用户名: 密码: 验证码:
改性玉米皮膳食纤维的酶法制备及其降血脂机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米属禾本科禾亚科玉黍属植物。玉米皮由玉米种子胚乳的糊粉层、残留的胚乳厚壁组织、种皮和果皮构成。现代营养学研究证明玉米皮作为膳食纤维具有吸附诱变剂、降血脂、通便、提高免疫力等生理功能。本论文以玉米皮为原料,去除淀粉和蛋白质后制得粗玉米皮膳食纤维CDF,通过非淀粉多糖酶酶种的筛选和酶解条件的优化,对CDF进行改性,进一步提高了其降血脂活性并得到改性玉米皮膳食纤维XMF,对XMF的降血脂机理进行了深入的研究。
     原料玉米皮的化学组成为:TDF 65.38%、蛋白质10.32%、淀粉17.50%、脂肪2.65%以及灰份0.75%;其膳食纤维主要由纤维素14.18%、半纤维素48.31%和木质素5.28%组成;IDF占65.38%,SDF含量0.58%。CDF的主要组成是:TDF 82.76%、蛋白质5.55%、淀粉1.26%、脂肪2.04%、以及灰份2.12%;CDF膳食纤维主要由纤维素18.82%、半纤维素50.57%和木质素8.15%组成;IDF占82.90%,SDF含量0.62%。CDF的口感优于玉米皮。
     单因素实验发现纤维素酶不能提高CDF对胆酸盐的体外结合能力;木聚糖酶使CDF结合胆酸钠、鹅脱氧胆酸钠、脱氧胆酸钠和牛磺胆酸钠的能力均得到了提高;纤维素酶和木聚糖酶复合酶解也能提高CDF的BSCDC、BSDC和BSTC值,但效果不如木聚糖酶单独酶解好;玉米皮膳食纤维的胆酸盐吸附能力同持水和持油能力之间有一定关系。通过响应面分析,优化了木聚糖酶酶解提高其产物改性玉米皮膳食纤维XMF吸附胆酸盐能力的最佳条件,具体为pH 5.3、1.75 h和酶用量56 Iu/g CDF,相应的BSC、BSCDC、BSDC和BSTC值分别为64.60、48.34、75.79和60.68μmol/ g XMF,它们分别是CDF的1.88、2.34、1.67和2.08倍。XMF对胆酸钠、鹅脱氧胆酸钠、脱氧胆酸钠和牛磺胆酸钠的吸附不存在两两相关性,表明XMF对不同胆酸盐的吸附机制存在差异,不是以竟争性吸附为主。不能用XMF对某一种胆酸盐的吸附量来代表它对所有胆酸盐的吸附能力。
     XMF的SDF、IDF、TDF、纤维素及木质素含量得到了显著提高(p<0.05)。XMF中膳食纤维的主要组成是半纤维素,其次是纤维素,果胶含量低。高效凝胶色谱法测得,S-XMF相对分子质量在11,588左右的部分所占比例为S-CDF的1.64倍,且其相对分子质量在900以下的含量仅达到S-CDF的62.6%。气相色谱分析发现,XMF的主要单糖组成与CDF相同;I-XMF的鼠李糖含量降低到I-CDF的44%;S-XMF中聚阿拉伯糖木糖的摩尔含量提高了约10%。可溶性半纤维素和阿拉伯木聚糖的提高能改善XMF的降血脂效果。XMF的溶胀性、持水力和持油力也都得到了显著提高(p<0.05)。
     X-射线衍射和SEM观察到XMF的无定形区产生了一定程度的降解,在超微结构上表现得比CDF更无序、具有较多大的空腔和孔隙,这是为什么XMF能吸附更多的胆酸盐及油和水的结构解释。
     动物实验表明,CDF和XMF均对高脂膳食引起的TC、TG上升有明显的抑制作用,使LDL-C和AI显著下降(p<0.05),XMF还能使HDL– C显著升高(p<0.05),并有效地改善肝脏脂肪状况,减轻肝细胞的脂肪化变性。因此二种膳食纤维制品都有显著的降血脂作用,但XMF的效果更突出。XMF还表现出时间效应的特点,随着饲喂时间的延长,在有效降低TG增幅的同时更能有效控制TC和LDL-C水平,使之不再升高。
     RT-PCR及体内抗氧化研究发现,XMF通过有效地积极调节肝脏中与胆固醇分解代谢有关的CYP7A1和FXR,与脂肪分解代谢有关的PPARα、PPARγ、Lpl和Lpic的基因表达,并提高机体抗氧化能力,而实现对脂代谢的积极调控;但CDF只能对CYP7A1、PPARα和Lpl的基因表达起到一定的积极调节作用,其提高机体抗氧化能力的效果也不如XMF。而且XMF比CDF能更有效地调节小肠中I-BABP和FXR的基因表达,有效地减少胆汁酸的重吸收,促进肝脏中胆固醇的分解代谢。XMF在肠道中束缚鹅脱氧胆酸钠和脱氧胆酸钠的能力强于CDF。与CDF相比,XMF还能更显著地促进机体对脂肪、胆固醇和胆汁酸的排出(p<0.05)。
     HPLC测定结果表明,CDF和XMF吸附胆酸盐时都存在最大吸附量。CDF中的IDF和SDF对胆酸钠、鹅脱氧胆酸钠和脱氧胆酸钠的吸附不存在增强的协同作用,对牛磺胆酸钠的吸附表现轻微的增强协同作用。但XMF中的IDF和SDF在吸附胆酸钠、鹅脱氧胆酸钠、脱氧胆酸钠和牛磺胆酸钠时均表现出强烈的增强协同作用。CDF和XMF同胆酸盐间以疏水相互作用为主。CDF对胆酸钠和牛磺胆酸钠的吸附表现为完全竞争关系,牛磺胆酸钠的竞争力强于胆酸钠;对鹅脱氧胆酸钠和脱氧胆酸钠是部分竞争性吸附,鹅脱氧胆酸钠的竞争力强于脱氧胆酸钠。XMF对胆酸钠和牛磺胆酸钠的吸附是非竞争性的;对鹅脱氧胆酸钠和脱氧胆酸钠的吸附具有部分竞争特性,脱氧胆酸钠的竞争力大于鹅脱氧胆酸钠。
     胆酸钠、鹅脱氧胆酸钠、脱氧胆酸钠和牛磺胆酸钠的吸附动力学曲线表明,XMF具有更大的吸附量,更强的吸附能力。AFM力谱表明,XMF同脱氧胆酸钠和牛磺胆酸钠间的相互作用均强于CDF,进一步证明了XMF具有更强的吸附胆酸盐的能力,因而能更显著地促进机体对胆酸盐的排出,有效地起到预防和抑制高脂血症发生和发展的生物活性功能。
Maize (Zea. mays L.) is of Zea strain, a member of Graminaceae, Poaccae family. Corn bran is composed of aleurone, endosperm thick-walled tissue and seed capsule of Z. mays L.
     It is reported that corn bran has many physiological benefits such as mutagens adsorption, hypolipidemic effects, relaxation etc. In this dissertation, crude dietary fiber (CDF) was prepared from corn bran after the removal of most of starch and protein through enzyme hydrolysis. The influence of non-starch enzymes on the hypolipidemic function of CDF was investigated, and xylanase modified fiber (XMF) was abtained. The hypolipidemic mechanisms of XMF were then studied in a model animal system.
     The chemical composition of corn bran was analyzed and found to be as follows: TDF 65.38%, protein 10.32%, starch 17.50%, lipid 2.65% and ash 0.75%. The dietary fiber of corn bran was composed of cellulose (14.18%), hemicellulose (48.31%) and lignin (5.28%). In the corn bran, IDF and SDF content were 65.38% and 0.58%, respectively. The main composition of CDF was TDF (82.76%), protein (5.55%), starch (1.26%), lipid (2.04%) and ash (2.12%). The dietary fiber of CDF was composed of cellulose (18.82%), hemicellulose (50.57%) and lignin (8.15%). IDF and SDF content in CDF were 82.9% and 0.62%, respectively. CDF presented better acceptability of color, taste, texture and aroma than corn bran.
     Factorial experiments showed that there was no improvement for the binding capacity of CDF to bile salts in vitro through cellulase hydrolysis; the binding capacity of CDF to sodium cholate, sodium chenodeoxycholate, sodium deoxycholate and sodium taurocholate in vitro was increased to the highest level following xylanase hydrolysis. The effect of the combined treatment of cellulase and xylanase was better than cellulase alone but weaker than xylanase alone. Parameters of xylanase hydrolysis were optimized by response surface methodology, that is to say, hydrolysis pH of 5.3, hydrolysis time of 1.75 h and enzyme amount of 56 Iu/g CDF. The binding capacities of XMF to sodium cholate, sodium chenodeoxycholate, sodium deoxycholate and sodium taurocholate in vitro was 64.60, 48.34, 75.79 and 60.68μmol/ g XMF under the optimized conditions. There was no correlation between the bindings of any two bile salts by XMF, which indicates that the binding mechanisms of different bile salts by XMF studied here are different.
     The swelling capacity, water holding capacity and oil binding capacity of XMF were significantly higher than CDF (p<0.05). Additionally, SDF, IDF, TDF, cellulose and lignin content of XMF were also increased significantly (p<0.05). High performance gel filtration chromatography (HPGFC) analysis showed that the relative molecular weight distribution of S-XMF was mainly around 11588, which content was 1.64 fold of S-CDF, the part in S-XMF with relative molecular weight lower than 900 was only 62.6% of that in S-CDF. The neutral single sugar composition of XMF and CDF were studied through gas chromatography method. The main neutral sugar in I-CDF and I-XMF were xylose and arabinose, rhamnose in I-XMF was decreased to 44% of that in I-CDF. S-CDF and S-XMF were mainly soluble hemicellulose with high content of arabinose, xylose, mannose and glucose. In S-XMF, the mole content of every neutral single sugar was defferrent from S-CDF, and the content of arabinxylan was almost 10% higher than that in S-CDF. Soluble hemicellulose and arabinxylan can improve the hypolipidemic effects of XMF.
     X-ray diffraction and SEM results suggested that the amorphous region in XMF was decomposed partially, there were more big pores in XMF, which made the structure of XMF more out-of-order with larger capacity to bind water, lipids and bile acids.
     In rats with atherogenic diet induced hyperlipidemia, ingestion of XMF suppressed the increase of serum TG, TC, LDL-C and AI more significantly than CDF (p<0.05), and increased serum HDL-C level significantly at the same time (p<0.05). Furthermore, XMF significantly decreased epididymal fat, liver fat and liver cholesterol concentration more than CDF in rats (p<0.05), and then decreased the fat denaturation of liver cells.
     RT-PCR studies of several genes indicated that XMF could bind more chenodeoxycholate and deoxycholate than CDF in intestine, XMF enhanced the catabolism of lipids by up-regulating the expression of hepatic CYP7A1, FXR, PPARα, PPARγ, Lpl and Lpic, down-regulating the expression of ileal I-BABP and FXR. While CDF only down-regulated I-BABP expression, up-regulated hepatic PPARα, CYP7A1 and Lpl expression. Furthermore, XMF enhanced the excretion of lipid, cholesterol and bile acids more efficiently than CDF with significance (p<0.05). The antioxydation properties of CDF and XMF were also investingated in vivo. XMF ingestion could improve rats’antioxydation capability.
     For CDF and XMF, there were maximum adsorbing capacities against bile salts. There was no positive cooperation between the IDF and SDF parts in CDF during the adsorbing process of sodium cholate, sodium chenodeoxycholate or deoxycholate. There was somewhat cooperation between the two parts when adsorbing sodium taurocholate. However, the IDF and SDF parts in XMF presented strong cooperation when adsorbing the four bile salts. The main interaction between cholate and CDF/XMF was hydrophobic interaction. For CDF, the adsorption of sodium cholate and sodium taurocholate was completely competitive, sodium taurocholate was more competitive than sodium cholate; and the adsorption of sodium deoxycholate and chenodeoxycholate was partially competitive, the latter was more competitive than the former. For XMF, the adsorption of sodium cholate and taurocholate was non-competitive; while the adsorption of sodium chenodeoxycholate and sodium deoxycholate was partially competitive, sodium deoxycholate was more efficient than sodium chenodeoxycholate.
     The adsorption kinetics of the four cholates indicated that there were a larger adsorbing capacity and stronger adsorbing ability for XMF. Force measurements by AFM showed that both the interactions between XMF and sodium deoxycholate, XMF and sodium taurocholate were stronger than CDF.
引文
1.叶创兴,廖文波,戴水连,等.植物学(系统分类部分)[M].第1版.广州:中山大学出版社, 2000.223-393
    2.玉米原产地、分类及用途[EB/OL]. http://www.100wa.com/info/25/2007-6/15103555.htm, 2007-10-11
    3.玉研.我国玉米深加工产业商机无限[J].科技潮, 2005(5):9
    4.石明亮,朱国强,陈桂银,等.玉米的药用价值及其产业化开发应用[J].中国食物与营养, 2004(12):23-25
    5.玉米的深加工与合理转化[J].农民致富之友, 2000(4):21
    6.贺吉苑.玉米纤维素加工技术[EB/OL]. http://www.chinamaize.com.cn., 2005-10-14
    7. Chanliaud E, Saulnier L, Thibault JF. Alkaline extraction and characterisation of heteroxylans from maize bran [J]. Journal of Cereal Science, 1995, 21(2):195-203
    8. Gaspar M, Kalman G, Reczey K. Corn fiber as a raw material for hemicellulose and ethanol production [J]. Process Biochem, 2007, 42(7):1135-1139
    9.王遂,刘芳.高活性玉米膳食纤维的制备、性质与应用[J].食品科学, 2000, 21(7):22-24
    10.王遂,崔凌飞,尤旭.玉米皮半纤维素提取工艺研究[J].中国粮油学报, 2000, 15(3):49-53
    11. Saulnier L, Marot C, Chanliaud E, et al. Cell wall polysaccharide interactions in maize bran [J]. Carbohydr Polym, 1995, 26(4):279-287 12. Charles NJ, Tang H-R, James A, et al. Dephytinsation of wheat bran and the consequences for fibre matrix non-starch polysaccharides [J]. Food Chem, 1997, 58(1-2):5-12
    13.伍立居,李平,汪锦帮.从玉米皮及豆皮中制取食用纤维的研究[J].食品与发酵工业, 1996(5):44-48
    14. Mendonca S, Grossmann MVE, Verhe R. Corn bran as a fibre source in expanded snacks [J]. Lebensmittel-Wissenschaft und-Technologie, 2000, 33(1):2-8
    15. Takeuchi M, Hara M, Inoue T, et al. Adsorption of mutagens by refined corn bran [J]. Mutation Research/Genetic Toxicology, 1988, 204(2):263-267
    16. Shane JM, Walker PM. Corn bran supplementation of a low-fat controlled diet lowers serum lipids in men with hypercholesterolemia [J]. J Am Diet Assoc., 1995, 95(1):40-45
    17. Balters SK, Kies C, Fox HM. Lipid utilization of human adults as affected by dietary bran supplementation [J]. Nutr Res, 1981, 1(4):339-347
    18.卢瑞福,历连发,赵克伶.血脂代谢紊乱与对策[J].临床荟萃, 1994, 19:873-874
    19. Lopez HW, Levrat M-A, Guy C, et al. Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (ca, mg) in rats [J]. J Nutr Biochem, 1999, 10(9):500-509
    20. Miyasaka H. Effects of soluble corn bran hemicellulose on lipid metabolism [J]. Comp Biochem.Physiol A. Physiol, 1993, 106(3):561-564
    21. Ebihara K, Nakamoto Y. Effect of the particle size of corn bran on the plasma cholesterol concentration, fecal output and cecal fermentation in rats [J]. Nutr Res, 2001, 21(12):1509-1518
    22.张钟,王德生.玉米膳食纤维对实验性高脂血症小鼠降脂作用的影响[J].中国粮油学报, 2005, 20(5):120-123
    23.董文彦,张东平.三种膳食纤维降血脂、通便与减肥作用的比较研究[J].中国粮油学报, 2000, 15(1):40-44
    24.日本从玉米皮中提取出水溶性食物纤维(信息)[J].食品科学, 2004, 25(12):46
    25. London JF, Clapp NK, Henke MA. Effects of dietary bran and the colon carcinogen 1,2-dimethylhydrazine on faecal [beta]-glucuronidase activity in mice [J]. Food Cosmet Toxicol, 1981, 19:707-711
    26. Haraa H, Hayashi K, Aoyama Y. Intestinal absorption of zinc is promoted by low-level intake but inhibited by high-level intake of corn husk fiber in rats [J]. Nutr Res, 2001, 21(4):627-637
    27. Schell DJ, Riley CJ, Dowe N, et al. A bioethanol process development unit: Initial operating experiences and results with a corn fiber feedstock [J]. Bioresour Technol, 2004, 91(2):179-188
    28. O'Brien DJ, Senske GE, Kurantz MJ, et al. Ethanol recovery from corn fiber hydrolysate fermentations by pervaporation [J]. Bioresour Technol, 2004, 92(1):15-19
    29. Dien BS, Li XL, Iten LB, et al. Enzymatic saccharification of hot-water pretreated corn fiber for production of monosaccharides [J]. Enzyme Microb Technol, 2006, 39(5):1137-1144
    30. Biswas A, Saha BC, Lawton JW, et al. Process for obtaining cellulose acetate from agricultural by-products [J]. Carbohydr Polym, 2006, 64(1):134-137
    31. Leathers TD. Bioconversions of maize residues to value-added coproducts using yeast-like fungi [J]. FEMS Yeast Research, 2003, 3(2):133-140
    32. Leathers TD, Dien BS. Xylitol production from corn fibre hydrolysates by a two-stage fermentation process [J]. Process Biochem, 2000, 35(8):765-769
    33. Gaspar M, Juhasz T, Szengyel Z, et al. Fractionation and utilisation of corn fibre carbohydrates [J]. Process Biochem, 2005, 40(3-4):1183-1188
    34. Rao RS, Jyothi CP, Prakasham RS, et al. Xylitol production from corn fiber and sugarcane bagasse hydrolysates by candida tropicalis [J]. Bioresour Technol, 2006, 97(15):1974-1978
    35. Zhu Y, Wu Z, Yang S-T. Butyric acid production from acid hydrolysate of corn fibre by clostridiumtyrobutyricum in a fibrous-bed bioreactor [J]. Process Biochem, 2002, 38(5):657-666
    36. Wilson TA, DeSimone AP, Romano CA, et al. Corn fiber oil lowers plasma cholesterol levels and increases cholesterol excretion greater than corn oil and similar to diets containing soy sterols and soy stanols in hamsters [J]. J. Nutr Biochem, 2000, 11(9):443-449
    37. Wu YV, Norton RA. Enrichment of protein, starch, fat, and sterol ferulates from corn fiber by fine grinding and air classification [J]. Industrial Crops and Products, 2001, 14(2):135-138
    38. Yadav MP, Johnston DB, Hotchkiss JAT, et al. Corn fiber gum: A potential gum arabic replacer for beverage flavor emulsification [J]. Food Hydrocolloids, 2007, 21(7):1022-1030
    39. Cinelli P, Chiellini E, Lawton JW, et al. Foamed articles based on potato starch, corn fibers and poly (vinyl alcohol) [J]. Polym Degrad Stab, 2006, 91(5):1147-1155
    40. Wing RE. Corn fiber citrate: Preparation and ion-exchange properties [J]. Industrial Crops and Products, 1996, 5(4):301-305
    41. Lunn J, Buttriss JL. Carbohydrates and dietary fibre [J]. Nutrition Bulletin, 2007, 32(1):21-64
    42. Dreher ML. Dietary fiber overview [M]. In: Handbook of dietary fiber. Edited by Cho SS, Dreher ML. New York: Marcel Dekker, Inc., 2001
    43. Burkitt DP, Walker APP, Painter NS. Effect of dietary fibre on stools and transit times, and its role in the causation of disease [J]. Lancet, 1972, 2:1408-1412
    44. Trowell H. Ischemic heart disease and dietary fibre [J]. Am. J Clin Nutr, 1972, 25:926-932
    45. Trowell H. Definition of dietary fibre [J]. Lancet, 1974, 1:503
    46. Painter NS. Diverticular disease of the colon: A deficiency disease of western civilization [M]. London: Heinemann, 1975.
    47. Cho SS. Preface [M]. In: Handbook of dietary fiber. Edited by Cho SS, Dreher ML. New York: Marcel Dekker, Inc., 2001
    48.郑建仙著.功能性食品[M]:第1卷.第1版,第4次印.北京:中国轻工业出版社, 2002: 9-114
    49. AACC (American Association of Cereal Chemists) dietary fiber technical committee. The definition of dietary fiber [J]. Cereal Foods World, 2001, 46:112-129
    50. FNB (Food and Nutrition Board). Dietary reference intakes: Proposed definition of dietary fiber [M]. Washinton, DC: The National Academics Press, 2001.
    51. FSANZ (Food Standards Australia New Zealand). Section 1.2.8 of the food standards code [EB/OL]. http://www.foodstandards.gov.au/thecode/foodstandardscode.cfm, 2006-11-10
    52. FAO/WHO (Food and Agricultural Organisation/World Health Organization). Report [C]. In: the 27th Session of the codex committee on Nutrition and foods for special dietary Uses. Bon, Germany, 2005-11-21~25.
    53. Anonymous. Position of American dietetic association: Health implications of dietary fiber [J]. J Am Diet Assoc, 2002, 102:993-1000
    54. Panel on the Definition of Dietary Fiber, Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Food and Nutrition Board. Dietary reference intakes: Proposed definition of dietary fiber [M]. Washington DC: National Academy Press, 2001.1-64
    55. FAO/WHO (Food and Agriculture Organisation/World Health Organization). Carbohydrates in human nutrition [C]. In: Joint FAO/WHO Expert Consultation. Rome, 1997
    56. Shimotoyodome A, Yajima N, Suzuki J, et al. Effects of coingestion of different fibers on fecal excretion and cecal fermentation in rats [J]. Nutr Res, 2005, 25(12):1085-1096
    57. Ebihara K, Nakamoto Y. Comparative effect of water-soluble and -insoluble dietary fiber on bowel function in rats fed a liquid elemental diet [J]. Nutr Res, 1998, 18(5):883-891
    58. Queiroz-Monici KdS, Costa GEA, da Silva N, et al. Bifidogenic effect of dietary fiber and resistant starch from leguminous on the intestinal microbiota of rats [J]. Nutrition, 2005, 21(5):602-608
    59. Takahashi H, Akachi S, Ueda Y, et al. Effect of liquid diets with or without partially hydrolyzed guar gum on intestinal microbial flora and function of rats [J]. Nutr Res, 1995, 15(4):527-536
    60. Roberfroid MB. Introducing inulin-type fructans [J]. Br J Nutr, 2005, 93:S13-25
    61. MacFarlane S, MacFarlane GT. Regulation of short-chain fatty acid production [J]. Proc Nutr Soc., 2003, 62:67-72
    62. Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides [J]. Physiol Rev, 2001, 81:1031-1064
    63. Yonekura L, Tamura H, Suzuki H. Chitosan and resistant starch restore zinc bioavailability, suppressed by dietary phytate, through different mechanisms in marginally zinc-deficient rats [J]. Nutr Res, 2004, 24(1):121-132
    64. Schwiertz A, Lehmann U, Jacobasch G, et al. Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium Spp. In the human intestine [J]. Journal of Applied Microbiology and Immunology, 2002, 93:157-162
    65. Mentschel J, Claus R. Increased butyrate formation in the pig colon by feeding raw potato starch leads to a reduction of colonocyte apoptosis and a shift to the stem cell compartment [J]. Metabolism, 2003, 52:1400-1405
    66. Ren H, Musch MW, Kojima K, et al. Short-chain fatty acids induce intestinal epithelial heat shock protein 25 expression in rats and iec 18 cells [J]. Gastroenterology, 2001, 121(3):631-639
    67. Yonekura L, Suzuki H. Some polysaccharides improve zinc bioavailability in rats fed a phytic acid-containing diet [J]. Nutr Res, 2003, 23(3):343-355
    68. Shiga K, Hara H, Takahashi T, et al. Ingestion of water-soluble soybean fiber improves gastrectomy-induced calcium malabsorption and osteopenia in rats [J]. Nutrition, 2002, 18(7-8):636-642
    69. Wood FE, Stoll SJ. The effect of dietary guar gum and cellulose on mineral excretion and status in young male fischer 344 rats [J]. Nutr Res, 1991, 11(6):621-632
    70. Artiss JD, Brogan K, Brucal M, et al. The effects of a new soluble dietary fiber on weight gain and selected blood parameters in rats [J]. Metabolism, 2006, 55(2):195-202
    71. Li J, Wang J, Kaneko T, et al. Effects of fiber intake on the blood pressure, lipids, and heart rate in goto kakizaki rats [J]. Nutrition, 2004, 20(11-12):1003-1007
    72. Li J, Kaneko T, Qin L-Q, et al. Long-term effects of high dietary fiber intake on glucose tolerance and lipid metabolism in GK rats: Comparison among barley, rice, and cornstarch [J]. Metabolism, 2003, 52(9):1206-1210
    73. Kumar CM, Rachappaji KS, Nandini CD, et al. Modulatory effect of butyric acid--a product of dietary fiber fermentation in experimentally induced diabetic rats [J]. J Nutr Biochem, 2002, 13(9):522-527
    74. Kimura Y, Watanabe K, Okuda H. Effects of soluble sodium alginate on cholesterol excretion and glucose tolerance in rats [J]. J Ethnopharmacol, 1996, 54(1):47-54
    75.心血管疾病成全球第一号杀手世卫发布风险指南[EB/OL]. http://www.pharmnet.com.cn/ conf/jkjy/action.cgi?f=page_1_&t=page_1_&id=107827, 2007-11-30
    76.李瑜.高蒜素大蒜粉的制备及其生物活性功能的研究[D]: [博士学位论文].无锡:江南大学食品学院, 2006
    77. Ohara I, Tabuchi R, Onai K, et al. Effects of modified rice bran on serum lipids and taste preference in streptozotocin-induced diabetic rats [J]. Nutr Res, 2000, 20(1):59-68
    78. Lee S, Park H, Cho S, et al. The supplementary effects of high dietary fiber rice (suwon 464) on blood pressure and lipid metabolism in spontaneously hypertensive rats [J]. Cardiovasc Pathol, 2004, 13(3, Supplement 1):87-87
    79. Rouanet J-M, Laurent C, Besancon P. Rice bran and wheat bran: Selective effect on plasma and liver cholesterol in high-cholesterol fed rats [J]. Food Chem, 1993, 47(1):67-71
    80. Hicks V, Chen SC, Tepper SA, et al. The cholesterol-lowering effect of oat bran cereals in rats: Influence of processing [J]. J Nutr Biochem, 1995, 6(5):246-249
    81. Galibois I, Jacques H, Montminy C, et al. Independent effects of protein and fibre sources on glucose and cholesterol metabolism in the rat [J]. Nutr Res, 1992, 12(4-5):643-655
    82. Kelley MJ, Thomas JN, Story JA. Changes in cholesterol accumulation and steroid excretion in response to cellulose, alfalfa or oats in cholesterol-fed rats [J]. Nutr Res, 1992, 12(4-5):509-518
    83. Felgines C, Mazur A, Rayssiguier Y. Plasma lipoproteins and apolipoproteins B and E in rats fed a high-fiber fructose-based diet [J]. J Nutr Biochem, 1994, 5(10):499-503
    84. Basumulik AK. Changes in serum lipid profile in atherosclerotic rats on feeding guava pulp and isabgol (Plantago Ovata Forsk.) powder [J]. Pathophysiology, 1994, 1(2):113-116
    85. Khokhar S. Dietary fibers: Their effects on intestinal digestive enzyme activities [J]. J Nutr Biochem, 1994, 5(4):176-180
    86. Kritchevsky D, Tepper SA, Williams DE, et al. Experimental atherosclerosis in rabbits fed cholesterol-free diets part 7. Interaction of animal or vegetable protein with fiber [J]. Atherosclerosis, 1977, 26(4):397-403
    87. Park HS, Choi JS, Kim KH. Docosahexaenoic acid-rich fish oil and pectin have a hypolipidemic effect, but pectin increases risk factor for colon cancer in rats [J]. Nutr Res, 2000, 20(12):1783-1794
    88. Thomas JN, Kelley MJ, Story JA. Alteration of regression of cholesterol accumulation in rats by dietary pectin [J]. Br J Nutr, 1984, 51(3):339-345
    89. Carter JW, Hardman WE, Heitman DW, et al. Type and amount of individual dietary fibers on: Serum lipid profiles, serum glucose concentration and energy intake in rats [J]. Nutr Res, 1998, 18(10):1743-1756
    90. Alvarez-Leite JI, Andrieux C, Ferezou J, et al. Evidence for the absence of participation of the microbial flora in the hypocholesterolemic effect of guar gum in gnotobiotic rats [J]. CompBiochem Physiol A Physiol, 1994, 109(2):503-510
    91. Schneeman BO, Cimmarusti J, Cohen W, et al. Composition of high density lipoproteins in rats fed various dietary fibers [J]. The Journal Of Nutrition, 1984, 114(7):1320-1326
    92. Daggy BP, Sun P, Sohn E, et al. Psyllium feeding increases the rates of hepatic and intestinal sterol biosynthesis while lowering the plasma and hepatic cholesterol levels in rats [J]. J Am Diet Assoc, 1995, 95(9, Supplement 1):A19-A19
    93. Fang C. Dietary psyllium reverses hypercholesterolemic effect of trans fatty acids in rats [J]. Nutr Res, 2000, 20(5):695-705
    94. Suprijana O, Terpstra AHM, Van Lith HA, et al. Plasma lipids and apolipoproteins in rats fed diets with type of fat (fish oil corn oil) and fiber (pectin versus cellulose) as variables [J]. Nutr Res, 1997, 17(7):1187-1197
    95. Carr TP, Wood KJ, Hassel CA, et al. Raising intestinal contents viscosity leads to greater excretion of neutral steroids but not bile acids in hamsters and rats [J]. Nutr Res, 2003, 23(1):91-102
    96. Kritchevsky D, Tepper SA. Influence of a fiber mixture on serum and liver lipids and on fecal fat excretion in rats [J]. Nutr Res, 2005, 25(5):485-489
    97. Martin-Carron N, Goni I, Larrauri JA, et al. Reduction in serum total and LDL cholesterol concentrations by a dietary fiber and polyphenol-rich grape product in hypercholesterolemic rats [J]. Nutr Res, 1999, 19(9):1371-1381
    98. Hsu P-K, Chien P-J, Chen C-H, et al. Carrot insoluble fiber-rich fraction lowers lipid and cholesterol absorption in hamsters [J]. LWT - Food Science and Technology, 2006, 39(4):338-343
    99. Sembries S, Dongowski G, Mehrlander K, et al. Dietary fiber-rich colloids from apple pomace extraction juices do not affect food intake and blood serum lipid levels, but enhance fecal excretion of steroids in rats [J]. J Nutr Biochem, 2004, 15(5):296-302
    100. Leontowicz M, Gorinstein S, Bartnikowska E, et al. Sugar beet pulp and apple pomace dietary fibers improve lipid metabolism in rats fed cholesterol [J]. Food Chem, 2001, 72(1):73-78
    101. Spiller RC. Impact of dietary fiber on absorption in the small intestine [J]. Current Opinions in Gastroenterology, 1999, 15:100-102
    102. Meier ML, Hecker KD, Newman RK, et al. Hypocholesterolemic effects of foods enriched with barley [beta]-glucan concentrate [J]. J Am Diet Assoc, 1995, 95(9, Supplement 1):A10-A10
    103. Yamamoto Y, Takahashi Y, Kawano M, et al. In vitro digestibility and fermentability of levan andits hypocholesterolemic effects in rats [J]. J Nutr Biochem, 1999, 10(1):13-18
    104. Story JA, Kritchevskv D. Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber [J]. J Nutr, 1976, 106:1292-1294
    105. Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties [J]. LWT - Food Science and Technology, 2006, 39(10):1087-1092
    106. Kahlon TS, Chapman MH, Smith GE. In vitro binding of bile acids by spinach, kale, brussels sprouts, broccoli, mustard greens, green bell pepper, cabbage and collards [J]. Food Chem, 2007, 100(4):1531-1536
    107. Kahlon TS, Chapman MH, Smith GE. In vitro binding of bile acids by okra, beets, asparagus, eggplant, turnips, green beans, carrots, and cauliflower [J]. Food Chem, 2007, 103(2):676-680
    108. Kahlon TS, Smith GE. In vitro binding of bile acids by blueberries (Vaccinium Spp.), plums (Prunus Spp.), prunes (Prunus Spp.), strawberries (Fragaria X Ananassa), cherries (Malpighia Punicifolia), cranberries (Vaccinium Macrocarpon) and apples (Malus Sylvestris) [J]. Food Chem, 2007, 100(3):1182-1187
    109. Amigo L, Marzolo MP, Aguilera J, et al. Influence of different dietary constituents of beans (Phaseolus Vulgaris) on serum and biliary lipids in the rat [J]. J Nutr Biochem, 1992, 3(9):486-490
    110. Marlett JA. Dietary fiber and cardiovascular disease [M]. In: Handbook of dietary fiber. Edited by Cho SS, Dreher ML. New York: Marcel Dekker, Inc., 2001
    111. Sengupta S, Tjandra JJ, Gibson PR. Dietary fibre and colorectal neoplasia [J]. Dis. Colon Rectum, 2001, 44:1016-1033
    112. Earnest DL, Einspahr JG, Alberts DS. Protective role of wheat bran fiber: Data from marker trials [J]. The American Journal of Medicine, 1999, 106(1, Supplement 1):32-37
    113. Wong CSM, Gibson PR. The trophic effect of dietary fibre is not associated with a change in total crypt number in the distal colon of rats [J]. Carcinogenesis (London), 2003, 24:343-348
    114. Kritchevsky D. Protective role of wheat bran fiber: Preclinical data [J]. The American Journal of Medicine, 1999, 106(1, Supplement 1):28-31
    115. Yang L, Mutanen M, Cheng Y, et al. Effects of red meat and fiber in high fat diet on activities of sphingomyelinase, ceramidase and caspase-3 in rat colonic mucosa [J]. J Nutr Biochem, 2002, 13(8):499-504
    116. Helsby NA, Zhu S, Pearson AE, et al. Antimutagenic effects of wheat bran diet through modification of xenobiotic metabolising enzymes [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 454(1-2):77-88
    117. Cho SS, Clark C, Rickard SE. Dietary fiber and breast cancer risk [M]. In: Handbook of dietary fiber Edited by Cho SS, Dreher ML. New York: Marcel Dekker, Inc., 2001
    118. Schwab ED, Pienta KJ. Dietary fiber and prostate cancer [M]. In: Hand book of dietary fiber. Edited by Cho SS, Dreher ML. New York: Marcel Dekker, Inc., 2001
    119. Takenaka S, Itoyama Y. Rice bran hemicellulose increases the peripheral blood lymphocytes in rats [J]. Life Sciences, 1993, 52(1):9-12
    120. Sato S, Hori Y, Yamate J, et al. Protective effect of dietary azuki bean (Vigna Angularis) seed coats against renal interstitial fibrosis of rats induced by cisplatin [J]. Nutrition, 2005, 21(4):504-511
    121. Miller WC, Niederpruem MG, Wallace JP, et al. Dietary fat, sugar, and fiber predict body fat content [J]. J Am Diet Assoc, 1994, 94:612-615
    122.王琳芳,杨克恭.医学分子生物学原理[M].北京:高等教育出版社, 2001.956-957
    123.顾学棋.预防医学[M].北京:人民卫生出版社, 1989.
    124. Austin MA, King MC. Atherogenic lipoprotein phenotypela proposed genetic marker for coronary heart disease [J]. Circulation, 1990, 82:492-506
    125. Goldstein JL, Hazzard WR, Schrott HG, et al. Hyperlipidemia in coronary heart disease. I. Lipid levels in 500 survivors of myocardial infarction. [J]. J Clin Invest, 1973, 52(7):1533-1543
    126. Dongowski G. Interactions between dietary fibre-rich preparations and glycoconjugated bile acids in vitro [J]. Food Chem, 2007, 104(1):390-397
    127.魏涌主编.医学生物化学[M].北京:世界出版社, 1998. 359-375
    128.钟耀广.功能性食品[M].北京:化学工业出版社, 2004.33
    129. Thongngam M, McClements DJ. Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium taurocholate) [J]. Food Hydrocolloids, 2005, 19(5):813-819
    130. Jimenez-Escrig A, Sanchez-Muniz FJ. Dietary fibre from edible seaweeds: Chemical structure, physicochemical properties and effects on cholesterol metabolism [J]. Nutr Res, 2000, 20(4):585-598
    131. Kritchevsky D, Story JA. Binding of bile salts in vitro to nonnutritive fibers [J]. J Nutr, 1974, 104:458-460
    132.吴雁,王亦农,马建标.水溶性壳聚糖降血脂作用的化学机理(I)—水溶性壳聚糖及其衍生物对胆酸盐的结合能力研究[J].高等学校化学学报, 2004, 25(4):757-761
    133. Canzi E, Tinarelli A, Brighenti F, et al. Influence of long-term feeding of different purified dietary fibers on cecal microflora composition and its metabolizing activity on bile acids [J]. Nutr Res, 1994, 14(10):1549-1559
    134.查兵兵,李益明,焦东海,等.大黄提取片对高脂饮食诱导肥胖大鼠脂代谢及相关基因表达的影响[J].中华中医药杂志, 2006, 21(10):585-588
    135. Mazur A, Felgines C, Nassir F, et al. Apolipoprotein b gene expression in rat intestine the effect of dietary fiber [J]. FEBS Lett, 1991, 284(1):63-65
    136. Sonoyama K, Kiriyama S, Niki R. Expression of apolipoprotein A-I mRNA in liver and intestine of cecectomized rats fed beet fiber [J]. J Nutr Biochem, 1995, 6(7):380-384
    137. Roy S, Freake HC, Fernandez ML. Gender and hormonal status affect the regulation of hepatic cholesterol 7[alpha]-hydroxylase activity and mRNA abundance by dietary soluble fiber in the guinea pig [J]. Atherosclerosis, 2002, 163(1):29-37
    138. Schneeman BO, Gallaher D. Changes in small intestinal digestive enzyme activity and bile acids with dietary cellulose in rats [J]. The Journal Of Nutrition, 1980, 110(3):584-590
    139. Forman LP, Schneeman BO. Effects of dietary pectin and fat on the small intestinal contents and exocrine pancreas of rats [J]. The Journal Of Nutrition, 1980, 110(10):1992-1999
    140. Forman LP, Schneeman BO. Dietary pectin's effect on starch utilization in rats [J]. The Journal Of Nutrition, 1982, 112(3):528-533
    141. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: Natural ligands for an orphan nuclear receptor [J]. Science, 1999, 284(5418):1365-1368
    142. Guan Y, Breyer MD. Peroxisome proliferator-activated receptors(PPARs) : Novel therapeutic targets in renal disease [J]. Kidney Int., 2001, 60(1):14-30
    143. Antonio C, Peter T. Ppars in atherosclerosis : The clot thickens [J]. Clin Invest 2004, 114:1538
    144. Law RE, Goetze S, Xi XP, et al. Expression and function of pparγin rat and human vascular smooth muscle cells [J]. Circulation, 2000, 101:1311
    145. Kersten S, Desvergne B, Wahli W. Roles of pparγin health and disease [J]. Nature (London), 2000, 405:421
    146. Hsueh WA, Bruemmer D. Peroxisome proliferator activated receptorγ: Implications forcardiovascular disease [J]. Hypertension (Dallas), 2004, 43:297
    147.程云辉.麦胚蛋白酶解物的制备、结构及其生物活性功能的研究[D]: [博士学位论文].无锡:江南大学, 2006
    148.编辑部述评.氧化应激与高血压[J].高血压杂志, 2005, 13(7):391-393
    149. Vladimirov YA. Free radical, aging and degeneration disease [M]. New York: Alan Rliss, 1986.
    150. Luccia BHD, Kunkel ME. Psyllium reduces relative calcium bioavailability and induces negative changes in bone composition in weanling wistar rats [J]. Nutr Res, 2002, 22(9):1027-1040
    151. Urbano MG, Goni I. Bioavailability of nutrients in rats fed on edible seaweeds, nori (Porphyra Tenera) and wakame (Undaria Pinnatifida), as a source of dietary fibre [J]. Food Chem, 2002, 76(3):281-286
    152.王遂,李桂春,宫晓波.酶法脱淀粉技术用于膳食纤维制取工艺的研究[J].哈尔滨师范大学自然科学学报, 1999(3):73-77
    153.张钟,董永清,徐丽红,等.糯玉米皮渣中膳食纤维的提取、纯化及理化性质研究[J].粮食与饲料工业, 2004(3):20-22
    154.张艳荣,刘婷婷,王大为.玉米活性多糖减肥降脂作用的研究[J].食品科学, 2006, 27(5):227-230
    1. Thongngam M, McClements DJ. Isothermal titration calorimetry study of the interactions betweenchitosan and a bile salt (sodium taurocholate) [J]. Food Hydrocolloids, 2005, 19(5):813-819
    2. Dietary reference intakes proposed definition of dietary fiber [M].Washington DC: National Academy Press, 2001.1-64
    3.吴雁,王亦农,马建标.水溶性壳聚糖降血脂作用的化学机理(I)—水溶性壳聚糖及其衍生物对胆酸盐的结合能力研究[J].高等学校化学学报, 2004, 25(4):757-761
    4. Debruyne PR, Bruyneel EA, Li X, et al. The role of bile acids in carcinogenesis [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 480-481:359-369
    5.魏涌主编.医学生物化学[M].北京:世界出版社, 1998. 359-375
    6. Story J, Kritchevskv D. Comparison of the binding of various bile accids and bile salts in vitro by several types of fiber [J]. J Nutr, 1982, 106:1292-1294
    7. Sangnark A, Noomhorm A. Effect of particle sizes on functional properties of dietary fibre prepared from sugarcane bagasse [J]. Food Chem, 2003, 80(2):221-229
    8.伍立居,李平,汪锦邦.从玉米皮及豆皮中制取食用纤维的研究[J].食品与发酵工业, 1996, (5):44-48
    9.王遂,李桂春,宫晓波.酶法脱淀粉技术用于膳食纤维制取工艺的研究[J].哈尔滨师范大学自然科学学报, 1999(3):73-77
    10.贺吉苑.玉米纤维素加工技术[EB/OL]. http://www.chinamaize.com.cn., 2005-10-14
    11. Gaspar M, Kalman G, Reczey K. Corn fiber as a raw material for hemicellulose and ethanol production [J]. Process Biochem, 2007, 42(7):1135-1139
    12. Chanliaud E, Saulnier L, Thibault JF. Alkaline extraction and characterisation of heteroxylans from maize bran [J]. Journal of Cereal Science, 1995, 21(2):195-203
    13.王遂,刘芳.高活性玉米膳食纤维的制备、性质与应用[J].食品科学, 2000, 21(7):22-24
    14.张钟,董永清,徐丽红,等.糯玉米皮渣中膳食纤维的提取、纯化及理化性质研究[J].粮食与饲料工业, 2004(3):20-22
    15.曹树稳,黄绍华.几种膳食纤维的制备工艺研究[J].食品科学, 1997, 18(6):41-45
    16.张艳荣,刘婷婷,王大为.玉米活性多糖减肥降脂作用的研究[J].食品科学, 2006, 27(5):227-230
    17. Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties [J]. LWT - Food Science and Technology, 2006, 39(10):1087-1092
    18. Myers RH, Montgomery DC. Response surface methodology: Process and product optimisation using designed experiments [M]. 2nd ed. New York: John Wiley and Sons, Inc., 2002.
    19. Cheison SC, Wang Z, Xu S-Y. Hydrolysis of whey protein isolate in a tangential flow filter membrane reactor: I. Characterisation of permeate flux and product recovery by multivariate data analysis [J]. J Membr Sci, 2006, 283:45-46
    20. AACC 32-07. Approved methods of the american association of cereal chemists [M]. 10th ed. Approved Methods of the American Association of Cereal Chemists: The Association, 2000.
    21.大连轻工业学院,华南理工大学,郑州轻工业学院,等.食品分析[M].第6版.北京:中国轻工业出版社, 2001.
    22.郑学玲.戊聚糖含量测定方法及戊聚糖在小麦中的分布情况[D]: [博士学位论文].无锡:江南大学, 2006
    23.张水华.食品分析[M].北京:中国轻工业出版社, 2006.149,190,189
    24.李积华,郑为完,杨静,等.绿豆膳食纤维的分析[J].食品研究与开发, 2006, 27(7):176-178
    25.邵佩兰,李雯霞,徐明.不同提取方法对麦麸膳食纤维特性的影响[J].食品科技, 2003(11):98-100
    26. Kahlon TS, Smith GE. In vitro binding of bile acids by bananas, peaches, pineapple, grapes, pears, apricots and nectarines [J]. Food Chem, 2007, 101(3):1046-1051
    27. Yuan X, Wang J, Yao H. Production of feruloyl oligosaccharides from wheat bran insoluble dietary fibre by xylanases from Bacillus Subtilis [J]. Food Chem, 2006, 95(3):484-492
    28.张延坤.膳食纤维在食品中的应用[J].食品工业, 1997(6):30-32
    29. Ebihara K, Nakamoto Y. Effect of the particle size of corn bran on the plasma cholesterol concentration, fecal output and cecal fermentation in rats [J]. Nutr Res, 2001, 21(12):1509-1518
    30. Story JA, Kritchevskv D. Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber [J]. J Nutr, 1976, 106:1292-1294
    31. Kahlon TS, Smith GE. In vitro binding of bile acids by blueberries (Vaccinium Spp.), plums (Prunus Spp.), prunes (Prunus Spp.), strawberries (Fragaria X Ananassa), cherries (Malpighia Punicifolia), cranberries (Vaccinium Macrocarpon) and apples (Malus Sylvestris) [J]. Food Chem, 2007, 100(3):1182-1187
    32. Kahlon TS, Chapman MH, Smith GE. In vitro binding of bile acids by spinach, kale, brussels sprouts, broccoli, mustard greens, green bell pepper, cabbage and collards [J]. Food Chem, 2007,100(4):1531-1536
    33.袁晓晴.癞葡萄降血糖肽的制备及其降糖机理研究[D]: [博士学位论文].无锡:江南大学食品学院, 2007
    34. Biely P. Xylanolytic enzymes [M]. In: Hand book of food enzymology. Edited by Whitaker JR, Voragen AGJ, Wong DWS. New York: Marcel Dekker, Inc, 2003. 879-914
    35.刘俊涛,余湢,洪文兵,等. 5-氟脲嘧啶对大肠癌细胞内胆酸活度的影响[J].中国药理学通报, 1993(2):21-25
    36. Yoshie-Stark Y, Wasche A. In vitro binding of bile acids by lupin protein isolates and their hydrolysates [J]. Food Chem, 2004, 88(2):179-184
    37. Monro JA, Lee J, Sinclair BR. Bile acid activity in the presence of dietary fibres, casein, calcium, phospholipid, fatty acid and cholesterol: Factorial experiments in vitro [J]. Food Chem, 1992, 44(5):325-329
    1.邵佩兰,李雯霞,徐明.不同提取方法对麦麸膳食纤维特性的影响[J].食品科技, 2003(11):98-100
    2.伍立居,李平,汪锦邦.从玉米皮及豆皮中制取食用纤维的研究[J].食品与发酵工业, 1996,(5):44-48
    3.欧仕益,妍郑,刘子立,等.酵解和酶解麦麸吸附脂肪和胆固醇的研究[J].食品科技, 2005(1):91-93
    4. Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties [J]. LWT - Food Science and Technology, 2006, 39(10):1087-1092
    5. AACC 32-07. Approved methods of the american association of cereal chemists [M]. 10th ed. Approved Methods of the American Association of Cereal Chemists: The Association, 2000.
    6.徐广超.豆渣可溶性膳食纤维的制备及功能性的研究[D]:[硕士学位论文].无锡:江南大学, 2005
    7. Allen KGD, Bristow SJ, Yu L. Hypolipidemic effects of modified psyllium preparations [J]. J Agric Food Chem, 2004, 52:4998-5003
    8. Biely P. Xylanolytic enzymes [M]. In: Hand book of food enzymology. Edited by Whitaker JR, Voragen AGJ, Wong DWS. New York: Marcel Dekker, Inc, 2003. 879-914
    9. Dreher ML. Dietary fiber overview [M]. In: Handbook of dietary fiber. Edited by Cho SS, Dreher ML. New York: Marcel Dekker, Inc., 2001
    10. Story JA, Kritchevskv D. Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber [J]. J Nutr, 1976, 106:1292-1294
    11.王遂,崔凌飞,尤旭.玉米皮半纤维素提取工艺研究[J].中国粮油学报, 2000, 15(3):49-53
    12.高洁,汤烈贵.纤维素科学[M].北京:科学出版社, 1999.119-125
    13.张延坤.膳食纤维在食品中的应用[J].食品工业, 1997(6):30-32
    14. Buchanan CM, Buchanan NL, Debenham JS, et al. Preparation and characterization of arabinoxylan esters and arabinoxylan ester/cellulose ester polymer blends [J]. Carbohydr Polym, 2003, 52(4):345-357
    15. Miyasaka H. Effects of soluble corn bran hemicellulose on lipid metabolism [J]. Comp Biochem Physiol A Physiol, 1993, 106(3):561-564
    16. Lopez HW, Levrat M-A, Guy C, et al. Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats [J]. J Nutr Biochem, 1999, 10(9):500-509
    17.郭雅琳,赵玉萍,林福海.亚麻的化学组成和微观结构对染色性能的影响[J].化学通报,2002(6):2002
    18.韩晓芳,郑连爽,杜予民,等.蒸汽爆破棉杆的微生物降解研究[J].中国造纸学报, 2003, 18(2):27-29
    1.李瑜.高蒜素大蒜粉的制备及其生物活性功能的研究[D]: [博士学位论文].无锡:江南大学食品学院, 2006
    2.王琳芳,杨克恭.医学分子生物学原理[M].北京:高等教育出版社, 2001.
    3.顾学棋.预防医学[M].北京:人民卫生出版社, 1989.
    4. Austin MA, King MC. Atherogenic lipoprotein phenotypela proposed genetic marker for coronary heart disease [J]. Circulation, 1990, 82:492-506
    5. Goldstein JL, Hazzard WR, Schrott HG, et al. Hyperlipidemia in coronary heart disease. I. Lipid levels in 500 survivors of myocardial infarction. [J]. J Clin Invest, 1973, 52(7):1533-1543
    6.董文彦,张东平,伍立居,等.三种膳食纤维降血脂、通便与减肥作用的比较研究[J].中国粮油学报, 2002, 15(2)
    7. Jensen MSRDCD, Haskell PW, Whittam PJH. Long-term effects of water-soluble dietary fiber in the management of hypercholesterolemia in healthy men and women [J]. The American Journal of Cardiology, 1997, 79(1):34-37
    8. Anonymous. Position of american dietetic association: Health implications of dietary fiber [J]. J Am Diet Assoc, 2002, 102:993-1000
    9. Lee S, Park H, Cho S, et al. The supplementary effects of high dietary fiber rice (Suwon 464) on blood pressure and lipid metabolism in spontaneously hypertensive rats [J]. Cardiovascular Pathology, 2004, 13(3, Supplement 1):87-87
    10. Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: Natural ligands for an orphan nuclear receptor [J]. Science, 1999, 284(5418):1365-1368
    11. Guan Y, Breyer MD. Peroxisome proliferator - activated receptors (PPARs): Novel therapeutic targets in renal disease [J]. Kidney Int., 2001, 60(1):14-30
    12. Takahashi N, Kawada T, Goto T, et al. Dual action of isoprenols from herbal medicines on both PPAR[gamma] and PPAR[alpha] in 3T3-l1 adipocytes and Hepg2 hepatocytes [J]. FEBS Lett, 2002, 514(2-3):315-322
    13. Lapsys NM, Kriketos AD, Lim-Fraser M, et al. Original studies: Expression of genes involved in lipid metabolism correlate with peroxisome proliferator- activated receptor expression in human skeletal muscle [J]. J Clin Endocrinol Metab, 2000, 85:4293-4297
    14. Antonio C, Peter T. Ppars in atherosclerosis : The clot thickens [J]. Clin Invest 2004, 114:1538
    15. Law RE, Goetze S, Xi XP, et al. Expression and function of pparγin rat and human vascular smooth muscle cells [J]. Circulation, 2000, 101:1311
    16. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease [J]. Nature, 2000, 405(6785): 421-424
    17. Kersten S, Desvergne B, Wahli W. Roles of PPARγin health and disease [J]. Nature (London), 2000, 405:421
    18. Hsueh WA, Bruemmer D. Peroxisome proliferator activated receptorγ: Implications for cardiovascular disease [J]. Hypertension (Dallas), 2004, 43:297
    19. Roy S, Freake HC, Fernandez ML. Gender and hormonal status affect the regulation of hepatic cholesterol 7[alpha]-hydroxylase activity and mRNA abundance by dietary soluble fiber in the guinea pig [J]. Atherosclerosis, 2002, 163(1):29-37
    20.程云辉.麦胚蛋白酶解物的制备、结构及其生物活性功能的研究[D]: [博士学位论文].无锡:江南大学, 2006
    21.编辑部述评.氧化应激与高血压[J].高血压杂志, 2005, 13(7):391-393
    22. Vladimirov YA. Free radical, aging and degeneration disease [M]. New York: Alan Rliss, 1986.
    23. Mezei O, Banz WJ, Steger RW, et al. Soy isoflavones exert antidiabetic and hypolipidemic effectsthrough the PPAR pathways in obese Zucker rats and murine Raw 264.7 cells [J]. J Nutr, 2003, 133(5):1238-1243
    24. Sonoyama K, Shuhachi K, Niki R. Expression of apolipoprotein A-I mRNA in liver and intestine of cecectomized rats fed beet biber [J]. J Nutr Biochem, 1995, 6:380-384
    25. Ebihara K, Nakamoto Y. Effect of the particle size of corn bran on the plasma cholesterol concentration, fecal output and cecal fermentation in rats [J]. Nutr Res, 2001, 21(12):1509-1518
    26. Miyasaka H. Effects of soluble corn bran hemicellulose on lipid metabolism [J]. Comp Biochem Physiol A Physiol, 1993, 106(3):561-564
    27. Thongngam M, McClements DJ. Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium taurocholate) [J]. Food Hydrocolloids, 2005, 19(5):813-819
    28.李安林,施用晖,鹏岳,等.硫辛酸对高脂日粮大鼠脂类代谢和抗氧化能力的影响[J].食品科学, 2006, 27(5):242-245
    29. Anna MN, Riitta PP, Marjukka A, et al. Comparison of antioxidant activities of onion and garlic extracts by ingibition of lipid peroxidation and radical scavenging activity [J]. Food Chem, 2003, 81:485-493
    30. Hsu P-K, Chien P-J, Chen C-H, et al. Carrot insoluble fiber-rich fraction lowers lipid and cholesterol absorption in hamsters [J]. LWT - Food Science and Technology, 2006, 39(4):338-343
    31. Dong W-Y, Zhang D-P, Wu L-J, et al. A comparison of study among three dietary fibres on their influences upon serum lipid, excretion and obesity in rats [J]. JCCOA, 2000, 15:40-44
    32. Chiang M-T, Yao H-T, Chen H-C. Effect of dietary chitosans with different viscosity on plasma lipids and lipid peroxidation in rats fed on a diet enriched with cholesterol [J]. Biosci Biotechnol Biochem, 2000, 64(5):965-971
    33. Shane JM, Walker PM. Corn bran supplementation of a low-fat controlled diet lowers serum lipids in men with hypercholesterolemia [J]. J Am Diet Assoc, 1995, 95(1):40-45
    34. Knopp RH, Superko R, Davidson M, et al. Long-term blood cholesterol-lowering effects of a dietary fiber supplement [J]. Am J Prev Med, 1999, 17(1):18-23
    35.王镜岩,朱圣庚,徐长法.生物化学(下册)[M].第3版.北京:高等教育出版社, 2002. 257-298
    36.李春阳,许时婴.葡萄籽原花青素降低小鼠血清中胆固醇作用的研究[J].食品研究与开发, 2005(6)
    37. Ye Y, Wang J-N, Wang D-W, et al. Effects of hua tan huoxue prescription on expression s of peroxisome proliferation substance activating receptorα(PPARα) and the target gene in the liver of hyperlipemia rat [J]. JTCM, 2006, 47(4):53-55
    38.脂肪肝[EB/OL]. http://www.hebjtt.gov.cn/wangxiufang/jiankang/jkbd/jbzq/gy/gy-02-25.html, 2007-01 -03
    39. Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids [J]. Science, 1999, 284(5418):1362-1365
    40. Tu H, Okamoto AY, Shan B. FXR, a bile acid receptor and biological sensor [J]. Trends Cardiovasc Med, 2000, 10(1):30-35
    41. Lee KY, Jeon YJ. Macrophage activation by polysaccharide isolated from astragalus membranaceus [J]. International Immunopharmacology, 2005, 5(7-8):1225-1233
    42. Lee KY, You HJ, Jeong HG, et al. Polysaccharide isolated from Poria cocos sclerotium induces NF-[kappa]B/Rel activation and INOS expression through the activation of P38 kinase in murine macrophages [J]. International Immunopharmacology, 2004, 4(8):1029-1038
    43. Li Y, Hou M-J, Tang Z-H, et al. Effects of dietary fats on cholesterol homestasis in mice [J]. Chinese Journal of Public Health, 2004, 20(11):1299-1301
    44.解放军普通外科研究所肝胆组.肝胆外科常见问题解答[EB/OL]. http://www.egut.cn:8080/ 2thgd/3-4.html, 2007-11-11
    45.胆汁中有哪些物质?其代谢如何?[EB/OL]. http://www.daoyi.com/disease/html/200009/50000 00123390.html, 2007-11-11 21:09
    46. Lairon D, Play B, Jourdheuil-Rahmani D. Digestible and indigestible carbohydrates: Interactions with postprandial lipid metabolism [J]. J Nutr Biochem, In Press, Corrected Proof
    47.李佳楠,陈东辉,罗霞,等.温胆汤对高脂血症大鼠及小鼠体内脂质代谢调节机理研究[J].江汉大学学报(自然科学版), 2004, 32(2):62-66
    48.王镜岩,朱圣庚,徐长法.生物化学(上册)[M].第3版.北京:高等教育出版社, 2002.
    49. Vassalle C, Lubrano V, Abbate A, et al. Determination of mitric plus nitrate and malondialdehyde in human plasma: Analytical performance and the effect of smoking and exercise [J]. Clin Chem Lab Med, 2002, 40:802-809
    50. Yang R, Le G, Li A, et al. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet [J]. Nutrition, 2006, 22(11-12):1185-1191
    51.程时.生物膜与疾病[M].北京:北京医科大学出版社, 2000.44-79
    51. Zhou K, Xia W, Zhang C, et al. In vitro binding of bile acids and triglycerides by selected chitosan preparations and their physico-chemical properties [J]. LWT - Food Science and Technology, 2006, 39(10):1087-1092
    1.魏涌主编.医学生物化学[M].北京:世界出版社, 1998. 359-375
    2.钟耀广.功能性食品[M].北京:化学工业出版社, 2004. 33
    3. Thongngam M, McClements DJ. Isothermal titration calorimetry study of the interactions between chitosan and a bile salt (sodium taurocholate) [J]. Food Hydrocolloids, 2005, 19(5):813-819
    4. Ebihara K, Nakamoto Y. Effect of the particle size of corn bran on the plasma cholesterol concentration, fecal output and cecal fermentation in rats [J]. Nutr Res, 2001, 21(12):1509-1518
    5.吴雁,王亦农,马建标.水溶性壳聚糖降血脂作用的化学机理(I)—水溶性壳聚糖及其衍生物对胆酸盐的结合能力研究[J].高等学校化学学报, 2004, 25(4):757-761
    6.修建成,曹荣安,孔保华,等.膳食纤维的生理功能及应用现状[J].农产品加工学刊, 2005, 42(8):48-53
    7. Story JA, Kritchevskv D. Comparison of the binding of various bile acids and bile salts in vitro by several types of fiber [J]. J Nutr, 1976, 106:1292-1294
    8. Saulnier L, Marot C, Chanliaud E, et al. Cell wall polysaccharide interactions in maize bran [J]. Carbohydr Polym, 1995, 26(4):279-287
    9.高洁,汤烈贵.纤维素科学[M].北京:科学出版社, 1999. 183-189
    10.大连理工大学无机化学教研室.无机化学(上册)[M].第3版.北京:高等教育出版社, 1990. 328-339
    11.王镜岩,朱圣庚,徐长法.生物化学(上册)[M].第3版.北京:高等教育出版社, 2002. 79-121
    12.刘育.超分子化学[M].北京:化学工业出版社, 2001. 1-5
    13.刘养清,刘二保.动物胆汁理化特性及药用[M].北京:化学工业出版社, 2002. 94-154
    14. Ando M, Kaneko T, Watanabe R, et al. High sensitive analysis of rat serum bile acids by liquid chromatography/electrospray ionization tandem mass spectrometry [J]. J Pharm Biomed Anal, 2006, 40(5):1179-1186
    15. Roda A, Gioacchini AM, Cerre C, et al. High-performance liquid chromatographic-electrospray mass spectrometric analysis of bile acids in biological fluids [J]. J Chromatogr B Biomed Sci App, 1995, 665(2):281-294
    16. Debruyne PR, Bruyneel EA, Li X, et al. The role of bile acids in carcinogenesis [J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2001, 480-481:359-369
    17. Subuddhi U, Mishra AK. Micellization of bile salts in aqueous medium: A fluorescence study [J]. Colloids Surf B Biointerfaces, 2007, 57(1):102-107
    18. Fennema OR著.食品化学[M].第3版.王璋等译.北京:中国轻工业出版社, 2003.43-67
    19.天津大学物理化学教研室.物理化学(下册)[M].第4版.北京:高等教育出版社, 2001.151-194
    20.超分子化学[EB/OL]. http://www.6yes.com/bbs/redirect.php?fid=604&tid=148150&goto=next newset, 2007-10-3
    21. Plaschke M, Romer JR, R.J.I.Kim, Klenzeand R, et al. Influence of europium(III) on the adsorption of humic acid onto mica studied by afm [J]. J Chro Surf Interface Anal, 2000, 30:297-300

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700