用户名: 密码: 验证码:
生物质甲醇中直接降解制取乙酰丙酸甲酯的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是唯一可替代化石资源获取液态燃料和化学品的可再生资源,其中碳水化合物是生物质资源中含量最丰富的组分,可通过生物或化学转化合成多种能源化学品,是目前生物质能开发利用研究的热点和重点。近年来由生物质转化合成乙酰丙酸酯引起了研究者们越来越广泛的关注,乙酰丙酸酯是一类重要的化学中间体和新能源化学品,具有高的反应特性和广泛的工业应用价值。目前开发的从生物质资源出发转化合成乙酰丙酸酯的潜在合成途径可概括为以下四种:直接醇解法、经乙酰丙酸酯化、经5-氯甲基糠醛醇解和经糠醇醇解。其中,生物质直接醇解法被认为是合成乙酰丙酸酯最具发展前景的转化途径,但是转化效率低、副反应严重、后处理麻烦等导致的高转化分离成本是目前制约该技术发展和规模化应用的主要障碍。
     本论文针对目前生物质直接醇解转化合成乙酰丙酸酯的反应过程中存在的主要科学问题及其研究现状,开展了系列创新性研究,包括:价格低廉、绿色高效催化体系的开发;生物质醇解反应机理及反应动力学的探索;造纸污泥转化成乙酰丙酸酯的资源化利用技术途径;产物乙酰丙酸酯的分离纯化与表征。具体研究主要选择以纤维素和葡萄糖作为反应底物在甲醇体系中反应合成乙酰丙酸甲酯为代表性反应进行详细探讨。
     论文选择和制备了多种不同类型的固体酸催化剂,用于在甲醇体系中催化转化碳水化合物合成乙酰丙酸甲酯。结果发现硫酸根促进的金属氧化物固体酸(如SO42–/TiO2)表现出良好的催化活性,乙酰丙酸甲酯收率较高,而甲醇自身缩合脱水生成二甲醚的副反应少,反应后容易与产物分离,回收经高温焙烧后可多次重复使用。对于复合固体酸SO_4~(2–)/ZrO_2–TiO_2,不同Zr/Ti摩尔比和不同焙烧温度的催化剂的表面性质和对葡萄糖醇解的效果明显不同,发现固体酸中存在的强酸位对乙酰丙酸甲酯的生成至关重要,葡萄糖转化成乙酰丙酸甲酯的反应活性与固体酸的酸密度呈良好线性关系。
     另外,超低硫酸(≤0.01mol/L)是应用于在甲醇体系中催化转化碳水化合物合成乙酰丙酸甲酯。结果发现超低硫酸能提供足够的酸性位用于催化乙酰丙酸甲酯的生成,根据产物组分,提出了纤维素和葡萄糖在甲醇体系中转化合成乙酰丙酸甲酯的合理反应机理。与前面固体酸催化相比,超低硫酸催化活性更强,乙酰丙酸甲酯收率更高,原料适用范围更广。与传统稀硫酸催化相比,乙酰丙酸甲酯收率增加,甲醇自身缩合脱水成二甲醚副反应明显减少,同时对设备腐蚀明显减弱,反应后酸处理变得简单,产生废渣少。可见,超低硫酸催化在多方面表现出明显的优势,生产成本低,极具工业应用前景。
     论文进一步考察了超低硫酸在甲醇体系中催化转化纤维素合成乙酰丙酸甲酯的反应动力学。实验发现,一种主要的、稳定的中间产物甲基葡萄糖苷是形成,据此建立了纤维素经甲基葡萄糖苷醇解生成乙酰丙酸甲酯的一级反应动力学模型,从而获得了相关的醇解反应活化能和对H+的反应级数,可为新工艺的开发和改进提供理论依据。
     研究中另选择以卫生纸厂造纸污泥作为生物质原料,在甲醇体系中酸催化转化合成乙酰丙酸甲酯,采用响应面分析法对醇解工艺条件进行了优化。发现造纸污泥中约70%的组分能被液化,液体产物主要包括有乙酰丙酸甲酯、甲酸甲酯、2-二甲氧基甲基呋喃和甲基葡萄糖苷。乙酰丙酸甲酯最高收率可达理论值的60%以上,即每克造纸污泥大约可以得到0.29g乙酰丙酸甲酯,该转化技术可为造纸污泥的资源化利用提供新参考。
     最后初步探索了产物乙酰丙酰甲酯的分离纯化。醇解反应后,根据体系中物质沸点的不同,采用常压蒸馏结合添加正十二烷作为助蒸剂的减压蒸馏法对反应产物进行分离,实现了多组分的分离及纯化,乙酰丙酸甲酯的分离效率达95%以上,纯度约为95%。利用红外光谱、核磁共振氢谱及碳谱表征对分离产物乙酰丙酸甲酯的化学结构进行了证实,物理性质与标准品一致。
     综上所述,本论文开发了两种清洁有效的直接转化碳水化合物合成乙酰丙酸酯的新途径,尤其是超低硫酸催化,能有效地克服先前技术存在的诸多缺点,生成成本低,并提出了生物质醇解的合理反应机理和发展了其反应动力学,最后还探索了造纸污泥转化成乙酰丙酸酯的高效资源化利用以及产物的分离纯化。研究结果可为生物质基化学品乙酰丙酸酯的后续深入研究以及规模化生产提供理论指导和技术参考。
Biomass is the only renewable resources on the earth that can derive liquid fuel and finechemicals to replace the petroleum-based chemicals. Carbohydrate, is the most plentifulelement in biomass resources, can be converted into a variety of interesting bulk chemicalsvia biological or chemical pathways, which is one of the focuses in the field of biomassenergy today. Recently, the development of bioenergy concerning the synthesis of levulinateester from biomass has attracted more and more concerns. Levulinate ester is a kind ofimportant intermediates and energy chemicals having high reactivity and widespreadapplication in many fields. Up to now, there are four developed potential pathways for thesynthesis of levulinate esters from biomass conversion, including the direct acid-catalyzedalcoholysis of biomass, the esterification of levulinic acid that from hydrolysis of biomass, thealcoholysis of5-(chloromethyl)furfural derived from biomass, and the alcoholysis of furfurylalcohol that from hydrogenation of furfural. Among these, the direct acid-catalyzedalcoholysis of biomass is considered the most promising pathway for the synthesis oflevulinate ester, however, high cost production caused from low conversion efficiency, seriousside reaction and trouble post-treatment is the obstacle that restricts progress and large-scaleapplication of this technology.
     To develop green chemistry for the purpose, aiming at present research situation andmain existing scientific problems for the direct alcoholysis of biomass to levulinate ester, aseries of innovation studies were performed in this dissertation. For example, development oflow cost and green efficient catalyst system, exploration of biomass alcoholysis mechanismand kinetics, resource utilization of paper sludge for levulinate ester synthesis, separation andcharacterization of the products. Specifically, conversion of cellulose and glucose into methyllevulinate in methanol medium was selected as the representative route for detailed study.
     Firstly, some different types of solid acid catalysts were obtained from company and ownsynthesis, which were employed for the catalytic conversion of carbohydrate to methyllevulinate in methanol medium. Among these catalysts used, sulfated metal oxides (especiallySO_4~(2–)/TiO_2) were found to be a type of potential catalysts for prospective utilization, whichshowed remarkably high yield of methyl levulinate and had negligible undesired dimethyl ether formation from the dehydration of methanol. After reaction, the catalyst is recoverablefrom the resulting product mixture and reused multiple times after calcination. In the case ofSO_4~(2–)/ZrO_2–TiO_2, Zr/Ti molar ratio and calcinations temperature are two factors that stronglyaffected its surface properties and glucose reactivity in methanol medium. The resultssuggested that the moderate acid sites were responsible for the formation of methyl levulinateand the catalytic activity for methyl levulinate production from glucose almost increaseslinearly with the catalyst acid site density.
     Secondly, extremely low sulfuric acid (≤0.01mol/L) was selected as acid catalyst for theconversion of carbohydrate to methyl levulinate in methanol medium. It found that extremelylow sulfuric acid offer enough acid site for the completion of reaction. Based on the detectedcompounds, a plausible reaction pathway for the acid-catalyzed conversion of cellulose andglucose to methyl levulinate in methanol medium was proposed. Compared with the first solidacid, extremely low sulfuric acid exhibited more catalytic activity with high methyl levulinateyield and good material adaptability. Compared to the conventional dilute sulfuric acidcatalysis, an advantage of extremely low sulfuric acid catalyst system is that methyl levulinateyield is high, negligible undesired dimethyl ether formed from the side reaction for thedehydration of methanol, the equipment corrosion was slight, and less spent acid need to beaddressed after reaction. In summary, this technology can provide a great help to acceleratethe development of the industrial production of levulinate ester from carbohydrate.
     Based on the above findings, kinetic investigation on the conversion of cellulose tomethyl levulinate in methanol medium catalyzed by extremely low sulfuric acid wasperformed. During the methanolysis of cellulose, a key and stable intermediate product ofmethyl glucoside was produced, so a simplified kinetic model of first-order reaction for thegeneration of methyl levulinate from cellulose via methyl glucoside was developed, and thecorresponding activation energy and reaction order of H+were evaluated using the method ofnon-linear least squares regression analyses. The kinetic results can provide theoretic basis forthe development and improvement of novel process.
     Primary sludge from a toilet paper mill was used as biomass material to produce methyllevulinate in methanol medium, technical conditions for the acid-catalyzed methanolysis ofpaper sludge were optimized by response surface analysis (RSA). The results indicated that about seventy percent of the paper sludge was liquefied, the major liquid phase productsincluded methyl glucoside, methyl levulinate, methyl formate and2-(dimethoxymethyl)furan.Under the optimum conditions, the yield of methyl levulinate is around60%of the availablecarbohydrate on the initial substrate, corresponding to methyl levulinate yield of290g/kg ofdry paper sludge. This conversion technology can provide new reference for the resourceutilization of paper sludge.
     After the methanolysis of glucose, the products were isolated and purified by adistillation technique that combines an atmospheric distillation with a vacuum distillationwhere n-dodecane was added to help distil the heavy products. The chemical structure ofmethyl levulinate was confirmed using FTIR,1H-NMR and13C-NMR, respectively. Thepurity of isolated methyl levulinate was about95%and the separation efficiency of methyllevulinate reached95%with this method.
     In conclusion, the present study developed two novel, green and efficient strategies forthe conversion of carbohydrate to levulinate ester, especially extremely low sulfuric acidcatalyst system, which can effectively overcome many disadvantages of the conventionaltechnology with low production cost. A plausible reaction pathway for the alcoholysis ofcarbohydrate was proposed and a convictive kinetic model was developed. Efficient resourceutilization of paper sludge for the synthesis of levulinate ester and the multi-componentsseparation of products were realized. The findings of this dissertation can provide theoreticalguidance and technical reference for further research and industrial scale production ofbiomass-based levulinate ester.
引文
[1] Bozell J.J. Chemicals and Materials from Renewable Resources [M]. Washington DC:American Chemical Society,2001
    [2] Turner J.A. A realizable renewable energy future [J]. Science,1999,285(5428):687–689
    [3] Koroneos C., Spachos T., Moussiopoulos N. Exergy analysis of renewable energy sources[J]. Renewable energy,2003,28(2):295–310
    [4] Bungay H.R. Energy, the Biomass Options [M]. New York, NY: John Wiley and Sons,1981
    [5]陈曦,韩志群,孔繁华,等.生物质能源的开发与利用[J].化学进展,2007,17(7/8):1091–1097
    [6]朱锡锋.生物质热解原理与技术[M].合肥:中国科学技术大学出版社,2006
    [7]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[M].北京:化学工业出版社,2005
    [8]张建安,刘德华.生物质能源利用技术[M].北京:化学工业出版社,2009
    [9] Naik S.N., Goud V.V., Rout P.K., et al. Production of first and second generation biofuels:A comprehensive review [J]. Renewable and Sustainable Energy Reviews,2010,14(2):578–597
    [10] Obernberger I., Brunner T., B rnthaler G. Chemical properties of solidbiofuels—significance and impact [J]. Biomass and Bioenergy,2006,30(11):973–982
    [11] Alakangas E., Valtanen J., Levlin J.E. CEN technical specification for solidbiofuels—Fuel specification and classes [J]. Biomass and Bioenergy,2006,30(11):908–914
    [12] Mckendry P. Energy production from biomass (part1): overview of biomass [J].Bioresource Technology,2002,83(1):37–46
    [13] Mckendry P. Energy production from biomass (part2): conversion technologies [J].Bioresource Technology,2002,83(1):47–54
    [14] Jenkins B.M., Baxter L.L., Miles Jr. T.R., et al. Combustion properties of biomass [J].Fuel Processing Technology,1998,54(1–3):17–46
    [15] Demirbas A. Combustion characteristics of different biomass fuels [J]. Progress inEnergy and Combustion Science,2004,30(2):219–230
    [16] Nussbaumer T. Combustion and co-bombustion of biomass: Fundamentals, technologies,and primary measures for emission reduction [J]. Energy Fuels,2003,17(6):1510–1521
    [17] Mohan D., Pittman C.U., Jr., et al. Pyrolysis of wood/biomass for bio-oil: A criticalreview [J]. Energy Fuels,2006,20(3):848–889
    [18] Zhang Q., Chang J., Wang T.J., et al. Review of biomass pyrolysis oil properties andupgrading research [J]. Energy Conversion and Management,2007,48(1):87–92
    [19] Demirbas A. Competitive liquid biofuels from biomass [J]. Applied Energy,2011,88(1):17–28
    [20] Chum H.L., Overend R.P. Biomass and renewable fuels [J]. Fuel Processing Technology,2001,71(1–3):187–195
    [21] Behrendt F., Neubauer Y., Oevermann M., et al. Direct liquefaction of biomass [J].Chemical Engineering&Technology,2008,31(5):667–677
    [22] Balat M. Mechanisms of thermochemical biomass conversion processes. Part3: reactionsof liquefaction [J]. Energy Sources, Part A: Recovery, Utilization, and EnvironmentalEffects,2008,30(7):649–659
    [23] Xu C.B., Lad N. Production of heavy oils with high caloric values by direct liquefactionof woody biomass in sub/near-critical water [J]. Energy Fuels,2008,22(1):635–642
    [24] Kirubakaran V., Sivaramakrishnan V., Nalini R., et al. A review on gasification ofbiomass [J]. Renewable and Sustainable Energy Reviews,2009,13(1):179–186
    [25] Kumar A., Jones D.D., Hanna M.A. Thermochemical biomass gasification: A review ofthe current status of the technology [J]. Energies,2009,2(3):556–581
    [26] Sutton D., Kelleher B., Ross J.R.H. Review of literature on catalysts for biomassgasification [J]. Fuel Processing Technology,2001,73(3),155–173
    [27] Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and otherapplications: A review [J]. Renewable and Sustainable Energy Reviews,2010,14(1):217–232
    [28] Basha S.A., Gopal K.R., Jebaraj S. A review on biodiesel production, combustion,emissions and performance [J]. Renewable and Sustainable Energy Reviews,2009,13(6–7):1628–1634
    [29] Leung D.Y.C., Wu X., Leung M.K.H. A review on biodiesel production using catalyzedtransesterification [J]. Applied Energy,2010,87(4):1083–1095
    [30] Demirel B., Scherer P. The roles of acetotrophic and hydrogenotrophic methanogensduring anaerobic conversion of biomass to methane: a review [J]. Reviews inEnvironmental Science and Biotechnology,2008,7(2):173–190
    [31] Santosh Y., Sreekrishnan T.R., Kohli S., et al. Enhancement of biogas production fromsolid substrates using different techniques—a review [J]. Bioresource Technology,2004,95(1):1–10
    [32] Gunaseelan V.N. Anaerobic digestion of biomass for methane production: A review [J].Biomass and Bioenergy,1997,13(1–2):83–114
    [33] Wyman C.E. Ethanol from lignocellulosic biomass: Technology, economics, andopportunities [J]. Bioresource Technology,1994,50(1):3–15
    [34] Lin Y., Tanaka S. Ethanol fermentation from biomass resources: current state andprospects [J]. Applied Microbiology and Biotechnology,2006,69(6):627–642
    [35] Mielenz J.R. Ethanol production from biomass: technology and commercialization states[J]. Current Opinion in Microbiology,2001,4(3):324–329
    [36]林鹿,何北海,孙润仓,等.木质生物质转化高附加值化学品[J].化学进展,2007,19(7/8):1206–1216
    [37] Corma A., Iborra S., Velty A. Chemical Routes for the transformation of biomass intochemicals [J]. Chemical Reviews,2007,107(6):2411–2502
    [38]雷学军,罗梅健.生物质能转化技术及资源综合开发利用研究[J].中国能源,2010,32(1):22–28,46
    [39]唐勇,朱莉伟,邢杨,等.生物质化学转化产品谱系及研究进展[J].化工时刊,2011,25(6):49–55
    [40] Hall D.O. Biomass energy [J]. Energy Policy,1991,19(8):711–737
    [41] Obernberger I., Thonhofer P., Reisenhofer E. Description and evaluation of the new1,000KWelorganic rankine cycle process integrated in the biomass CHP plant in Lienz,Austria [J]. Euroheat&Power,2002,10:1–17
    [42] Thornley P., Rogers J., Huang Y. Quantification of employment from biomass powerplants [J]. Renewable Energy,2008,33(8):1922–1927
    [43] Goldemberg J., Coelho S.T., Nastari P.M., et al. Ethanol learning curve–the Brazilianexperience [J]. Biomass and Bioenergy,2004,26(3):301–304
    [44] Goldemberg J. Ethanol for a sustainable energy future [J]. Science,2007,315(5813):808–810
    [45] Sun Y., Cheng J.Y. Hydrolysis of lignocellulosic materials for ethanol production: areview [J]. Bioresource Technology,2002,83(1):1–11
    [46] Hill J., Nelson E., Tilman D., et al. Environmental, economic, and energetic costs andbenefits of biodiesel and ethanol biofuels [J]. Proceedings of the National Academy ofSciences of the United States of America,2006,103(30):11206–11210
    [47] Chen Y., Yang G.H., Sweeney S., et al. Household biogas use in rural China: A study ofopportunities and constraints [J]. Renewable and Sustainable Energy Reviews,2010,14(1):545–549
    [48] Shi X., Elmore A., Li X., et al. Using spatial information technologies to select sites forbiomass power plants: A case study in Guangdong Province, China [J]. Biomass andBioenergy,2008,32(1):35–43
    [49] Chen L.J., Xing L., Han L.J. Renewable energy from agro-residues in China: Solidbiofuels and biomass briquetting technology [J]. Renewable and Sustainable EnergyReviews,2009,13(9):2689–2695
    [50] Qiu H.G., Huang J.K., Yang J., et al. Bioethanol development in China and the potentialimpacts on its agricultural economy [J]. Applied Energy,2010,87(1):76–83
    [51] Fang X., Shen Y., Zhao J., et al. Status and prospect of lignocellulosic bioethanolproduction in China [J]. Bioresource Technology,2010,101(13):4814–4819
    [52]鲁厚芳,史国强,刘颖颖,等.生物柴油生产及性质研究进展[J].化工进展,2011,30(1):126–136
    [53] Hu Z.Y., Tan P.Q., Yan X.Y., et al. Life cycle energy, environment and economicassessment of soybean-based biodiesel as an alternative automotive fuel in China [J].Energy,2008,33(11):1654–1658
    [54] Rowley R.L., Wilding W.V., Oscarson J.L., et al. DIPPR Data Compilation of PureCompound Properties [M]. Design Institute for Physical Properties AIChE: New York,2004
    [55] Windom B.C., Lovestead T.M., Mascal M., et al. Advanced distillation curve analysis onethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel [J]. Energy Fuels,2011,25(4),1878–1890
    [56] Joshi H., Moser B.R., Toler J., et al. Ethyl levulinate: A potential bio-based diluent forbiodiesel which improves cold flow properties [J]. Biomass and Bioenergy,2011,35(7),3262–3266
    [57] Olson E.S., Kjelden M.R., Schlag A.J., et al. Levulinate esters from biomass wastes [J].ACS Symposium Series,2001,784(5):51–63
    [58] Hayes D.J. An examination of biorefining processes, catalysis and challenges [J].Catalysis Today,2009,145(1–2):138–151
    [59] Gürbüz E.I., Alonso D.M., Bond J.Q., et al. Reactive extraction of levulinate esters andconversion to γ-valerolactone for production of liquid fuels [J]. ChemSusChem,2011,4(3):357–361
    [60] Hu X., Li C.Z. Levulinic esters from the acid-catalysed reactions of sugars and alcoholsas part of a bio-refinery [J]. Green Chemistry,2011,13(7):1676–1679
    [61] Garves K. Acid catalyzed degradation of cellulose in alcohols [J]. Journal of WoodChemistry and Technology,1988,8(1):121–134
    [62] Garves K. Preparation of alkoxymethylfurfurals and alkyl lavulinates from cellulose orlignocelluloses or starches and alcohols [P]. German:3621517A1,1988.01.07
    [63] Tarabanko V.E., Chernyak M.Y., Stukalova Y.S., et al. Preparation of butyl levulinate bythe acid-catalyzed conversion of sucrose in the presence of butanol [J]. KhimiyaRastitel'nogo Syr'ya,2004,2:31–37
    [64] Bianchi D., Romano A.M. Process for the production of esters of levulinic acid frombiomass [P]. US:0160479A1,2011.06.30
    [65] Tominaga K., Mori A., Fukushima Y., et al. Mixed-acid systems for the catalyticsynthesis of methyl levulinate from cellulose [J]. Green Chemistry,2011,13(4):810–812
    [66] Saravanamurugan S., Riisager A. Solid acid catalyzed formation of ethyl levulinate andethyl glucopyranoside from mono-and disaccharides [J]. Catalysis Communications,2012,17(5):71–75
    [67] Deng W.P., Liu M., Zhang Q.H., et al. Acid-catalysed direct transformation of celluloseinto methyl glucosides in methanol at moderate temperatures [J]. ChemicalCommunications,2010,46(15):2668–2670
    [68] Rataboul F., Essayem N. Cellulose reactivity in supercritical methanol in the presence ofsolid acid catalysts: Direct synthesis of methyl-levulinate [J]. Industrial&EngineeringChemistry Research,2011,50(2):799–805
    [69] Saravanamurugan S., Nguyen Van Buu O., Riisager A. Conversion of mono-anddisaccharides to ethyl levulinate and ethyl pyranoside with sulfonic acid-functionalizedionic liquids [J]. ChemSusChem,2011,4(6):723–726
    [70]吴晓宇,吕秀阳,陈天,等.近临界甲醇中稀硫酸催化葡萄糖降解反应动力学[J].化工学报,2010,61(10):2585–2589
    [71] Mascal M., Nikitin E.B. Comment on processes for the direct conversion of cellulose orcellulosic biomass into levulinate esters [J]. ChemSusChem,2010,3(12):1349–1351
    [72] Le Van Mao R., Zhao Q., Dima G., et al. New process for the acid-catalyzed conversionof cellulosic biomass (AC3B) into alkyl levulinates and other esters using a uniqueone-pot system of reaction and product extraction [J]. Catalysis Letters,2011,141(2):271–276
    [73]彭红,刘玉环,张锦胜,等.生物质生产乙酰丙酸研究进展[J].化工进展,2009,28(12):2237–2241
    [74] Peng L.C., Lin L., Zhang J.H., et al. Catalytic conversion of cellulose to levulinic acid bymetal chlorides [J]. Molecules,2010,15(8):5258–5272
    [75] Alonso D.M., Bond J.Q., Dumesic J.A. Catalytic conversion of biomass to biofuels [J].Green Chemistry,2010,12(9):1493–1513
    [76] Van de Vyver S., Thomas J., Geboers J., et al. Catalytic production of levulinic acid fromcellulose and other biomass-derived carbohydrates with sulfonated hyperbranchedpoly(arylene oxindole)s [J]. Energy&Environmental Science,2011,4(9):3601–3610
    [77] Rackemann D.W., Doherty W.O.S. The conversion of lignocellulosics to levulinic acid[J]. Biofuels, Bioproducts and Biorefining,2011,5(2):198–214
    [78] Ogasawara Y., Itagaki S., Yamaguchi K., et al. Saccharification of natural lignocellulosesbiomass and polysaccharides by highly negatively charged heteropolyacids inconcentrated aqueous solution [J]. ChemSusChem,2011,4(4):519–525
    [79] Murat Sen S., Henao C.A., Braden D.J., et al. Catalytic conversion of lignocellulosicbiomass to fuels: Process development and technoeconomic evaluation [J].2012,67(1):57–67
    [80] Lai D.M., Deng L., Guo Q.X., et al. Hydrolysis of biomass by magnetic solid acid [J].Energy&Environmental Science,2011,4:3552–3557
    [81] Bart H.J., Reidetschl ger J., Schatka K., et al. Kinetics of esterification of levulinic acidwith n-butanol by homogeneous catalysis [J]. Industrial&Engineering ChemistryResearch,1994,33(1):21–25
    [82]何柱生,赵立芳.分子筛负载TiO2/SO42–催化合成乙酰丙酸乙酯的研究[J].化学研究与应用,2001,13(5):537–539
    [83]王树清,高崇,李亚芹.强酸性阳离子交换树脂催化合成乙酰丙酸丁酯[J].上海化工,2005,30(4):14–16
    [84] Dharne S., Bokade V.V. Esterification of levulinic acid to n-butyl levulinate overheteropolyacid supported on acid-treated clay [J]. Journal of Natural Gas Chemistry,2011,20(1):18–24
    [85] Yadav G.D., Borkar I.V. Kinetic modeling of immobilized lipase catalysis in synthesis ofn-butyl levulinate [J]. Industrial&Engineering Chemistry Research,2008,47(10):3358–3363
    [86] Lee A., Chaibakhsh N., Rahman M.B.A., et al. Optimized enzymatic synthesis oflevulinate ester in solvent-free system [J]. Industrial Crops and Products,2010,32(3):246–251
    [87] Mascal M., Nikitin E.B. Direct, high-yield conversion of cellulose into biofuel [J].Angewandte Chemie International Edition,2008,47(41):7924–7926
    [88] Mascal M., Nikitin E.B. High-yield conversion of plant biomass into the key value-addedfeedstocks5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via5-(chloromethyl)furfural [J]. Green Chemistry,2010,12(3):370–373
    [89] Rüsch gen. Klass M., Sch ne H. Direct, high-yield conversions of cellulose into biofueland platform chemicals–On the way to a sustainable biobased economy [J].ChemSusChem,2009,2(2):127–128
    [90] Mascal M., Nikitin E.B. Dramatic advancements in the saccharide to5-(chloromethyl)furfural conversion reaction [J]. ChemSusChem,2009,2(9):859–861
    [91] Brasholz M., von K nel K., Hornung C.H., et al. Highly efficient dehydration ofcarbohydrates to5-(chloromethyl)furfural (CMF),5-(hydroxymethyl)furfural (HMF) andlevulinic acid by biphasic continuous flow processing [J]. Green Chemistry,2011,13(5):1114–1117
    [92] Zeitsch K.J. The Chemistry and Technology of Furfural and its Many By-products [M].Elsevier: Amsterdam,2000
    [93] Li H.X., Zhang S.Y., Luo H.S. A Ce-promoted Ni–B amorphous alloy catalyst (Ni–Ce–B)for liquid-phase furfural hydrogenation to furfural alcohol [J]. Materials Letters,2004,58(22–23):2741–2746
    [94] Hao X.Y., Zhou W., Wang J.W., et al. Copper-containing MCM-48catalyst for theselective hydrogenation of furfural to furfuryl alcohol [J]. Chinese Journal of Catalysis,2005,26(11):935–937
    [95] Guigo N., Mija A., Vincent L, et al. Chemorheological analysis and model-free kineticsof acid catalysed furfuryl alcohol polymerization [J]. Physical Chemistry ChemicalPhysics,2007,9(39):5359–5366
    [96] Bertarione S., Bonino F., Cesano F., et al. Micro-FTIR and micro-raman studies of acarbon film prepared from furfuryl alcohol polymerization [J]. The Journal of PhysicalChemistry B,2009,113(31):10571–10574
    [97] Khusnutdinov R.I., Baiguzina A.R., Smirnov A.A., et al. Furfuryl alcohol in synthesis oflevulinic acid esters and difurylmethane with Fe and Rh complexes [J]. Russian Journalof Applied Chemistry,2007,80(10):1687–1690
    [98] Lange J.P., van de Graaf W.D., Haan R.J. Conversion of furfuryl alcohol into ethyllevulinate using solid acid catalysts [J]. ChemSusChem2009,2(5):437–441
    [99] Zhang Z.H., Dong K., Zhao Z.B. Efficient conversion of furfuryl alcohol into alkyllevulinates catalyzed by an organic–inorganic hybrid solid acid catalyst [J].ChemSusChem2011,4(1):112–118
    [100] Zhou C.H., Xia X., Lin C.X., et al. Catalytic conversion of lignocellulosic biomass tofine chemicals and fuels [J]. Chemical Society Reviews,2011,40(11):5588–5617
    [101] Vispute T.P., Zhang H.Y., Sanna A., et al. Renewable chemical commodity feedstocksfrom integrated catalytic processing of pyrolysis oils [J]. Science,2010,330(6008):1222–1227
    [102] Holm M.S., Saravanamurugan S., Taarning E. Conversion of sugars to lactic acidderivatives using heterogeneous zeotype catalysts [J]. Science,2010,328(5978):602–605
    [103] Shu Q., Gao J.X., Nawaz Z., et al. Synthesis of biodiesel from waste vegetable oil withlarge amounts of free fatty acids using a carbon-based solid acid catalyst [J]. AppliedEnergy,2010,87(8):2589–2596
    [104] Moradi G.R., Yaripour F., Valeh–Sheyda P. Catalytic dehydration of methanol todimethyl ether over mordenite catalysts [J]. Fuel Processing Technology,2010,91(5):461–468
    [105] Busca G. Acid catalysts in industrial hydrocarbon chemistry [J]. Chemical Reviews,2007,107(11):5366–5410
    [106] Tyagi B., Mishra M.K., Jasra R.V. Synthesis of7-substituted4-methyl coumarins byPechmann reaction using nanocrystalline sulfated-zirconia [J]. Journal of MolecularCatalysis A: Chemical,2007,276(1–2):47–56
    [107] Yu G.X., Zhou X.L., Li C.L., et al. Esterification over rare earth oxide and aluminapromoted SO42–/ZrO2[J]. Catalysis Today,2009,148(1–2):169–173
    [108] Takagaki A., Tagusagawa C., Hayashi S., et al. Nanosheets as highly active solid acidcatalysts for green chemical synthesis [J]. Energy&Environmental Science,2010,3(1):82–93
    [109] Rinaldi R., Schüth F. Design of solid catalysts for the conversion of biomass [J]. Energy&Environmental Science,2009,2(6):610–626
    [110] Klug H.P., Alexander L.E. X-ray diffraction procedures for polycrystalline andamorphous materials [M].2nd ed. New York: Wiley,1974
    [111] Carr R.T., Neurock M., Iglesia E. Catalytic consequences of acid strength in theconversion of methanol to dimethyl ether [J]. Journal of Catalysis,2011,278(1):78–93
    [112] Ghiaci M., Abbaspur A., Kalbasi R.J. Vapor-phase Beckmann rearrangement ofcyclohexanone oxime over H3PO4/ZrO2–TiO2[J]. Applied Catalysis A: General,2005,287(1):83–88
    [113] Li K.T., Wang C.K., Wang I., et al. Esterification of lactic acid over TiO2–ZrO2catalysts[J]. Applied Catalysis A: General,2011,392(1–2):180–183
    [114] Chareonlimkun A., Champreda V., Shotipruk A., et al. Catalytic conversion ofsugarcane bagasse, rice husk and corncob in the presence of TiO2, ZrO2andmixed-oxide TiO2–ZrO2under hot compressed water (HCW) condition [J]. BioresourceTechnology,2010,101(11):4179–4186
    [115] Yan H.P., Yang Y., Tong D.M., et al. Catalytic conversion of glucose to5-hydroxymethylfurfural over SO42–/ZrO2and SO42–/ZrO2–Al2O3solid acid catalysts[J]. Catalysis Communications,2009,10(11):1558–1563
    [116] Lu C.M., Lin Y.M., Wang I. Naphthalene hydrogenation over Pt/TiO2–ZrO2and thebehavior of strong metal-support interaction (SMSI)[J]. Applied Catalysis A: General,2000,198(1–2):223–234
    [117] Kim J.Y., Kim C.S., Chang H.K., et al. Effect of ZrO2addition on phase stability andphotocatalytic activity of ZrO2/TiO2nanoparticles [J]. Advanced Powder Technology,2010,21(2):141–144
    [118] Mercera P.D.L., Ommen van J.G., Doesburg E.B.M., et al. Zirconia as a support forcatalysts: Evolution of the texture and structure on calcinations in air[J]. AppliedCatalysis,1990,57(1):127–148
    [119] Kitiyanan A., Sakulkhaemaruethai S., Suzuki Y., et al. Structural and photovoltaicproperties of binary TiO2–ZrO2oxides system prepared by sol-gel method [J].Composites Science and Technology,2006,66(10):1259–1265
    [120] Zou H., Lin Y.S. Structural and surface chemical properties of sol-gel derivedTiO2–ZrO2oxides [J]. Applied Catalysis A: General,2004,265(1):35–42
    [121] Larsen G., Lotero E., Petkovic L.M., et al. Alcohol dehydration reactions overtungstated zirconia catalysts [J]. Journal of Catalysis,1997,169(1):67–75
    [122] Parida K.M., Pattnayak P.K. Studies on PO43-/ZrO2. I. Effect of H3PO4on textural andacidic properties of ZrO2[J]. Journal of Colloid and Interface Science,1996,182(2):381–387
    [123] Pae Y.I., Lee S.H., Sohn J.R. Correlation between acidic properties of nickel sulfatesupported on TiO2–ZrO2and catalytic activity for ethylene dimerization [J]. CatalysisLetters,2005,99(3–4):241–248
    [124] Fling J., Wang L. Dehydrocyclization of C6-C8n-paraffins to aromatics over TiO2–ZrO2catalysts [J]. Journal of Catalysis,1991,130(2):577–587
    [125] Sohn J.R., Lee S.H. Acidic properties of nickel sulfate supported on TiO2–ZrO2andcatalytic activity for acid catalysis [J]. Applied Catalysis A: General,2004,266(1):89–97
    [126] Tomishige K., Ikeda Y., Sakaihori T., et al. Catalytic properties and structure of zirconiacatalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide[J]. Journal of Catalysis,2000,192(2):355–362
    [127] Corma A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions [J].Chemical Reviews,1995,95(3):559–614
    [128] Kim J.S., Lee Y.Y., Torget R.W. Cellulose hydrolysis under extremely low sulfuric acidand high-temperature conditions [J]. Applied Biochemistry and Biotechnology,2001,92(1–3):331–340
    [129] Zhuang X.S., Qi W., Yuan Z.H., et al. An investigation of cellulose hydrolysis underextremely low acids [J]. Journal of Biobased Materials and Bioenergy,2010,4(1):35–39
    [130] Ojumu T.V., AttahDaniel B.E., Betiku E., et al. Auto-hydrolysis of lignocellulosicsunder extremely low sulphuric acid and high temperature conditions in batch reactor [J].Biotechnology and Bioprocess Engineering,2003,8(5):291–293
    [131] Mok W.S., Antal Jr. M.J., Varhegyi G. Productive and parasitic pathways in diluteacid-catalyzed hydrolysis of cellulose [J]. Industrial&Engineering Chemistry Research,1992,31(1):94–100
    [132] Wang X.M., Yang H.Y., Wang F.H. An investigation of benzimidazole derivative ascorrosion inhibitor for mild steel in different concentration HCl solutions [J]. CorrosionScience,2011,53(1):113–121
    [133] Pourgashti M.H., Marzbanrad E., Ahmadi E. Corrosion behavior ofZr41.2Ti13.8Ni10Cu12.5Be22.5bulk metallic glass in various aqueous solutions [J].Materials and Design,2010,31(5):2676–2679
    [134] Zhao H.B., Holladay J.E., Brown H., et al. Metal chlorides in ionic liquid solventsconvert sugars to5-hydroxymethylfurfural [J]. Science,2007,316(5831):1597–1600
    [135] Román-Leshkov Y., Chheda J.N., Dumesic J.A. Phase modifiers promote efficientproduction of hydroxymethylfurfural from fructose [J]. Science,2006,312(5782):1933–1937
    [136] Su Y., Brown H.M., Huang X.W., et al. Single-step conversion of cellulose to5-hydroxymethylfurfural (HMF), a versatile platform chemical [J]. Applied Catalysis A:General,2009,361(1–2):117–122
    [137] Girisuta B., Danon B., Manurung R., et al. Experimental and kinetic modelling studieson the acid-catalysed hydrolysis of the water hyacinth plant to levulinic acid [J].Bioresource Technology,2008,99(17):8367–8375
    [138] Girisuta B., Janssen L.P.B.M., Heeres H.J. Kinetic study on the acid-catalyzedhydrolysis of cellulose to levulinic acid [J]. Industrial&Engineering ChemistryResearch,2007,46(6):1696–1708
    [139] Girisuta B., Janssen L.P.B.M., Heeres H.J. Green Chemicals: A kinetic study on theconversion of glucose to levulinic acid [J]. Chemical Engineering Research and Design,2006,84(5):339–349
    [140] Girisuta B., Janssen L.P.B.M., Heeres H.J. A kinetic study on the decomposition of5-hydroxymethylfurfural into levulinic acid [J]. Green Chemistry,2006,8:701–709
    [141] Chang C., Ma X.J., Cen P.L. Kinetics of levulinic acid formation from glucosedecomposition at high temperature [J]. Chinese Journal of Chemical Engineering,2006,14(5):708–712
    [142] Bicker M., Kaiser D., Ott L., et al. Dehydration of D-fructose to hydroxymethylfurfuralin sub-and supercritical fluids [J]. The Journal of Supercritical Fluids,2005,36(2):118–126
    [143]彭新文,吕秀阳.5-羟甲基糠醛在稀硫酸催化下降解反应动力学[J].化工学报,2008,59(5):1150–1155
    [144]彭新文,吕秀阳.葡萄糖在稀硫酸催化下的降解反应动力学[J].化学反应工程与工艺,2008,24(6):523–528
    [145] Mahmood T., Elliott A. A review of secondary sludge reduction technologies for thepulp and paper Industry [J]. Water Research,2006,40(11):2093–2112
    [146] Marques S., Alves L., Roseiro J.C., et al. Conversion of recycled paper sludge toethanol by SHF and SSF using Pichia stipitis [J]. Biomass and Bioenergy,2008,32(5):400–406
    [147] Yamashita Y., Kurosumi A., Sasaki C., et al. Ethanol production from paper sludge byimmobilized Zymomonas mobilis [J]. Biochemical Engineering Journal,2008,42(3):314–319
    [148] Fan Z.L., Lynd L.R. Conversion of paper sludge to ethanol. I: Impact of feedingfrequency and mixing energy characterization [J]. Bioprocess and BiosystemsEngineering,2007,30(1):27–34
    [149] Fan Z.L., Lynd L.R. Conversion of paper sludge to ethanol. II: Process design andeconomic analysis [J]. Bioprocess and Biosystems Engineering,2007,30(1):35–45
    [150] Fan Z.L., South C., Lyford K., et al. Conversion of paper sludge to ethanol in asemicontinuous solids–fed reactor [J]. Bioprocess and Biosystems Engineering,2003,26(2):93–101
    [151] Browning B.L. Methods of Wood Chemistry[M]. New York: Wiley,1967
    [152] Devulapelli V.G., Weng H.S. Synthesis of cinnamyl acetate by solid–liquid phasetransfer catalysis: Kinetic study with a batch reactor [J]. Catalysis Communications,2009,10(13):1638–1642
    [153] Springer E.L., Harris J.F. Procedures for determining the neutralizing capacity of woodduring hydrolysis with mineral acid solutions [J]. Industrial&Engineering ChemistryProduct Research Development,1985,24(3):485–489
    [154]金强,张红漫,严立石,等.生物质半纤维素稀酸水解反应[J].化学进展,2010,22(4):654–662
    [155] Maloney M.T., Chapman T.W., Baker A.J. Dilute acid hydrolysis of paper birch:Kinetics studies of xylan and acetyl–group hydrolysis [J]. Biotechnology andBioengineering,1985,27(3):355–361
    [156] Hu X., Lievens C., Larcher A., et al. Reaction pathways of glucose during esterification:Effects of reaction parameters on the formation of humin type polymers [J].Bioresource Technology,2011,102(21):10104–10113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700