用户名: 密码: 验证码:
布鲁氏菌wzm/wzt基因对其毒力、免疫原性及蛋白质表达影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
布鲁氏菌病是一种人兽共患病,该病不但严重影响养殖业的发展,对人类健康也构成巨大威胁。人畜布鲁氏菌病难以防控的原因是多方面的,其中,其致病机理(包括胞内寄生机理)不清、免疫机理不清是主要原因。
     脂多糖(lipopolysaccharide,LPS)是布鲁氏菌主要的毒力因子,也是引起哺乳动物免疫的主要抗原之一。目前布鲁氏菌LPS合成的途径并不完全清晰,已经发现的与布鲁氏菌LPS合成相关的关键基因有wbkA、gmd、wzm、wzt、wbkB、wbkC等基因,其中wzm、wzt基因既是LPS合成的关键基因,又是ABC转运系统的主要组成部分。
     ABC transporter(ABC转运系统)在细菌中是一个主要的细胞转运机器,由一系列同源基因编码的操纵子组成。该操纵子由ATP结合蛋白,膜蛋白,亚基结合蛋白3部分组成,通常情况下,形成由6个跨膜片段组成的2个完整的膜蛋白。ABC转运系统是膜外生物大分子合成的主要运输通道之一,参与胞外多糖的合成。此外,ABC转运系统在细菌营养成分的运输,毒力分子的外排等过程中也起着重要的作用。然而ABC转运系统对细菌毒力、免疫原性及蛋白质表达的影响还不清楚。
     本研究通过构建致死质粒,利用基因重组的方法敲除LPS合成的关键基因wzm和wzt基因部分序列,构建LPS缺失的突变株,研究突变株感染小鼠后的脾菌数,评价其毒力,并对其血清抗体水平、细胞因子水平、淋巴细胞增殖与转化差异进行了比较,通过2D电泳比较其蛋白质组的差异,研究基因缺失对菌株毒力及免疫原性的影响,比较其缺失前后的蛋白质组的变化,分析基因缺失对菌体基因表达的影响,为进一步揭示布鲁氏菌的致病机理、免疫机制提供实验依据,也可为布鲁氏菌粗糙型疫苗的研制奠定基础。
     实验结果如下:
     1.本实验成功构建了wzm和wzt基因敲除的重组质粒,经PCR扩增和酶切鉴定,该质粒包含sacB基因反向筛选标记,wzmf/wztf和wzmr/wztr目的基因两臂片段。通过电转化将重组质粒转入布鲁氏菌B. abortus S19,经kanr抗性,5%蔗糖TSB琼脂固体培养基筛选,经过PCR扩增和测序鉴定突变位点正确,经测序证明Δwzm和Δwzt分别缺失了511bp和446bp。将鉴定的阳性突变株Δwzm和Δwzt进行特异性引物PCR鉴定结果显示为布鲁氏菌,两株突变株的LPS粗提物进行SDS-PAGE鉴定结果表明突变株LPS-O侧链缺失,吖啶橙凝集反应和感染血清的虎红平板试验证明突变株O抗原缺失,表现为粗糙型。
     2.通过感染小鼠试验发现,感染8周后,亲本株S19,突变株Δwzm和Δwzt的log脾菌数分别为4.11±0.31,2.86±0.52,2.52±0.41,突变株Δwzm和Δwzt较亲本株S19感染小鼠后的脾菌数显著下降,脾指数分别为1.30±0.23,0.67±0.12,0.62±0.52,与亲本株相比脾指数显著下降,说明wzm/wzt基因缺失会造成毒力下降。
     3.免疫小鼠后,通过淋巴细胞增殖、淋巴细胞转化实验发现,Δwzm和Δwzt突变株引起的淋巴细胞转化CD4+/CD8+比值较亲本株S19要高,但是CD3+淋巴细胞数较亲本株降低,淋巴细胞增殖指数也较亲本株下降显著。通过ELISA检测血清中IgG抗体水平结果显示,Δwzm和Δwzt突变株免疫小鼠产生的抗体水平较S19亲本株要高,而且抗体持续时间较长。对免疫后小鼠的脾细胞体外培养诱导产生IFN-γ、IL-2、IL-4、IL-10、TNF-、NO均表现不同程度的下降,Δwzt比Δwzm突变株诱导产生的IFN-γ无论是细胞水平,还是体液水平比亲本株都要低。
     4.研究表明wzm和wzt基因缺失均使2,3-二磷酸甘油酸依赖型磷酸甘油酸变位酶、甘油醛-3-磷酸脱氢酶、乙酰辅酶A羧化酶的羧基转移酶亚基、50S核糖体组成蛋白L9、磷酸甲基嘧啶激酶、ATP/GTP结合蛋白、ABC转运单位底物结合蛋白等8个代谢相关蛋白的表达下调。此外wzm基因缺失造成核苷二磷酸激酶、果糖-2-磷酸醛缩酶、3-羟基丁酰CoA脱氢酶、核糖体循环因子、硫胺素-磷酸焦磷酸化酶、硫代甘氨酸氧化酶等6蛋白表达量下降,同时引起噻唑合成酶、钼酸盐转运蛋白、双组分系统效应调节蛋白、孔蛋白Omp2b、6,7-二甲基-8-ribityllumazine合成酶等6个蛋白表达量上调。wzt基因缺失造成6-磷酸-葡萄糖酸内酯酶、电子转移黄素蛋白亚基、饥饿蛋白、超氧化物歧化酶、50S核糖体组成蛋白L25、NAD(P)H还原酶、蛋白输出蛋白secB、ATP依赖的Clp蛋白酶水解亚单位、双精氨酸转运途径的信号序列结构域蛋白等8个基因表达下调,同时引起TAXI家族TRAP转运受体、铁硫ATP酶SufC、辅酶Q-细胞色素C还原酶FeS亚基、延伸因子Ts等4个蛋白表达上调。
     上述研究结果表明,布鲁氏菌wzm和wzt基因缺失产生了粗糙型突变株,进一步说明wzm和wzt基因与细菌LPS-O侧链的合成有关,两个突变菌株对小鼠的毒力较亲本株降低,揭示wzm和wzt基因通过影响LPS合成从而影响细菌毒力。两个突变株均能诱导产生比亲本株高的抗体效价,但是细胞免疫水平下降,说明wzm和wzt基因缺失均增强细胞免疫的同时抑制了体液免疫。比较蛋白质组学研究发现,wzm和wzt基因缺失均影响多种蛋白质的表达以下调为主,他们影响蛋白质表达调控的机制有待于进一步研究。
Brucellosis is a zoonosis, which not only seriously affects the development ofaquaculture, also poses human health a huge threat. Prevention and control of humanand animal brucellosis is difficult for many reasons, but pathogenesis (including themechanism of intracellular parasitism) and immune mechanism are unclear that is themain reason.
     Lipopolysaccharide (LPS) is one of the major Brucella virulence factors, and isone of the major antigens in mammals immunized. Currently Brucella LPSsynthesis pathway is not completely clear, and several critical LPS synthesis-relatedgenes have been found, wbkA, gmd, wzm, wzt, wbkB, wbkC et al., in which wzm andwzt genes are major components.
     ABC transporter, in bacterial cells, is a major transporter of the machine consistsof a series of homologous genes encoding an operon. The operon is substantiallycomposed of three parts, ATP-binding proteins, membrane proteins, protein subunits,and is typically formed two integral membrane proteins by six transmembranesegments. ABC transport system is one important transport corridors in outermembranes on biological macromolecules synthesized, involved in the synthesis ofextracellular polysaccharides. In addition, ABC transporters also play an importantrole in transporting nutrient and exporting some molecules. However, the effect of theABC transporter system on bacterial virulence, immunogenicity, physiologicalmetabolism needs to be proved.
     In this study, a plasmid was constructed for knockout wzm/wzt gene by allelicexchange methods, and LPS deletion mutants were constructed. The spleen index and CFU of infected mice spleen was evaluated. And the differences of the parent strainand mutants on antibody level, cytokine level, lymphocyte proliferation and proteindifferences by2D electrophoresis. The effect of gene mutation on virulence,immunogenicity, and gene expression was evaluated, in order to further reveal thepathogenesis and immune mechanism of Brucella, and lay the foundation for thedevelopment of the rough Brucella vaccine.
     The results showed:
     1. The lethal plasmid was constructed for wzm/wzt knockout, and amplified byPCR and digested by restriction enzymes, containing sacB gene as a reverse selectionmarker, wzmf/wztf and wzmr/wztr arms of target genes fragments. The allelicexchange plasmid was electro-transformed into vaccine strain B. abortus S19, andscreened on TSB agar solid medium (kanr) with5%sucrose, and then screened byPCR amplification. The mutant sites were confirmed correct, and511bp,446bp genewere deleted. The specific primers multiple-PCR identification results showed asBrucella. LPS crude extracts of two mutant strains were analyzed by SDS-PAGE, andthe results showed that the mutants LPS molecule distribution is missing. Acridineorange agglutination of mutants and the test of serum by Rose Bengal plateagglutination test proved O antigen deleted on bacteria as rough mutants.
     2. The results showed that the logCFU of infected spleen of S19, Δwzm andΔwzt strains were4.11±0.31,2.86±0.52, and2.52±0.41, and the spleen indexswere1.30±0.23,0.67±0.12, and0.62±0.52respectively. And the Δwzm and Δwztmutants were decreased significantly compared to the parental strain S19, thatindicated wzm/wzt gene deletion caused virulence decline.
     3. The lymphocyte proliferation and lymphocyte transformation were analyzedthat Δwzm and Δwzt mutants induced lymphocyte CD4+/CD8+ratio higher than theparental strain S19, but the number of CD3+lymphocytes and lymphocyteproliferation decreased compared with the parent strain. IgG antibody levels detectedby ELISAin serum showed immunized antibody levels of Δwzm and Δwzt mutants in mice were higher compared to the parental strain S19, and longer maintained durationof the antibody. Mice spleen lymphocyte cells of mutants cultured in vitro to produceIFN-γ, IL-2, IL-4, IL-10, TNF-, and NO showed different degrees of declinecompared with the parental strain S19. And Δwzt mutant induced lower production ofIFN-γ thanΔwzm mutant.
     4. Results showed that wzm/wzt gene deletion caused2,3-bisphosphoglycerate-dependent phosphogl-ycerate mutase, glyceraldehyde-3-phosphate dehydrogenase,Acetyl-coenzyme A carboxylase carboxyltransferase subunit alpha,50S ribosomalprotein L9, Phosphomethyl-pyrimidine kinase, ATP/GTP-binding protein, and ABCtransporter substrate-binding protein expression down-regulation. wzm deletioncaused the decline of Nucleoside diphosphate kinase, fructose-bisphosphate aldolase,glyceraldehyde-3-phosphate dehydrogenase, Ribosome recycling factor,Thiamine-phosphate pyrophosphorylase, Glycine oxidase ThiO proteins, while causedThiazole synthase, Molybdate ABC transporter, Two component transcriptionalregulator, porin omp2b,6,7-dimethyl-8ribityllumazine synthase protein up-regulated.wzt gene deletion caused6-phosphogluconolactonase, electron transfer flavoproteinsubunit alpha, DNA protection during starvation protein, Superoxidedismutase[Cu-Zn],50S ribosomal protein L25, Aldo-keto reductases, Protein-exportprotein secB, ATP-dependent Clp protease proteolytic subunit, Twin-argininetanslocation pathway signal sequence domain-containing protein down-regulated,while caused TRAP transporter solute receptor, FeS assembly ATPase SufC,ubiquinol-cytochrome c reductase, iron-sulfur subunit, elongation factor Tsup-regulated.
     These results indicated that Brucella wzm and wzt genes deletion caused roughmutants, and further described that wzm and wzt genes were involved in bacterialLPS-O side chain synthesis. The virulence of two mutant strains was decreased thanthe parental virulent strains that revealed wzm and wzt genes were related to bacterialvirulence. Two mutants could induce higher antibody titer than the parent, but decreased levels of cell-mediated immunity, which indicated wzm and wzt genesaffected the bacterial immunogenicity. Comparative proteomics study found that manyproteins expression are affected by wzm and wzt genesand mostly decreased, whichneed further study on the regulation of protein expression.
引文
[1] Pappas G,Papadimitriou P. Challenges in Brucella bacteraemia. Int J AntimicrobAgents.2007,30(Suppl.1): S29-31.
    [2] Capasso L. Bacteria in Two-millennia-old Cheese, and Related EpizoonosesinRoman Populations. J Infect.2002,45(2):122-127.
    [3] Sriranganathan N, Seleem MN, Olsen SC, Samartino LE, Whatmore AM, BrickerB, O'Callaghan D, Halling SM, Crasta OR, Wattam AR. Brucella. GenomeMapping and Genomics in Animal-Associated Microbes.2009,1-64.
    [4] Seleem MN, Jain N, Pothayee N, Ranjan A, Riffle JS, Sriranganathan N.Targeting Brucella melitensis with polymeric nanoparticles containingstreptomycin and doxycycline. FEMS Microbiol Lett.2009,294:24-31.
    [5] Olsen S, Tatum F. Bovine Brucellosis. Vet Clin North Am Food Anim Pract.2010,26(1):15–27.
    [6] Robinson A.,. Guidelines for coordinated human and animal brucellosissurveillance. Food and Agriculture Organization of the United Nations, FaoAnimal Production and Health.2003,156.
    [7] Pappas G, Papadimitriou P, Akritidis N, Christou L, Tsianos EV. The new globalmap of human brucellosis. Lancet Infect Dis.2006,6(2):91-99.
    [8] Taleski V, Zerva L, Kantardjiev T, Cvetnic Z, Erski-Biljic M, Nikolovski B,Bosnjakovski J, Katalinic-Jankovic V, Panteliadou A, Stojkoski S, Kirandziski T.An overview of the epidemiology and epizootology of brucellosis in selectedcountries of Central and Southeast Europe. Vet Microbiol.2002,90(1-4):147-155.
    [9] Acha NP, Szyfres B. Zoonoses and Communicable Diseases Common To Manand Animals, third ed., Vol1. Pan American Sanitary Bureau, Regional Office ofthe World Health Organization, Washington D.C.2003.
    [10] McDonald WL, Jamaludin R, Mackereth G, Hansen M Humphrey S, Short P,Taylor T, Swingler J, Dawson CE, Whatmore AM, Stubberfield E, Perrett LL, andSimmons G. Characterization of a Brucella sp. Strain as a Marine-Mammal Typedespite Isolation from a Patient with Spinal Osteomyelitis in New Zealand. J ClinMicrobiol.2006,44(12):4363–4370.
    [11] Sohn AH, Probert WS, Glaser CA, Gupta N, Bollen AW, Wong JD, Grace EM,and McDonald WC. Human Neurobrucellosis with Intracerebral GranulomaCaused by a Marine Mammal Brucella spp.. Emerg Infect Dis.2003,9(4):485-488.
    [12] Chain PSG, Comerci DJ, Tolmasky ME, Larimer FW, Malfatti SA, Vergez LM,Aguero F, Land ML, Ugalde RA, and Garcia E. Whole-Genome Analyses ofSpeciation Events in Pathogenic Brucellae. Infecti Immun.2005,73(12):8353–8361.
    [13] Tabak F, Hakko E, Mete B, Ozaras R, Mert A, Ozturk R. Is Family ScreeningNecessary in Brucellosis? Infection.2008,36(6):575-577.
    [14] Massis FD, Girolamo AD, Petrini A, Pizzigallo E and Giovannini A. Correlationbetween animal and human brucellosis in Italy during the period1997–2002. ClinMicrobiol Infect.2005,11:632–636.
    [15] Wallach JC, Samartino LE, Efron A, Baldi PC. Human infection by Brucellamelitensis: an outbreak attributed to contact with infected goats. FEMS ImmunolMed Microbiol.1998,19(4):315-321.
    [16] Dahouk SA, Neubauer H, Hensel A, Sch neberg I, N ckler K, Alpers K,Merzenich H, Stark K, and Jansen A. Changing Epidemiology of HumanBrucellosis, Germany,1962–2005. Emerg Infect Dis.2007,13(12):1895-1900.
    [17] Mantur BG, Amarnath SK, Shinde RS. Review of clinical and laboratory featuresof human brucellosis. Indian J Med Microbiol.2007,25(3):188-202.
    [18] Khan MY, Mah MW, and Memish ZA. Brucellosis in Pregnant Women. ClinInfect Dis.2001,32:1172–1177.
    [19] Reguera JM, Alarcon A, Miralles F, Pachón J. Brucella Endocarditis: Clinical,Diagnostic, and Therapeutic Approach. Eur J Clin Microbiol Infect Dis.2003,22:647-650.
    [20] Ulu M, Yaman Y, Yapici F, Can-Ulu N. Clinical and laboratory features,complications and treatment outcome of brucellosis in childhood and review ofthe literature. Turk J Pediatr.2011,53(4):413-424.
    [21] Carrera IA, Rodríguez MJL, Sapi a AM, Lafuente AL, Sacristán ARB. ProbableTransmission of Brucellosis by Breast Milk. J Trop Pediatr.2006,52(5):380-381.
    [22] Mense MG, Van De Verg LL, Bhattacharjee AK, Garrett JL, Hart JA, LindlerLE, Hadfield TL, Hoover DL. Bacteriologic and histologic features in mice afterintranasal inoculation of Brucella melitensis. Am J Vet Res.2001,62(3):398-405.
    [23] Ollé-Goig JE, Canela-soler J. An Outbreak of Brucella Melitensis Infection byAirborne Transmission among Laboratory Workers. Am J Public Health.1987,77(3):335-338.
    [24] Robichaud S, Libman M, Behr M, Rubin E. Prevention of Laboratory-AcquiredBrucellosis. Clin Infect Dis.2004,38:e119–122.
    [25] Bouza E, Sánchez-Carrillo C, Hernangómez S, González MJ, SpanishCo-operative Group for the Study of Laboratory-acquired Brucellosis.Aboratory-acquired brucellosis: a Spanish national survey. J Hosp Infect.2005,61(1):80–83.
    [26] Cook WE, Williams ES, Thorne ET, Kreeger TJ, Stout G, Bardsley K, Edwards H,Schurig G, Colby LA, Enright F, and Elzer PH. Brucella abortus strain RB51vaccination in ELK I. efficacy of reduced dosage. J Wildl Dis.2002,38(1):18–26.
    [27] Darla RE, Janet BP, Jack CR, Patricia LG. Brucella suis biovar1in naturallyinfected cattle: a bacteriological, serological, and histological study. J Vet DiagnInvest.1997,9:417–420.
    [28] Kahler SC. Brucella melitensis infection discovered in cattle for first time, goatsalso infected. J Am Vet Med Assoc.2000,216(5):648.
    [29] Seleem MN, Boyle SM, Sriranganathan N. Brucellosis: a re-emerging zoonosis.Vet. Microbiol.2010,140(3-4):392-398.
    [30] Glynn MK, Lynn TV. Brucellosis. J Am Vet Med Assoc.2008,233(6);900-908.
    [31] Musa MT, Eisa MZ, El Sanousi EM, Abdel Wahab MB, Perrett L. Brucellosis incamels (Camelus dromedarius) in Darfur, Western Sudan. J. Comp. Pathol.2008,138,151–155.
    [32] Buchanan TM, Faber LC.2-Mercaptoethanol Brucella Agglutination Test:Usefulness for Predicting Recovery from Brucellosis. J clin microbiol.1980,11(6):691-693
    [33] Ordu a A, Almaraz A, Prado A, Gutierrez MP, Garcia-Pascual A, Due asA, Cuervo M, Abad R, Hernández B, Lorenzo B, Bratos MA, Torres AR.Evaluation of an Immunocapture-Agglutination Test (Brucellacapt) forSerodiagnosis of Human Brucellosis. J clin microbiol.2000,38(11):4000–4005.
    [34] Kattar MM, Zalloua PA, Araj GF, Samaha-Kfoury J, Shbaklo H, Kanj SS, KhalifeS, Deeb M. Development and evaluation of real-time polymerase chain reactionassays on whole blood and paraffin-embedded tissues for rapid diagnosis ofhuman brucellosis. Diagn Microbiol Infect Dis.2007,59(1):23–32.
    [35] Seleem MN, Boyle SM, Sriranganathan N. Brucella: A pathogen without classicvirulence genes. Vet Microbiol.2008,129(1-2):1–14.
    [36] Pappas G, Akritidis N, Tsianos E. Effective treatments in the management ofbrucellosis. Expert Opin Pharmacother.2005,6:201-209.
    [37] Pappas G, Panagopoulou P, Christou L, Akritidis N. Brucella as a biologicalweapon. Cell Mol Life Sci.2006,63:2229–2236.
    [38] Alp E, Koc RK, Durak AC, Yildiz O, Aygen B, Sumerkan B, Doganay M.Doxycycline plus streptomycin versus ciprofloxacin plus rifampicin in spinalbrucellosis [ISRCTN31053647]. BMC Infect Dis.2006,6:72.
    [39] Shasha B, Lang R, Rubinstein E. Efficacy of combinations of doxycycline andrifampicin in the therapy of experimental mouse brucellosis. J AntimicrobChemother.1994,33(3):545-551.
    [40] Solera J, Rodriguez-zapata M, Geijo P, Largo J, Paulino J, Saez L,Martinez-alfaro E, Sanchez L, Sepulveda M, Ruiz-ribo M, Group T.Doxycycline-Rifampin versus Doxycycline-Streptomycin in Treatment ofHuman Brucellosis Due to Brucella melitensis. Antimicrob Agents Chemother.1995,39(9):2061–2067.
    [41] Briones G, Iannino NI, Roset M, Vigliocco A, Paulo PS, Ugalde AA. Brucellaabortus Cyclicb-1,2-Glucan Mutants Have Reduced Virulence in Mice and AreDefective in Intracellular Replication in HeLa Cells. Infect immun.2001,67(7):4528–4535.
    [42] Stevens MG, Hennager SG, Olsen SC, Cheville NF. Serologic responses indiagnostic tests for brucellosis in cattle vaccinated with Brucella abortus19or RB51. J Clin Microbiol.1994,32(4):1065-1066.
    [43] Adone R, Francia M, Ciuchini F. Evaluation of Brucella melitensis B115asrough-phenotype vaccine against B. melitensis and B. ovis infections. Vaccine.2008,26(38):4913–4917.
    [44] Chen YF, Ke YH., Wang YF, Yuan XT, Zhou XY, Jiang H, Wang ZJ, Zhen Q, YuYQ, Huang LY, Cui BY, Chen ZL. Changes of predominant species/biovars andsequence types of Brucella isolates, Inner Mongolia, China. BMC Infect Dis.2013,13:514.
    [45] Boone H. Malta fever in China. China Med Mission.1905,19:167-173.
    [46] Shang DQ, Xiao DL, Yin JM. Epidemiology and control of brucellosis in China.Vet Microbiol.2002,90(1-4):165-182.
    [47]尚德秋.中国布鲁氏菌病防治科研50年.中华流行病学杂志.2000,21(1):55-57.
    [48] Kattar MM, Jaafar RF, Araj GF, Le Fleche P, Matar GM, Abi Rached R, Khalife S,Vergnaud G. Evalution of a multilocus variable-number tandem-repeat analysisscheme for typing human Brucella isolates in a region of brucellosis endemicity. JClin Microbiol.2008,46(12):3935-3940.
    [49] Alton GG, Jones LM, Angus RD, Verger JM. Techniques for the BrucellosisLaboratory. Institut National de la Recherche Agronomique, Paris,1988.
    [50] Cloeckaert A, Verger JM, Grayon M, Paquet JY, Garin-Bastuji B, Foster G,Godfroid J. Classification of Brucella spp. isolated from marine mammals byDNA polymorphism at the omp2locus. Microbes Infect.2001,3(9):729-738.
    [51] Cloeckaert A, Grayon M, Grépinet O, Boumedine KS. Classification of Brucellastrains isolated from marine mammals by infrequent restriction site-PCR anddevelopment of specific PCR identification tests. Microbes Infect.2003,5(7):593-602.
    [52] Halling SM, Peterson-Burch BD, Bricker BJ, Zuerner RL, Qing Z, Li LL, KapurV, Alt DP, Olsen SC. Completion of the genome sequence of Brucella abortusand comparison to the highly similar genomes of Brucella melitensis andBrucella suis. J Bacteriol.2005,187(8):2715-2726.
    [53] Pugh GW Jr, Tabatabai LB, Bricker BJ, Mayfield JE, Phillips M, McDonald TJ,Zehr ES. Identification of a virulence factor for Brucella abortus infection inBALB/c mice. Am J Vet Res.1989,50(6):887-892.
    [54] Cardoso PG, Macedo GC, Azevedo V, Oliveira SC. Brucella spp noncanonicalLPS: structure, biosynthesis, and interaction with host immune system. MicrobCell Fact.2006,23:5-13.
    [55] Bundle DR, Cherwonogrodzky JW, Gidney MAJ, Meikle PJ, Perry MB, Peters T.Definition of Brucella A and M epitopes by monoclonal typing reagents andsynthetic oligosaccharides. Infect Immun.1989,57(9):2829-2836.
    [56] Moreno E, Stackebrandt E, Dorsch M, Wolters J, Busch M, Mayer H. Brucellaabortus16S rRNA and lipid A reveal phylogenetic relationship with members ofthe alpha-2subdivision of the class Proteobacteria. J Bacteriol.1990,172(7):3569-3576.
    [57] Raetz CRH. Bacterial lipopolysaccharides. a remarkable family of bioactivemacroamphiphiles. In Escherichia coli and Salmonella Volume1. Edited by:Neidhardt FC. Cellular and Molecular Biology.1996,1035-1063.
    [58] Nielsen K, Smith P, Conde S, Draghi de Benitez G, Gall D, Halbert G, KennyK, Massengill C, Muenks Q, Rojas X, Perez B, Samartino L, Silva P, Tollersrud T,Jolley M. Rough lipopolysaccharide of Brucella abortus RB51as a commonantigen for serological detection of B. ovis, B. canis, and B. abortus RB51exposure using indirect enzyme immunoassay and fluorescence polarization assay.J Immunoassay Immunochem.2004,25(2):171-82.
    [59] Alexander C, Rietschel ET. Bacterial lipopolysaccharides and innate immunity. JEndotoxin Res2001,7:167-202.
    [60] Godfroid F, Cloeckaert A, Taminiau B, Danese I, Tibor A, De Bolle X, Mertens P,Letesson J. Genetic organisation of the lipopolysaccharide O-antigen biosynthesisregion of Brucella melitensis16M (wbk). Res Microbiol.2000,151:655–668.
    [61] Stroeher UH, Karageorgos LE, Brown MH, Morona R, Manning PA. A putativepathway for perosamine biosynthesis is the first function encoded within the rfbregion of Vibrio cholerae O1. Gene.1995,166:33-42.
    [62] Godfroid F, Taminiau B, Danese I, Denoel P, Tibor A, Weynants V,Cloeckaert A,Godfroid J, Letesson JJ. Identification of the perosamine synthetase gene ofBrucella melitensis16M and involvement of lipopolysaccharide O side chain inBrucella survival in mice and in macrophages. Infect Immun.1998,66:5485-5493.
    [63] Allen CA, Adams LG, Ficht TA. Transposon-derived Brucella abortus roughmutants are attenuated and exhibit reduced intracellular survival. Infect Immun.1998,66:1008-1016.
    [64] Zygmunt MS, Dubray G, Bundle DR, Perry MP. Purified native haptens ofBrucella abortus and B. melitensis16M reveal the lipopolysaccharide origin ofthe antigens. Ann Inst Pasteur Microbiol.1988,139(4):421-33.
    [65] Kido N, Ohta M, Iida K, Hasegawa T, Ito H, Arakawa Y, Komatsu T, Kato N.Partial deletion of the cloned rfb gene of Escherichia coli O9results in synthesisof a new O-antigenic lipopolysaccharide. J Bacteriol.1989,171(7):3629-3633.
    [66] McQuiston JR, Vemulapalli R, Inzana TJ, Schurig GG, Sriranganathan N,Fritzinger D, Hadfield TL, Warren RA, Snellings N, Hoover D, Halling S, BoyleSM. Genetic Characterization of a Tn5-Disrupted glycosyltransferase genehomolog in Brucella abortus and its effect on lipopolysaccharide compositionand virulence. Infect Immun.1999,99:3830-3835.
    [67] Vemulapalli R, McQuiston JR, Schurig GG, Sriranganathan N, Halling SM, BoyleSM. Identification of an IS711element interrupting the wboA gene of Brucellaabortus vaccine strain RB51and a PCR assay to distinguish strain RB51fromother Brucella species and strains. Clin Diagn Lab Immunol.1999,5:760-764.
    [68] Vizcaino N, Caro-Hernandez P, Cloeckaert A, Fernandez-Lago L. DNApolymorphism in the omp25/omp31family of Brucella spp.: identification of a1.7-kb inversion in Brucella cetaceae and of a15.1-kb genomic island, absentfrom Brucella ovis, related to the synthesis of smooth lipopolysaccharide.Microbes Infect.2004,6:821-834.
    [69] González D, Grilló MJ, De Miguel MJ, Ali T, Arce-Gorvel V, Delrue RM,Conde-Alvarez R, Mu oz P, López-Go i I, Iriarte M, Marín CM, Weintraub A,Widmalm G, Zygmunt M, Letesson JJ, Gorvel JP, Blasco JM, Moriyón I.Brucellosis Vaccines: Assessment of Brucella melitensis LipopolysaccharideRough Mutants Defective in Core and O-Polysaccharide Synthesis and Export.PLoS One.2008,3(7):e2760.
    [70] Reeves PR, Hobbs M, Valvano MA, Skurnik M, Whitfield C, Coplin D, Kido D,Klena NJ, Maskel D, Raetz CRH, Rick PD. Bacterial polysaccharide synthesisand gene nomenclature. Trends Microbiol.1996,4:495-503.
    [71] Cloeckaert A, Grayon M, Verger JM, Letesson JJ, Godfroid F: Conservation ofseven genes involved in the biosynthesis of the lipopolysaccharide O-side chainin Brucella spp. Res Microbiol.2000,151:209-216.
    [72] Raetz CRH and Whitfield C. Lipopolysaccharide endotoxin. Annu Rev Biochem.2002.71:635–700
    [73] Monreal D, Grillo MJ, Gonzalez D, Marin CM, De Miguel MJ, LopezGoni I,Blasco JM, Cloeckaert A, Moriyon I. Characterization of Brucella abortusO-polysaccharide and core lipopolysaccharide mutants and demonstration that acomplete core is required for rough vaccines to be efficient against Brucellaabortus and Brucella ovis in the mouse model. Infect Immun.2003,6:3261-3271.
    [74] Mancilla M, Marín CM, Blasco JM, Zárraga AM, López-Go i I, Moriyón I.Spontaneous excision of the O-polysaccharide wbkA glycosyltranferase gene is acause of dissociation of smooth to rough Brucella colonies. J Bacteriol.2012,194(8):1860-1867.
    [75] Morgan BP, Harris CL. Complement therapeutics; history and current progress.Mol Immunol.2003,40:159-170.
    [76] Grossman N, Svenson SB, Leive L, Lindberg AA. Salmonella O antigen-specificoligosaccharide-octyl conjugates activate complement via the alternative pathwayat different rates depending on the structure of the O antigen. Mol Immunol.1990,27:859-865.
    [77] Mey A, Ponard D, Colomb M, Normier G, Binz H, Revillard JP. Acylation of thelipid A region of a Klebsiella pneumoniae LPS controls the alternative pathwayactivation of human complement. Mol Immunol.1994,31:1239-1246.
    [78] Jiang GZ, Sugiyama T, Kato Y, Koide N, Yokochi T. Binding of mannose-bindingprotein to Klebsiella O3lipopolysaccharide possessing the mannosehomopolysaccharide as the O-specific polysaccharide and its relation tocomplement activation. Infect Immun.1995,63:2537-2540.
    [79] Moreno E, Berman DT, Boettcher LA. Biological activities of Brucella abortuslipopolysaccharides. Infect Immun.1981,31:362-370.
    [80] Hoffmann EM, Houle JJ. Failure of Brucella abortus lipopolysaccharide (LPS) toactivate the alternative pathway of complement. Vet Immunol Immunopathol.1983,5:65-76.
    [81] Eisenschenk FC, Houle JJ, Hoffmann EM. Serum sensitivity of field isolates andlaboratory strains of Brucella abortus. Am J Vet Res.1995,56:1592-1598.
    [82] Pérez-Sancho M, Adone R, García-Seco T, Tarantino M, Diez-Guerrier A, DrumoR, Francia M, Domínguez L, Pasquali P, Alvarez J. Evaluation of theimmunogenicity and safety of Brucella melitensis B115vaccination in pregnantsheep. Vaccine.2014,32(16):1877-1881.
    [83] Corbeil LB, Blau K, Inzana TJ, Nielsen KH, Jacobson RH, Corbeil RR, WinterAJ. Killing of Brucella abortus by bovine serum. Infect Immun.1988,56:3251-3261.
    [84] Fernandez-Prada CM, Nikolich M, Vemulapalli R, Sriranganathan N, Boyle SM,Schurig GG, Hadfield TL, Hoover DL. Deletion of wboA enhances activation ofthe lectin pathway of complement in Brucella abortus and Brucella melitensis.Infect Immun2001,69:4407-4416.
    [85] Fernandez-Prada CM, Zelazowska EB, Nikolich M, Hadfield TL, RoopRM, Robertson GL, Hoover DL. Interactions between Brucella melitensis andhuman phagocytes: bacterial surface O-Polysaccharide inhibits phagocytosis,bacterial killing, and subsequent host cell apoptosis. Infect Immun.2003,71(4):2110-2119.
    [86] Eisenschenk FC, Houle JJ, Hoffmann EM. Mechanism of serum resistanceamong Brucella abortus isolates. Vet Microbiol.1999,68:235-244.
    [87] Martinez de Tejada G, Pizarro-Cerda J, Moreno E, Moriyon I. The outermembranes of Brucella spp. are resistant to bactericidal cationic peptides. InfectImmun.1995,63:3054-3061.
    [88] Freer E, Moreno E, Moriyon I, Pizarro-Cerda J,Weintraub A, Gorvel JP.Brucella-Salmonella lipopolysaccharide chimeras are less permeable totheir native Brucella sp. counterparts. J Bacteriol.1996,178:5867-5876.
    [89] Riley LK, Robertson DC. Brucellacidal activity of human and bovinepolymorphonuclear leukocyte granule extracts against smooth and rough strainsof Brucella abortus. Infect Immun.1984,46:231-236.
    [90] Velasco J, Bengoechea JA, Brandenburg K, Lindner B, Seydel U, Gonzalez D,Zahringer U, Moreno E, Moriyon I. Brucella abortus and its closest phylogeneticrelative, Ochrobactrum spp., differ in outer membrane permeability and cationicpeptide resistance. Infect Immun.2000,68:3210-3218.
    [91] Jiménez de Bagüés MP, Terraza A, Gross A, Dornand J. Different responses ofmacrophages to smooth and rough Brucella spp.: relationship to virulence. InfectImmun.2004,72(4):2429-2433.
    [92] Conde-álvarez R, Arce-Gorvel V, Iriarte M, Man ek-Keber M, Barquero-CalvoE, Palacios-Chaves L, Chacón-Díaz C, Chaves-Olarte E, Martirosyan A, vonBargen K, Grilló MJ, Jerala R, Brandenburg K, Llobet E, Bengoechea JA,Moreno E, Moriyón I, Gorvel JP. The lipopolysaccharide core of Brucella abortusacts as a shield against innate immunity recognition. PLoS Pathog.2012,8(5):e1002675.
    [93] Forestier C, Moreno E, Pizarro-Cerda J, Gorvel JP. Lysosomal accumulation andrecycling of lipopolysaccharide to the cell surface of murine macrophages, an invitro and in vivo study. J Immunol.1999,162:6784-6791.
    [94] Lapaque N, Forquet F, de Chastellier C, Mishal Z, Jolly G, Moreno E, Moriyon I,Heuser JE, He HT, Gorvel JP. Characterization of Brucella abortuslipopolysaccharide macrodomains as mega rafts. Cell Microbiol.2006,8(2):197-206.
    [95] Forestier C, Moreno E, Meresse S, Phalipon A, Olive D, Sansonetti P, Gorvel JP.Interaction of Brucella abortus lipopolysaccharide with major histocompatibilitycomplex class II molecules in B lymphocytes. Infect Immun.1999,67:4048-4054.
    [96] Forestier C, Deleuil F, Lapaque N, Moreno E, Gorvel JP. Brucella abortuslipopolysaccharide in murine peritoneal macrophages acts as a down-regulator ofT cell activation. J Immunol.2000,165:5202-5210.
    [97] WHO/MZCP,Human and Animal Brucellosis,WHO,Damascus, Syria,1998.
    [98] Avila-Calderón ED, Lopez-Merino A, Sriranganathan N, Boyle SM, andContreras-Rodríguez A. A History of the Development of Brucella Vaccines.Biomed Res Int.2013,2013:743509.
    [99] Olsen SC, Stoffregen WS, Essential role of vaccines in brucellosis control anderadication programs for livestock. Expert Rev Vaccines.2005,4(6):915–928.
    [100] Minas A, Minas M, Stournara A, and Tselepidis S, The “effects” of Rev-1vaccination of sheep and goats on human brucellosis in Greece. Prev Vet Med.2004,64(1):41–47.
    [101] Aznar MN, Samartino LE, Humblet MF, Saegerman C. Bovine brucellosis inArgentina and bordering countries: update. Transbound Emerg Dis.2014,61(2):121-133.
    [102] Refai M. Incidence and control of brucellosis in the Near East region. VetMicrobiol.2002,90(1–4):81–110.
    [103] Becker HN, Belden RC, Breault T, Burridge MJ, Frankenberger WB, Nicoletti P.Brucellosis in feral swine in Florida. J Am Vet Med Assoc.1978,173(9):1181–1182.
    [104] Godfroid J and Kasbohrer A. Brucellosis in the European Union and Norway atthe turn of the twenty-first century. Vet Microbiol.2002,90(1–4)135–145.
    [105] Martins RC, Irache JM, and Gamazo C. Acellular vaccines for ovine brucellosis:a safer alternative against a worldwide disease. Expert Rev Vaccines.2012,11(1):87–95.
    [106] Arsenault J, Girard C, Dubreuil P, and B′elanger D. Lack of evidence of Brucellaovis infection in rams in Quebec. Can Vet J.2004,45(4):312–313.
    [107] Godfroid J, Nielsen K, Saegerman C. Diagnosis of brucellosis in livestock andwildlife. Croat Med J.2010,51(4):296-305.
    [108] Moriyón I, Grilló MJ, Monreal D, González D, Marín C, López-Go iI, Mainar-Jaime RC, Moreno E, Blasco JM. Rough vaccines in animal brucellosis:structural and genetic basis and present status. Vet Res.2004,35(1):1–38.
    [109] Schurig GG, Roop RM, Bagchi T, Boyle S, Buhrman D, Sriranganathan N.Biological properties of RB51; a stable rough strain of Brucella abortus. VetMicrobiol.1991,28(2):171–188.
    [110] Zygmunt MS, Blasco JM, Letesson JJ, Cloeckaert A, Moriyón I. DNApolymorphism analysis of Brucella lipopolysaccharide genes reveals markeddifferences in O-polysaccharide biosynthetic genes between smooth and roughBrucella species and novel species-specific markers. BMC Microbiol.2009,13,9:92.
    [111] Uza FA, Samartino L, Schurig G, Carrasco A, Nielsen K, Cabrera RF, Taddeo HR.Effect of vaccination with Brucella abortus strain RB51on heifers and pregnantcattle. Vet Res Commun.2000,24(3):143–151.
    [112] Ashford DA, di Pietra J, Lingappa J, Woods C, Noll H, Neville B, WeyantR, Bragg SL, Spiegel RA, Tappero J, Perkins BA. Adverse events in humansassociated with accidental exposure to the livestock brucellosis vaccineRB51.Vaccine.2004,22(25-26):3435–3439.
    [113] Taher SA, Ewais MA. Immunological assay after vaccination of goats withBrucella melitensis Rev. I and Brucella abortus45/20vaccines at Saudi Arabia. JEgypt Public Health Assoc.1997,72(3-4):379-394.
    [114] Alton GG and Elberg SS. Rev1Brucella melitensis vaccine. Veterinary Bulletin.1967,37:793–800.
    [115]张士义,朱岱,江森林.中国布鲁氏菌病防治50年回顾(续前).中国地方病防治杂志.2003,18(6):347-350.
    [116] Jiang H, Du P, Zhang W, Wang H, Zhao H, Piao D, Tian G, Chen C, Cui B.Comparative genomic analysis of Brucella melitensis vaccine strain M5providesinsights into virulence attenuation. PLoS One.2013,14,8(8):e70852.
    [117] Lord VR, Cherwonogrodzky JW, Schurig GG, Lord RD, Marcano MJ, MeléndezGE. Venezuelan field trials of vaccines against brucellosis in swine. Am J VetRes.1998,59(5):546-551.
    [118] Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans.FEMS Microbiol Rev.2010,34(3):379–394.
    [119] Pasquevich KA, Iba ez AE, Coria LM, García Samartino C, EsteinSM, Zwerdling A, Barrionuevo P, Oliveira FS, Seither C, Warzecha H, OliveiraSC, Giambartolomei GH, Cassataro J. An oral vaccine based on U-Omp19induces protection against B. abortus mucosal challenge by inducing an adaptiveIL-17immune response in mice. PLoS One.2011,14,6(1):e16203.
    [120] Pasquevich KA, García Samartino C, Coria LM, Estein SM, Zwerdling A, Iba ezAE, Barrionuevo P, Oliveira FS, Carvalho NB, Borkowski J, Oliveira SC,Warzecha H, Giambartolomei GH, Cassataro J. The protein moiety of Brucellaabortus outer membrane protein16is a new bacterial pathogen-associatedmolecular pattern that activates dendritic cells in vivo, induces aTh1immuneresponse, and is a promising self-adjuvanting vaccine against systemic and oralacquired brucellosis. J Immunol.2010,184(9):5200-5212.
    [121] Rueckert C, Guzmán CA. Vaccines: from empirical development to rationaldesing. PLoS Pathog.2012,8(11):e1003001.
    [122] Oliveira SC, Giambartolomei GH, Cassataro J. Confronting the barriers todevelop novel vaccines against brucellosis. Expert Rev Vaccines.2011,10(9):1291-1305.
    [123] DelVecchio VG, Alefantis T, Ugalde RA, Comerci D, Marchesini MI, KhanA, Lubitz W, Mujer CV. Identification of protein candidates for developingbacterial ghost vaccines against Brucella. Methods Biochem Anal.2006,49:363-77.
    [124] Cassataro J, Estein SM, Pasquevich KA, Velikovsky CA, de la BarreraS, Bowden R, Fossati CA, Giambartolomei GH. Vaccination with therecombinant Brucella outer membrane protein31or a derived27-amino-acidsynthetic peptide elicits aCD4+Thelper1response that protects against Brucellamelitensis infection. Infect Immun.2005,73(12):8079-8088.
    [125] Tabatabai LB, Pugh GW Jr. Modulation of immune responses in Balb/c micevaccinated with Brucella abortus Cu-Zn superoxide dismutase synthetic peptidevaccine. Vaccine.1994,12(10):919-924.
    [126] Kaushik P, Singh DK, Kumar SV, Tiwari AK, Shukla G, Dayal S, Chaudhuri P.Protection of mice against Brucella abortus544challenge by vaccination withrecombinant OMP28adjuvanted with CpG oligonucleotides. Vet ResCommun.2010,34(2):119-132.
    [127] Gupta VK, Radhakrishnan G, Harms J, Splitter G. Invasive Escherichia colivaccines expressing Brucella melitensis outer membrane proteins31or16orperiplasmic protein BP26confer protection in mice challenged with B. melitensis.Vaccine.2012,30(27):4017-4022.
    [128] O ate AA, Donoso G, Moraga-Cid G, Folch H, Céspedes S, Andrews E. An RNAvaccine based on recombinant Semliki Forest virus particles expressing the Cu,Znsuperoxide dismutase protein of Brucella abortus induces protective immunity inBALB/c mice. Infect Immun.2005,73(6):3294-3300.
    [129] Baloglu S, Boyle SM, Vemulapalli R, Sriranganathan N, Schurig GG, Toth TE.Immune responses of mice to vaccinia virus recombinants expressing eitherListeria monocytogenes partial listeriolysin or Brucella abortus ribosomalL7/L12protein. Vet Microbiol.2005,109(1-2):11-17.
    [130] Velikovsky CA, Cassataro J, Giambartolomei GH, Goldbaum FA, EsteinS, Bowden RA, Bruno L, Fossati CA, Spitz M. A DNA vaccine encodinglumazine synthase from Brucella abortus induces protective immunity inBALB/c mice. Infect Immun.2002,70(5):2507-2511.
    [131] Luo DY, Li P, Xing L, Zhao GY, Shi W, Zhang SL, Wang XL. DNA vaccineencoding L7/L12-P39of Brucella abortus induces protective immunity inBALB/c mice. Chin Med J (Engl).2006,119(4):331-334.
    [132] Amano A, Takeuchi H, Furuta N. Outer membrane vesicles function as offensiveweapons in host-parasite interactions. Microbes Infect.2010,12(11):791-798.
    [133] Beveridge TJ. Structures of gram-negative cell walls and their derived membranevesicles. J Bacteriol.1999,181(16):4725-4733.
    [134] Acevedo R, Fernández S, Zayas C, Acosta A, Sarmiento ME, Ferro VA,Rosenqvist E, Campa C, Cardoso D, Garcia L, Perez JL. Front Immunol.2014,24,5:121.
    [135] Kuehn MJ, Kesty NC. Bacterial outer membrane vesicles and the host-pathogeninteraction. Genes Dev.2005,19(22):2645-2655.
    [136] Mashburn-Warren LM, Whiteley M. Special delivery: vesicle trafficking inprokaryotes. Mol Microbiol.2006,61(4):839-846.
    [137] Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outermembrane vesicles. Microbiol Mol Biol Rev.2010,74(1):81-94.
    [138] Unal CM, Schaar V, Riesbeck K. Bacterial outer membrane vesicles in diseaseand preventive medicine. Semin Immunopathol.2011,33(5):395-408.
    [139] Boigegrain RA, Salhi I, Alvarez-Martinez MT, Machold J, Fedon Y, ArpagausM, Weise C, Rittig M, Rouot B. Release of periplasmic proteins of Brucella suisupon acidic shock involves the outer membrane protein Omp25. InfectImmun.2004,72(10):5693-5703.
    [140] Gamazo C, Winter AJ, Moriyón I, Riezu-Boj JI, Blasco JM, Díaz R. Comparativeanalyses of proteins extracted by hot saline or released spontaneously into outermembrane blebs from field strains of Brucella ovis and Brucella melitensis. InfectImmun.1989,57(5):1419-1426.
    [141] Avila-Calderón ED, Lopez-Merino A, Jain N, Peralta H, López-VillegasEO, Sriranganathan N, Boyle SM, Witonsky S, Contreras-Rodríguez A.Characterization of outer membrane vesicles from Brucella melitensis andprotection induced in mice. Clin Dev Immunol.2012,2012:352493.
    [142] Jain-Gupta N, Contreras-Rodriguez A, Vemulapalli R, Witonsky SG, BoyleSM, Sriranganathan N. Pluronic P85enhances the efficacy of outer membranevesicles as a subunit vaccine against Brucella melitensis challenge in mice. FEMSImmunol Med Microbiol.2012,66(3):436-444.
    [143] Wang Z, Wu Q. Research progress in live attenuated Brucella vaccinedevelopment. Curr Pharm Biotechnol.2014,14(10):887-896.
    [144]张付贤.布病分子标记、毒力缺失疫苗株免疫原性及鉴别诊断研究.[硕士论文],吉林大学.2009.
    [145] Wang F, Qiao Z, Hu S, Liu W, Zheng H, Liu S, Zhao X, and Bu Z. Comparison ofGenomes of Brucella melitensis M28and the B. melitensis M5-90DerivativeVaccine Strain Highlights the Translation Elongation Factor Tu Genetuf2as anAttenuation-Related Gene. Infect Immun.2013,81(8):2812–2818.
    [146]孙春辉.羊布鲁氏菌16M感染巨噬细胞膜蛋白质组学研究.[硕士论文],吉林大学.2010.
    [147] Aragón V, Díaz R, Moreno E and Moriyón I. Characterization of Brucella abortusand Brucella melitensis native haptens as outer membrane O-typepolysaccharides independent from the smooth lipopolysaccharide. J.Bacteriol.1996,178(4):1070.
    [148] Pelicic V, Reyrat J, Gicquel B. Expression of the Bacillus subtilis sacB geneconfer sucrose sensitivity on Mycobacteria. J Bacteriol.1996,178:1197-1199.
    [149] Marx CJ. Development of a broad-host-range sacB-based vector for unmarkedallelic exchange. BMC Res Notes2008,1:1.
    [150] Blomfield IC, Vaughn V, Rest RF, Eisenstein BI. Allelic exchange in Escherichiacoli using the Bacillus subtilis sacB gene and a temperature-sensitive pSC101replicon. Mol Microbiol.1991,5(6):1447-1457.
    [151] Zhang M, Han X, Liu H, Tian M, Ding C, Song J, Sun X, Liu Z, Yu S.Inactivation of the ABC transporter ATPase gene in Brucella abortus strain2308attenuated the virulence of the bacteria. Vet Microbiol.2013Jun28;164(3-4):322-329.
    [152] Crasta OR, Folkerts O, Fei Z, Mane SP, Evans C, Martino-Catt S, Bricker B, Yu G,Du L and Sobral BW. Genome sequence of Brucella abortus vaccine strain S19compared to virulent strains yields candidate virulence genes. PLoS One.2008,3(5), E2193.
    [153] Olsen SC, Boyle SM, Schurig GG, Sriranganathan NN. Immune responses andprotection against experimental challenge after vaccination of bison with Brucellaabortus strain RB51or RB51overexpressing superoxide dismutase andglycosyltransferase genes. Clin Vaccine Immunol.2009,16(4):535-540.
    [154] Vemulapalli R, He YG, Buccolo LS, Boyle SM, Sriranganathan N, and SchurigGG. Complementation of Brucella abortus RB51with a functional wboA generesults in O-antigen synthesis and enhanced vaccine efficacy but no change inrough phenotype and attenuation. Infect Immun.2000a,68:3927-3932.
    [155] Vemulapalli R., He YG., Buccolo L.S., Boyle S.M., Sriranganathan N., andSchurig G.G. Overexpression of protective antigen as a novel approach to enhancevaccine efficacy of Brucella abortus strain RB51. Infect Immun.2000b,68:3286-3289.
    [156] Adone R, Muscillo M, Rosa GL, Francia M, Tarantio M. Antigenic, immunologicand genetic characterization of rough strains B. abortus RB51, B. melitensis B115and B. melitensis B18. Plos One.2011,6(10): e24073.
    [157] Lapaque N, Moriyon I, Moreno E and Gorvel JP. Brucella lipopolysaccharide actsas a virulence factor. Curr Opin Microbiol.2005,8:60-66.
    [158] Jiménez de Bagués MP, Marin CM, Barberán M, Blasco JM. Responses of ewesto B. melitensis Rev1vaccine administered by subcutaneous or conjunctivalroutes at different stages of pregnancy. Ann Rech Vet.1989,20(2):205-13.
    [159] Blasco JM, A review of the use of B. melitensis Rev1vaccine in adult sheep andgoats, Prev. Vet. Med.1997,31:275–283.
    [160] Nicoletti PL. Vaccination, in: Nielsen K.H., Duncan J.R.(Eds.), AnimalBrucellosis, CRC Press, Boca Raton,1990, pp.65–81.
    [161] Sutherland SS, Searson J. The immune response to Brucella abortus: the humoralresponse, in: Nielsen K.H., Duncan J.R.(Eds.), Animal Brucellosis, CRC Press,Boca Raton,1990, pp.65–81.
    [162] Jiménez de Bagüés MP, Terraza A, Gross A, Dornand J. Regulation of themitogen-activated protein kinases by Brucella spp. expressing a smooth andrough phenotype: relationship to pathogen invasiveness. Infect Immun.2005,73(5):3178-3183.
    [163] Vemulapalli R, Contreras A, Sanakkayala N, Sriranganathan N, Boyle SM,Schurig GG. Enhanced efficacy of recombinant Brucella abortus RB51vaccinesagainst B. melitensis infection in mice. Vet Microbiol.2004,102(3-4):237-245.
    [164] Detilleux P., Deyoe BL, and Cheville NF. Penetration and intracellular growth ofBrucella abortus in nonphagocytic cells in vitro. Infect Immun.1990,58:2320–2328.
    [165] Wattam AR, Inzana TJ, Williams KP, Mane SP, Shukla M, AlmeidaNF, Dickerman AW, Mason S, Moriyón I, O'Callaghan D, Whatmore AM, SobralBW, Tiller RV, Hoffmaster AR, Frace MA, De Castro C, Molinaro A, BoyleSM, De BK, Setubal JC. Comparative genomics of early-diverging Brucellastrains reveals a novel lipopolysaccharide biosynthesis pathway. MBio.2012,6;3(5):e00246-11.
    [166] Stinavage P, Martin LE, and Spitznagel JK. O antigen and lipid A phosphorylgroups in resistance ofSalmonella typhimuriumLT-2to nonoxidative killing inhuman polymorphonuclear neutrophils. Infect Immun.1989,57:3894–3900.
    [167] Raetz CR and Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem.2002,71:635-700.
    [168] Langford MJ and Myers RC. Difficulties associated with the development andlicensing of vaccines for protection against bio-warfare and bio-terrorism. DevBiol (Basel).2002,110:107-112.
    [169] Araya LN, and Winter AJ. Comparative protection of mice against virulent andattenuated strains of Brucella abortus by passive transfer of immune T cells andserum. Infect Immun.1990,58:254–256.
    [170] Dornand J, Gross A, Lafont V, Liautard J, Oliaro J, Liautard JP. The innateimmune response against Brucella in humans. Vet Microbiol.2002,90:383–394.
    [171] Oliveira SC, Splitter GA. CD8+type1CD44hi CD45RBlo T lymphocytescontrol intracellular Brucella abortus infection as demonstrated in majorhistocompatibility complex class I-and class II-deficient mice. Eur J Immunol.1995,25(9):2551-2557.
    [172] Murphy EA, Parent M, Sathiyasselan J, Jiang X, Baldwin CL. Immune control ofBrucella abortus2308infections in BALB/c mice. FEMS Immunol MedMicrobiol.2001a,32:85–88.
    [173] Murphy EA, Sathiyasseelan J, Parent M, Zou B, Baldwin CL. Interferon-giscrucial for surviving a Brucella abortus infection in both resistant C57BL/6miceand suceptible BALB/c mice. Immunology.2001b,103(4):511–518.
    [174] Zhan Y, Cheers C. Control of IL-12and IFN-gproduction in response to live ordead bacteria by TNF and other factors. J. Immunol.1998,161:1447–1453.
    [175] Zhan Y, Liu Z, Cheers C. Tumor necrosis factor alpha and interleukin-12contribute to resistance to the intracellular bacterium Brucella abortus bydifferent mechanisms. Infect Immun.1996,64:2782–2786.
    [176] Grilló MJ, Blasco JM, Gorvel JP, Moriyón I and Moreno E. What have welearned from brucellosis in the mouse model? Vet Res.2012,43:29.
    [177] Jiang X., Leonard B., Benzon R., Baldwin C.L. Macrophage control of Brucellaabortus: role of reactive oxygen intermediates and nitric oxide. Cell Immunol.1993,151:309-319.
    [178] Wang Z, Niu JR, Wang SS, Lv YL, Wu QM. In vivo differences in the virulence,pathogenicity and induced protective immunity of wboA mutants fromgenetically different parent Brucella spp.. Clin Vaccine Immunol.2013,20(2):174-180.
    [179] Adone R, Francia M, Plstoia C, Petrucci P, Pesciaroli M, Pasquali P. Protectiverole of antibodies induced by Brucella melitensis B115against B. melitensis andBrucella abortus infections in mice. Vaccine.2012,30(27):3992-3995.
    [180] Tomii K and Kanehisa M. A comparative analysis of ABC transporters incomplete microbial genomes. Genome Res.1998,8:1048-1059.
    [181] Tam R. and Saier MH. Structural, functional, and evolutionary relationshipsamong extracellular solute-binding receptors of bacteria. Microbiol Rev.1993,57:320-346.
    [182] Davison AL, Dassa E, Orelle C, Chen J. Structure, function, and evolution ofbacterial ATP-binding cassette systems. Microbiol Mol Biol Rev.2008,72(2):317-364.
    [183] Bhushan J, Vyas R, Sharma T, Sehgal D. and Biswal BK. Cloning, overexpression,purification, crystallization, and preliminary X-ray studies of SP_0149, thesubstrate binding protein of an ABC transporter from Streptococcus pneumonia.Acta Cryst.2011, F67:797-799.
    [184] Davies DR, Staker BL, Abendroth JA, Edwards TE, Hartley R, Leonard J, Kim H,Rychel AL, Hewitt SN, Myler PJ, and Stewart LJ. An ensemble of structures ofBurkholderia pseudomallei2,3-bisphosphoglycerate-dependent phosphoglyceratemutase. Acta Cryst.2011, F67,1044–1050.
    [185] Chakrabarty AM. Nucleoside diphosphate kinase: role in bacterial growth,virulence, cell signalling and polysaccharide synthesis. Mol Microbiol.1998,28(5):875–882.
    [186] Dar HH, Prasad D, Grish Varshney C and C Pradip K. Secretory nucleosidediphosphate kinases from both intra-and extracellular pathogenic bacteria arefunctionally indistinguishable. Microbiology.2011,157:3024–3035.
    [187] Liu XY, Fortin PD, Walsh CT. Andrimid producers encode an acetyl-CoAcarboxyltransferase subunit resistant to the action of the antibiotic. PNAS.2008,105(36):13321-13326.
    [188] Aboulnaga E, Pinkenburg O, Schiffels J, El-Refai A, Buckel W, Selmer T. Effectof an Oxygen-Tolerant Bifurcating Butyryl Coenzyme A Dehydrogenase/Electron-Transferring Flavoprotein Complex from Clostridium difficileonButyrate Production in Escherichia coli. J Bacteriol.2013,195(16):3704–3713.
    [189] Yokoyama T, Shaikh TR, Iwakura N, Kaji H, Kaji A and Agrawal RK. Structuralinsights into initial and intermediate steps of the ribosome-recycling process.EMBO J.2012,31:1836–1846.
    [190] Naganathan A, Moore SD. Crippling the Essential GTPase Der CausesDependence on Ribosomal Protein L9. J Bacteriol.2013,195(16):3682–3691.
    [191] Jain S, Kumar S, Dohre S, Afley P, Sengupta N, Alam SI. Identification of aprotective protein from stationary-phase exoproteome of Brucella abortus.Pathog Dis.2014,70(1):75-83.
    [192] Kawasaki Y. Copurification of hydroxyethylthiazole kinase and thiamine-phosphate pyrophosphorylase of Saccharomyces cerevisiae: characterization ofhydroxyethylthiazole kinase as a bifunctional enzyme in the thiaminebiosynthetic pathway. J Bacteriol.1993,175(16):5153-5158.
    [193] Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP, Eallck SE.Structural and mechanistic studies on ThiO, a glycine oxidase essential forthiamin biosynthesis in Bacillus subtilis. Biochemistry.2003,42(10):2971-2981.
    [194] Kriek M, Martins F, Leonardi R, Fairhurst SA, Lowe DJ, and Roach PL. ThiazoleSynthase from Escherichia coli: an investigation of the substrates and purifiedproteins required for activity in vitro. J Biol Chem.2007,282(24):17413–17423.
    [195] Li ZZ, Li XF, Yang W, Dong X, Yu J, Zhu SL, Li M, Xie L, Tong WY.Identification and functional analysis of cytochrome P450complement inStreptomyces virginiae IBL14. BMC Genomics.2013,14:130.
    [196] Saraste M, Sibbald PR, Wittinghofer A. The P-loop a common motif in ATP-andGTP-binding proteins. Trends Biochem Sci.1990,15(11):430-434.
    [197] Tirado-Lee L, Lee A, Rees DC., and Pinkett HW.. Classification of aHaemophilus influenza ABC transporter HI1470/71through its cognatemolybdate periplasmic binding protein, MolA. Structure.2011,19(11):1701–1710.
    [198] Higgins CF. ABC transporters: from microorganisms to man. Annu Rev Cell Biol.1992,8:67–113.
    [199] Fitzpatrick KL, Tyerman SD, Kaiser BN. Molybdate transport through the plantsulfate transporter SHST1. FEBS Lett.2008,582:1508–1513.
    [200] Beier D and Gross R. Regulation of bacterial virulence by two-componentsystems. Curr Opin Microbiol.2006,9:143–152.
    [201] Paquet J, Diaz MA, Genevrois S, Grayon M, Verger J, Bolle X, Lakey JH,Letesson, Cloeckaert A. Molecular, Antigenic, and Functional Analyses ofOmp2b Porin Size Variants of Brucella spp. J Bacteriol.2001,183(16):4839-4847.
    [202] Laloux G, Deghelt M, de Barsy M, Letesson J, De Bolle X. Identification of theEssential Brucella melitensis Porin Omp2b as a Suppressor of Bax-Induced CellDeath in Yeast in a Genome-Wide Screening. PloS One.2010,5(10): e13274.
    [203] Zylberman V, Klinke S, Haase I, Bacher A, Fischer M, and Goldbaum FA.Evolution of Vitamin B2Biosynthesis:6,7-Dimethyl-8-Ribityllumazine Synthasesof Brucella. J Bacteriol.2006,188(17):6135–6142.
    [204] Bonomi HR, Marchesini MI, Klinke S, Ugalde JE, Zylberman V, Ugalde RA,Comerci DJ, Goldbaum FA. An atypical riboflavin pathway is essential forBrucella abortus virulence. PLoS One.2010,5(2): e9435.
    [205] Krawczyk-Balska A, Lipiak M. Critical Role of a Ferritin-Like Protein in theControl of Listeria monocytogenes Cell Envelope Structure and Stabilityunderb-lactam Pressure. PLoS One.2013,8(10): e77808.
    [206] Pajuaba AC, Silva DA, Almeida KC, Cunha-junior JP, Pirovani CP, Camillo LR,Mineo JR. Immunoproteomics of Brucella abortus reveals differential antibodyprofiles between S19-vaccinated and naturally infected cattle. Proteomics.2012,12(6):820-831.
    [207] Gee JM, Valderas MW, Kovach ME., Grippe VK, Robertson GT, Ng W,Richardson JM, Winkler ME, and Roop RM. The Brucella abortus Cu, ZnSuperoxide Dismutase Is Required for Optimal Resistance to Oxidative Killingby Murine Macrophages and Wild-Type Virulence in Experimentally InfectedMice. Infection and Immunity.2005,73(5):2873–2880.
    [208] Martin DW, Baumgartner JE, Gee JM, Anderson ES and Roop RM. SodA is amajor metabolic antioxidant in Brucella abortus2308that plays a significant, butlimited, role in the virulence of this strain in the mouse model. Microbiology.2012,158:1767–1774.
    [209] Kim J, Sha Z, Mayfield AE. Regulation of Brucella abortus Catalase. Infectionand immunity.2000,68(7):3681–3866.
    [210] Denoel PA, Crawford RM, Zygmunt MS, Tibor A, Weynants VE,Godfroid F,Hoover DL, and Letesson J. Survival of a Bacterioferritin Deletion Mutant ofBrucella melitensis16M in Human Monocyte-Derived Macrophages. Infectionand immunity.1997,65(10):4337–4340.
    [211] Al-Mariri A, Tibor A, Lestrate P, Mertens P, De Bolle X, and Letesson J. Yersiniaenterocolitica as a Vehicle for a Naked DNA Vaccine Encoding Brucella abortusBacterioferritin or P39Antigen. Infection and immunity.2002,70(4):1915–1923.
    [212] Nachin L, Loiseau L, Expert D, and Barras F. SufC: an unorthodoxcytoplasmic ABC/ATPase required for [FeS] biogenesis under oxidative stress.The EMBO Journal.2003,22(3):427-437.
    [213] Suo Y, Hardy SJS, and Randall LL. Orientation of SecA and SecB in Complex,Derived from Disulfide Cross-Linking. JOURNAL OFBACTERIOLOGY.2011,193(1):190–196.
    [214] Chen D, Lei L, Lu C, Flores R, DeLisa MP, Roberts TC, Romesberg FE andZhong G. Secretion of the chlamydial virulence factor CPAF requires theSec-dependent pathway. Microbiology.2010,156:3031–3040.
    [215] Personne Y, Brown AC, Schuessler D L, Parish T. Mycobacterium tuberculosisClpP Proteases Are Cotranscribed but Exhibit Different Substrate Specificities.PLoS One.2013,8(4): e60228.
    [216] Carroll P, Faray-Kele MC, Parish T. Identifying vulnerable pathways inMycobacterium tuberculosis by using a knockdown approach. Appl EnvironMicrobiol.2011,77:5040–5043.
    [217] Kelly DJ, Thomas GH. The tripartite ATP-independent periplasmic (TRAP)transporters of Bacteria and Archaea. FEMS Microbiol Rev.2001,25:405-424.
    [218] Seco-Mediavilla P, Verger JM, Grayon M, Cloeckaert A, Marín CM, ZygmuntMS, Ferna′ndez-Lago L, and Vizcaíno N. Epitope Mapping of the Brucellamelitensis BP26Immunogenic Protein: Usefulness for Diagnosis of SheepBrucellosis. Clin Diagn Lab Immunol.2003,10(4):647–651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700