rao, G.A. Ravishankar, Vanilla flavour:production by conventional and biotechnological routes, J. Sci. Food Agr.,2000,80,289-304.
    [120]Sheldrak.Ar, Polar auxin transport in leaves of monocotyledons, Nature,1972,238, 352-&.
    [121]陈秀清,杨润贤,香兰素合成方法研究探讨,广州化工,2010,38,40-42.
    [122]吴方宁,丁兴梅,丁敏.张全英,香兰素的合成及技术展望,化工技术与开发,2006,35.6-11.
    [123]郭松林,刘文明,愈创木酚法合成香兰素研究进展,萍乡高等专科学校学报,2007,20-24.
    [124]游佳勇,郑凌云,张淑玲,乙醛酸制备香兰素工艺条件的优化,食品与生物技术学报,2005,24,97-99.
    [125]D. Du, G. He, H. Mao, Y. Zhou, B. Zou, Treatment of wastewater from vanillin synthesis by glyoxalic acid method, involves passing wastewater through macroporous resin for absorption, adding desorbing agent, and oxidizing discharged wastewater, CN Patent., 101580319-A.2009.
    [126]A.D. Bulam, S.V. Nekrasov, B.V. Passet, V.G. Foshkin, The Problem of Synthesis of Vanillin by the Nitrose Method, J. Appl. Chem. Ussr,1988,61,859-860.
    [127]A.D. Bulat, S.V. Nekrasov, B.V. Passet, Synthesis of vanillin from guaiacol and formaldehyde|by condensing using p-nitroso-di:methyl-aniline and copper sulphate, pptn. as vanillidene-p-di:methyl-aniline di:hydrochloride etc, US Patent.,1497994-A1,1987.
    [128]韦星船,王琪莹,香兰素合成研究,广州化工,2004,18-20.
    [129]贾卫民,王华,邱安斌,朱昌朋,一步氧化法合成香兰素,CN Patent.,1167750A,1997.
    [130]L. Tan, L. Xia, H. Mao, Process for synthesis of vanillin and analogs with p-cresol comprises halogenating in solvent to obtain 2-halo-4-methylphenol, reacting with metal alkyl in the presence of catalyst and a second solvent to obtain 2-alkoxy-4-methylphenol, CN Patent., 1401622-A,2001.
    [131]B. Barton, C.G. Logie, B.M. Schoonees, B. Zeelie, Practical process for the air oxidation of cresols:Part A. Mechanistic investigations, Org. Process Res. Dev.,2005,9,62-69.
    [132]J. Mao, X. Hu, H. Li, Y. Sun, C. Wang, Z. Chen, Iron chloride supported on pyridine-modified mesoporous silica:an efficient and reusable catalyst for the allylic oxidation of olefins with molecular oxygen, Green Chem.,2008,10,827-831.
    [133]Z. Yao, X. Hu, J. Mao, H. Li, An environmentally benign catalytic oxidation of cholesteryl acetate with molecular oxygen by using N-hydroxyphthalimide, Green Chem.,2009, 11,2013-2017.
    [134]J. L. Wang, L. N. He, C. X. Miao, Y. N. Li, Ethylene carbonate as a unique solvent for palladium-catalyzed Wacker oxidation using oxygen as the sole oxidant, Green Chem.,2009,11, 1317-1320.
    [135]R.L. Oliveira, P.K. Kiyohara, L.M. Rossi, Clean preparation of methyl esters in one-step oxidative esterification of primary alcohols catalyzed by supported gold nanoparticles, Green Chem.,2009,11,1366-1370.
    [136]J. Zakzeski, A.L. Jongerius, B.M. Weckhuysen, Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids, Green Chem.,2005,12 1225-1236.
    [137]K. Nagashima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K. Kaneda, Creation of a high-valent manganese species on hydrotalcite and its application to the catalytic aerobic oxidation of alcohols, Green Chem.,2007,12,2142-2144.
    [138]J. Mao, N. Li, H. Li, X. Hu, Novel Schiff base complexes as catalysts in aerobic selective oxidation of beta-isophorone, J. Mol. Catal. A:Chem.,2006,258,178-184.
    [139]Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Boron- and Fluorine-containing mesoporous carbon nitride polymers:Metal-free catalysts for cyclohexane oxidation, Angew. Chem. Int. Ed.,2010,49,3356-3359.
    [140]J. Hu, Y. Hu, J. Mao, J. Yao, Z. Chen, H. Li, A Cobalt Schiff base with ionic substituents on ligand as an efficient catalyst for the oxidation of 4-methyl guaiacol to vanillin, Green Chem., 2012,10,2894-2898.
    [141]X. Hu, H. Li, T. Wu, Approaching and Bond Breaking Energies in the C-H Activation and Their Application in Catalyst Design, J. Phys. Chem. A.,2011,115,904-910.
    [142]Y. Sun, K. Chen, L. Jia, H. Li, Toward understanding macrocycle specificity of iron on the dioxygen-binding ability:a theoretical study, Phys. Chem. Chem. Phys.,2011,13 13800-13808.
    [143]Y. Sun, W. Zhang, X. Hu, H. Li, Correlation analysis of the substituent electronic effects on the allylic H-abstraction in cyclohexene by phthalimide-N-oxyl radicals:a DFT study, J. Phys. Chem. B,2011,114,4862-4869.
    [144]Y. Ishii, S. Sakaguchi, T. Iwahama, Innovation of hydrocarbon oxidation with molecular oxygen and related reactions, Adv Synth. Catal.,2001,343,393-427.
    [145]L.J. Csanyi, K. Jaky, G. Galbacs, Oxidation of hydrocarbons by O-2 in the presence of VO(acac)(2) as catalyst, J. Mol. Catal. A:Chem.,2002,179,65-72.
    [146]A.E. Gerbase, J.R. Gregorio, M. Martinelli, M.L.A. von Holleben, M.A.M. Jacobi, L.D. Freitas, C.I.W. Calcagno, A.N.F. Mendes, M.L. Pires, Polymers oxidation with VO(acac)2 complex, Catal. Today,2000,57,241-245.
    [147]X.B. Hu, J.Y. Mao, Y. Sun, H. Chen, H.R. Li, Acetylacetone-Fe catalyst modified by imidazole ionic compound and its application in aerobic oxidation of beta-isophorone, Catal. Commun.,2009,10,1908-1912.
    [148]X.A. Yun, X.B. Hu, Z.Y. Jin, J.H. Hu, C. Yan, J. Yao, H.R. Li, Copper-salen catalysts modified by ionic compounds for the oxidation of cyclohexene by oxygen, J. Mol. Catal. A: Chem.,2010,327,25-31.
    [149]P. Zhang, C. Wang, Z. Chen, H. Li, Acetylacetone-metal catalyst modified by pyridinium salt group applied to the NHPI-catalyzed oxidation of cholesteryl acetate, Catal. Sci. Technol., 2011,1,1133-1137.
    [150]L. Mouni, M. Akkurt, S.O. Yildirim, T.B. Hadda, Z.H. Chohan, Crystal Structure of Cuprate (II) Complex of Tetradentate ONNO Ligand:4-[(2-{[(1E)-1-Methyl-3-oxobutylidene] amino}ethyl)imino]pentan-2-one, J. Chem. Crystallogr.,2010,40,169-172.
    [151]Z.H. Gao, Y.J. Shao, S.P. Wang, P. Yang, The effect of different resin supports on activity and stability of Co catalyst for the oxidation of p-cresol to p-hydroxybenzadehyde, Appl. Catal. A-Gen.,2001,209,27-32.
    [152]V.S. Kshirsagar, A.C. Garade, K.R. Patil, R.K. Jha, C.V. Rode, Heterogeneous cobalt saponite catalyst for liquid phase air oxidation of p-cresol, Ind. Eng. Chem. Res.,2009,48, 9423-9427.
    [153]V.S. Kshirsagar, A.C. Garade, K.R. Patil, M. Shirai, C.V. Rode, Liquid phase oxidation of p-cresol over cobalt saponite, Top. Catal.,2009,52,784-788.
    [154]Y.M. Liu, S.T. Liu, K.Z. Zhu, X.K. Ye, Y. Wu, Catalysis of hydrotalcite-like compounds in liquid phase oxidation:(Ⅱ)-Oxidation of p-cresol to p-hydroxybenzaldehyde, Appl. Catal. A-Gen.,1998,169,127-135.
    [155]C.V. Rode, V.S. Kshirsagar, J.M. Nadgeri, K.R. Patil, Cobalt-salen intercalated montmorillonite catalyst for air oxidation of p-cresol under mild conditions, Ind. Eng. Chem. Res.,2007,46,8413-8419.
    [156]C.V. Rode, M.V. Sonar, J.M. Nadgeri, R.V. Chaudhari, Selective synthesis of p-hydroxybenzaldehyde by liquid-phase catalytic oxidation of p-cresol, Org. Process Res. Dev., 2004,8,873-878.
    [157]R. Neumann, I. Assael, Oxybromination catalyzed by the heteropolyanion compound H5pmol0v2o40 in an organic medium-selective para-bromination of phenol, J. Chem. Soc. Chem. Commun.,1988,1285-1287.
    [158]S. Mukhopadhyay, S. Ananthakrishnan, S.B. Chandalia, Oxidative bromination in a liquid-liquid two-phase system to synthesize organic intermediates:2-bromophenol, 2,6-dibromophenol, and 2-bromo-4-methylphenol, Org. Process Res. Dev.,1999,3451-454.
    [159]B. Barton, C.G. Logie, B.M. Schoonees, B. Zeelie, Practical process for the air oxidation of cresols:Part B. Evaluation of the laboratory-scale oxidation process, Org. Process Res. Dev., 2005,9,70-79.
    [160]M. Schley, P. Lonnecke, E. Hey-Hawkins, Monometallic and heterobimetallic complexes derived from salen-type ligands, J. Organomet. Chem.,2009,694,2480-2487.
    [161]J.U. Ahmad, P.J. Figiel, M.T. Rsen, M. Leskel, T. Repo, Aerobic oxidation of benzylic alcohols with bis(3,5-di-tert-butylsalicylaldimine)copper(II) complexes, Appl. Catal. A:Gen., 2009,371,17-21.
    [162]T. Chattopadhyay, S. Islam, M. Nethaji, A. Majee, D. Das, Mono-and bi-metallic Mn(Ⅲ) complexes of macroacyclic salen type ligands:Syntheses, characterization and studies of their catalytic activity, J. Mol. Catal. A:Chem.,2007,267,255-264.
    [163]P. Li, H. Alper, Cobalt-catalyzed oxidation of ethers using oxygen, J. Mol. Catal. A-Chem.,1992,72,143-152.
    [164]S.N. Sharma, S.B. Chandalia, Liquid-phase oxidation of p-cresol and substituted p-cresols by air, J. Chem. Technol. Biot.,1990,49,141-153.
    [165]M. Calvin, C.H. Barkelew, The oxygen-carrying synthetic chelate compounds.4. magnetic properties, J. Am. Chem. Soc.,1946,68,2267-2273.
    [166]R.G. Wilkins, Uptake of oxygen by cobalt(II) complexes in solution, Adv. Chem. Ser.,,1971,111-118.
    [167]R.S. Drago, B.B. Corden, Spin-pairing model of dioxygen binding and its application to various transition-metal systems as well as hemoglobin cooperativity, Accounts Chem. Res., 1980,13,353-360.
    [168]J.J. Bozell, B.R. Hames, D.R. Dimmel, Cobalt schiff base complex catalyzed oxidation of parasubstituted phenolics-preparation of benzoquinones, J. Org Chem,1995,60,2398-2404.
    [169]B.B. Corden, R.S. Drago, R.P. Perito, Steric and electronic effects of ligand variation on cobalt dioxygen catalysts, J. Am. Chem. Soc.,1985,107,2903-2907.
    [170]G. Mclendon, A.E. Martell, Inorganic oxygen carriers as models for biological-systems, Coordin. Chem. Rev.,1976,19,1-39.
    [171]Crumblis.Al, F. Basolo, Monomeric oxygen adducts of N,N'-ethylenebis(acetylaceton-iminato)ligand cobalt(Ⅱ). preparation and properties, J. Am. Chem. Soc.,1970,92,55.
    [172]Z. Yao, X.B. Hu, J.Y. Mao, H.R. Li, An environmentally benign catalytic oxidation of cholesteryl acetate with molecular oxygen by using N-hydroxyphthalimide, Green Chem.,2009, 11,2013-2017.
    [173]Y. Sun, X.B. Hu, A.F. Jalbout, H.R. Li, Metalloporphyrin-dioxygen interactions and the effects of neutral axial ligands, J. Phys. Chem. C,2009,113,14316-14323.
    [174]Crumblis.Al, F. Basolo, Monomeric cobalt-oxygen complexes, Science,1969,164, 1168.
    [175]B.M. Hoffman, T. Szymanski, F. Basolo, Consideration of a Report.1. On formulation of monomeric cobalt-dioxygen adducts-continued support for Co(Ⅲ)-O2-, J. Am. Chem. Soc., 1975,97,673-674.
    [176]F.A. Walker, Reactions of monomeric cobalt-oxygen complexes 1. Thermodynamics of reaction of molecular-oxygen with 5-coordinate and 6-coordinate amine complexes of a cobalt porphyrin, J. Am. Chem. Soc.,1973,95,1154-1159.
    [177]B.M. Hoffman, D.L. Diemente, F. Basolo, Electron paramagnetic resonance studies of some cobalt(Ⅱ) Schiff base compounds and their monomeric oxygen adducts, J. Am. Chem. Soc.,1970,92,61-67.
    [178]J.H. Burness, J.G. Dillard, L.T. Taylor, X-Ray photoelectron spectroscopic study of cobalt(Ⅱ) Schiff-base complexes and their oxygenation products, J. Am. Chem. Soc.,1975,97, 6080-6088.
    [179]D. Rix, H. Clavier, Y. Coutard, L. Gulajski, K. Grela, M. Maudint, Activated pyridinium-tagged ruthenium complexes as efficient catalysts for ring-closing metathesis, J. Organomet. Chem.,2006,691,5397-5405.
    [180]X.B. Hu, Y. Sun, J.Y. Mao, H.R. Li, Theoretical study on the structure-reactivity relationships of acetylacetone-Fe catalyst modified by ionic compound in C-H activation reaction, J. Catal.,2010,272,320-332.
    [181]S. Gopinathan, T. Joseph, C.S. Sajanikumari, S.S. Deshpande, Oxidation of p-cresol catalyzed by neat and zeolite encapsulated cobalt salen complexes, Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry,1999,38, 792-796.
    [182]V.S. Kshirsagar, S. Vijayanand, H.S. Potdar, P.A. Joy, K.R. Patil, C.V. Rode, Highly active nanostructured CO3O4 catalyst with tunable selectivity for liquid phase air oxidation of p-cresol, Chem. Lett.,2008,37,310-311.
    [183]Y. Wang, J. Zhang, X. Wang, M. Antonietti, H. Li, Boron-and Fluorine-containing mesoporous carbon nitride polymers:Metal-free catalysts for cyclohexane oxidation, Angew. Chem. Int. Ed.,2010,49,3356-3359.
    [184]Y. Sun, W. Zhang, X. Hu, H. Li, Correlation analysis of the substituent electronic effects on the allylic H-abstraction in cyclohexene by phthalimide-N-oxyl padicals:a DFT Study, J. Phys. Chem. B.,2010,114,4862-4869.
    [185]P.A. Deck, Perfluoroaryl-substituted cyclopentadienyl complexes of transition metals, Coordin. Chem. Rev.,2006,250,1032-1055.
    [186]S.P. Flanagan, P.J. Guiry, Substituent electronic effects in chiral ligands for asymmetric catalysis, J. Organomet. Chem.,2006,691,2125-2154
    [187]P.C. Mohring, N.J. Coville, Group 4 metallocene polymerisation catalysts:quantification of ring substituent steric effects, Coordin. Chem. Rev.,2006,250,18-35. [188] T. Nyokong, Effects of substituents on the photochemical and photophysical properties of main group metal phthalocyanines, Coordin. Chem. Rev.,2007,251,1707-1722.
    [189]X. Hu, Y. Sun, J. Mao, H. Li, Theoretical study on the structure-reactivity relationships of acetylacetone-Fe catalyst modified by ionic compound in C-H activation reaction, J. Catal., 2010,272,320-332.
    [190]D.J. Cole-Hamilton, Homogeneous catalysis-new approaches to catalyst separation, recovery, and recycling, Science,2003,299,1702-1706.
    [191]M. Lombardo, C. Trombini, Ionic tags in catalyst optimization:Beyond catalyst recycling, Chemcatchem,2010,2,135-145.
    [192]K. Kervinen, H. Kopi, M. Leskela, T. Repo, Oxidation of veratryl alcohol by molecular oxygen in aqueous solution catalyzed by cobalt salen-type complexes:the effect of reaction conditions, J. Mol. Catal. A:Chem.,2003,203,9-19.
    [193]H.L. Ngo, A.G. Hu, W.B. Lin, Highly enantioselective catalytic asymmetric hydrogenati-on of beta-keto esters in room temperature ionic liquids, Chem. Commun.,2003,1912-1913.
    [194]K. Grela, A. Michrowska, M. Bieniek, Catalysts for new tasks:Preparation and applicati-ons of tunable ruthenium catalysts for olefin metathesis, Chem. Rec.,2006,6,144-156.
    [195]D. Rix, H. Clavier, Y. Coutard, L. Gulajski, K. Grela, M. Maudint, Activated pyridinium-tagged ruthenium complexes as efficient catalysts for ring-closing metathesis, J. Organomet. Chem.,2006,691,5397-5405.
    [196]M.J.e.a. Frisch, Gaussian03, revision B.02; Gaussian, Inc., Pittsburgh, PA,2003.
    [197]H. Chen, L. Jia, X. Xu, J. Mao, Y. Wang, C. Wang, H. Li, Electronic effect of ionic-pair substituents, J. Phys. Org. Chem.,2013,26,460-466.
    [198]G. Ceyhan, C. Celik, S. Urus, I. Demirtas, M. Elmastas, M. Turner, Antioxidant, electrochemical, thermal, antimicrobial and alkane oxidation properties of tridentate Schiff base ligands and their metal complexes, Spectrochim. Acta. A.,2011,81,184-198.
    [199]J. Haber, L. Matachowski, K. Pamin, J. Poltowicz, Manganese porphyrins as catalysts for oxidation of cyclooctane in Lyons system, J. Mol. Catal. A:Chem.,2000,162,105-109.
    [200]J, Haber, L. Matachowski, K. Pamin, J. Poltowicz, The effect of peripheral substituents in metalloporphyrins on their catalytic activity in Lyons system, J. Mol. Catal. A:Chem.,2003, 198,215-221.
    [201]J. Dupont, P.A.Z. Suarez, R.F. De Souza, R.A. Burrow, J.P. Kintzinger, C-H-pi interactions in 1-n-butyl-3-methylimidazolium tetraphenylborate molten salt:Solid and solution structures, Chem. Eur. J.,2000,6,2377-2381.
    [202]V.S. Kshirsagar, J.M. Nadgeri, P.R. Tayade, C.V. Rode, Reaction kinetics of liquid phase air oxidation of p-cresol to p-hydroxybenzaldehyde, Appl. Catal. A.,2008,339,28-35.
    [203]R.V. Malyala, C.V. Rode, M. Arai, S.G. Hegde, R.V. Chaudhari, Activity, selectivity and stability of Ni and bimetallic Ni-Pt supported on zeolite Y catalysts for hydrogenation of acetophenone and its substituted derivatives, Appl. Catal. A.,2000,193,71-86.
    [204]M.V. Sullivan, J.K. Wolfe, W.A. Zisman, Flammability of the higher boiling liquids and their mists, Ind. Eng. Chem. Res.,1947,39,1607-1614.
    [205]B. Barton, C.G. Logie, B.M. Schoonees, B. Zeelie, Practical process for the air oxidation of cresols:Part B. Evaluation of the laboratory-scale oxidation process, Org. Process Res. Dev., 2005,9,70-79

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700