用户名: 密码: 验证码:
趋化因子SDF-1和MCP-1在心肌梗死后骨髓间质干细胞归巢中作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:MI大鼠心肌组织中SDF-1与MCP-1的动态变化及意义
     目的:
     有研究提示移植后的骨髓干细胞可以植入到心肌梗死周围区域中,而细胞因子单核细胞趋化蛋白-1(monocyte chemotactic protein 1, MCP-1)及基质细胞衍生因子-1(stromal cell-derived factor 1, SDF-1)可能对干细胞具有趋化作用。移植干细胞植入到心肌梗死和/或周围区域的现象是否与心肌梗死后细胞因子水平和分布存在联系尚不十分明确。本研究结扎大鼠冠状动脉左前降支建立心肌梗死(myocardial infarction, MI)模型,探讨MI后心肌组织中不同部位和不同时段细胞因子MCP-1及SDF-1表达的动态变化及其意义。
     方法:
     以原位杂交及免疫组化方法检测大鼠心肌梗死前及梗死后1、2、4、7、14、28、56天梗死中心区域、梗死周围区域及无梗死正常区域SDF-1、MCP-1 mRNA及其蛋白的表达情况;同时建立单纯开胸假手术对照组,于术后1、2、4、7、14、28、56d以同样方法检测SDF-1、MCP-1 mRNA及蛋白的表达情况。
     结果:
     心肌梗死大鼠中:梗死中心区域MCP-1于心肌梗死后第1d升高,第2d达峰值,至第14d渐降至正常水平;梗死周围区域MCP-1心肌梗死后第1天升高,7天达峰值,至第28天恢复正常水平;梗死中心区域及周围区域SDF-1均于心肌梗死后第1天升高并达峰值,至第14天渐恢复至正常水平;无梗死正常区域中MCP-1、SDF-1的表达在正常水平,且不随时间改变而改变。假手术非梗死组大鼠心肌中MCP-1、SDF-1的表达在正常水平,且不随时间改变而改变。MCP-1、SDF-1 mRNA与蛋白的表达变化趋势相一致。
     结论:
     心肌梗死后早期梗死中心及周围区域SDF-1、MCP-1表达水平升高;根据梗死中心区和周围区域细胞因子SDF-1、MCP-1表达的动态变化情况选择治疗时间窗,可能有助于趋化更多的干细胞到达损伤部位,提高治疗效果,可能对心肌梗死后组织修复产生影响。
     第二部分:SDF-1与MCP-1对骨髓间质干细胞归巢到急性梗死心肌中作用的研究
     目的:
     心肌梗死后早期,SDF-1、MCP-1表达迅速升高,并对MSCs的归巢起到了重要的促进作用。但内源性的SDF-1、MCP-1表达时段短、表达水平低,与心肌梗死后超急性期炎症反应的时间窗重叠,可使趋化作用受到限制。本研究通过外源性的SDF-1、MCP-1进行干预,探讨外源性SDF-1与MCP-1在骨髓间质干细胞归巢到急性梗死心肌中的作用。
     方法:
     细胞培养采用健康F344大鼠麻醉后取双下肢股骨后处死,股骨移入超净台内,咬骨钳咬碎股骨,以IMDM培养基冲洗髓腔获取骨髓干细胞。采用全骨髓培养法培养扩增,利用MSCs贴附于塑料培养皿的特点,在传代增殖过程中通过换液逐渐去除造血系细胞等杂质细胞。经21~28天培养,约传代3~4代的细胞即可用于移植。细胞移植前予以含10μmol/L BrdU的培养基孵育24小时进行细胞标记。
     近交系F344大鼠随机分为5组,其中4组为心肌梗死大鼠,1组为正常大鼠。大鼠心肌梗死模型建立前行超声心动图检查心功能(left ventricular ejection fraction, LVEF; left ventricular fractional shortening, LVFS)。心肌梗死大鼠于梗死4天后行超声心动图检查心功能,然后3组梗死大鼠在心肌梗死区及其周围注射外源性MCP-1、SDF-1、MCP-1+SDF-1进行干预,剩余1组梗死大鼠于相应部位注射等量的生理盐水进行对照,正常大鼠也于相应部位注射等量的生理盐水进行对照。随后所有大鼠经尾静脉注射BrdU标记的MSCs(5×106),MSCs移植3天后处死一半大鼠检测心肌梗死区MSCs的归巢量,28天后剩余一半大鼠检测大鼠心功能状况后处死,取出心脏检测心肌梗死区及其周围血管内皮生长因子(vascular endothelial growth factor,VEGF)的表达和新生血管密度。
     结果:
     心肌梗死组MSCs归巢量大于正常大鼠对照组。MCP-1、SDF-1、MCP-1+SDF-1处理组大鼠心肌梗死区MSCs归巢量、新生毛细血管密度明显优于对照组。MCP-1+SDF-1处理组大鼠心肌梗死区MSCs归巢量及新生毛细血管密度大于MCP-1、SDF-1处理组,但三组间MSCs移植后心功能水平无明显统计学差异。
     结论:
     SDF-1、MCP-1能够促进MSCs归巢并改善心功能,促进毛细血管增生可能为其改善心功能的机制之一;SDF-1、MCP-1联合使用较单用更有效,但尚未达到两者的相加作用。其原因可能与炎症损伤干细胞、受体重叠、内陷等有关,尚需进一步研究明确其具体原因;以获得更佳的治疗效果。
     第三部分:SDF-1、MCP-1对骨髓间质干细胞归巢剂量-效应关系的研究
     目的:
     外源性细胞因子SDF-1和MCP-1可以促进MSCs归巢,但归巢量与细胞因子的水平是否存在联系还有待探讨。本研究探讨SDF-1、MCP-1在骨髓间质干细胞归巢到梗死心肌中的剂量-效应关系及二者之间是否存在协同效应。
     方法:
     大鼠于心肌梗死模型建立前、MSCs移植前及移植后28天行超声心动图检查心功能(LVEF; LVFS)。大鼠共分为12组,5组大鼠心肌梗死56天后于心肌梗死区及其周围分别均匀注射不同浓度(50ng/ml、100ng/ml、200ng/ml、400ng/ml、800ng/ml)的MCP-1 50μl,5组大鼠心肌梗死56天后于心肌梗死区及其周围分别均匀注射不同浓度(50ng/ml、100ng/ml、200ng/ml、400ng/ml、800ng/ml)的SDF-1 50μl,1组大鼠心肌梗死56天后于心肌梗死区及其周围均匀注射200ng/ml MCP-1+200ng/ml SDF-1各50μl,1组大鼠心肌梗死56天后于心肌梗死区及其周围均匀注射等量的生理盐水进行对照。然后各组大鼠经尾静脉注射BrdU标记的MSCs(5×106),MSCs移植3天后各组处死一半大鼠检测梗死区及其周围MSCs的归巢量,28天后检测剩余一半大鼠心功能状况、以及梗死区及其周围VEGF的表达及新生血管密度。
     结果:
     MCP-1、SDF-1注射组MSCs归巢量大于生理盐水对照组;且随着MCP-1、SDF-1剂量的增加,MSCs归巢量亦相应增加,呈线性关系。VEGF的表达及新生血管密度与MSCs归巢量相一致。SDF-1与MCP-1联合注射组MSCs归巢量、新生毛细血管数高于同剂量的单纯SDF-1或MCP-1注射组。各组大鼠心功能较MSCs移植前改善,但各组之间无显著差异。
     结论:
     心肌梗死56天后无明显MSCs自发归巢。SDF-1、MCP-1能够促进MSCs归巢,归巢的MSCs可能通过分泌VEGF而促进血管新生;而且MSCs的归巢量与SDF-1、MCP-1的剂量呈线性剂量-效应关系。但对改善心功能无明显作用,可能与大鼠梗死后干预时间过晚有关。SDF-1、MCP-1联合使用较单用更有效,但尚未达到两者的相加作用。
     第四部分:MCP-1与SDF-1在G-CSF外周动员自身骨髓干细胞归巢中作用的研究
     目的:
     G-CSF能够动员骨髓干细胞进入外周血液循环,但外源性SDF-1、MCP-1对G-CSF动员释放的骨髓干细胞的归巢是否有促进作用还不十分清楚。本部分研究探讨细胞因子MCP-1与SDF-1在G-CSF动员自身骨髓干细胞归巢治疗缺血性心脏病中的作用。
     方法:
     心肌梗死模型制作成功8周后,所有大鼠给予皮下注射瑞白(重组人粒细胞集落刺激因子,rhG-CSF)20μg·kg-1·d-1,共5天。随后予以超声心动图检查心功能(EF、FS),再将大鼠随机分为3组,每组15只,一组为SDF-1注射组,一组为MCP-1注射组,一组为生理盐水对照组。SDF-1及MCP-1注射组大鼠于心肌梗死区及其周围5个区域均匀注射SDF-1及MCP-1 400ng/ml各10μl,对照组于相应区域注射生理盐水各10μl。接着每只大鼠腹腔注射BrdU 50mg·kg-1·d-1,共15天。细胞因子注射4周(心肌梗死后12周+5天)以后超声心动图检查心功能后戊巴比妥钠(50mg/kg)腹腔注射麻醉大鼠后,经主动脉注入质量分数为10%的氯化钾2ml,使心脏停搏于舒张期。随即开胸取出大鼠心脏,进行CD45、CD90、BrdU、VEGF及VIII因子免疫组化染色。
     结果:
     MCP-1、SDF-1注射组与生理盐水对照组相比,梗死区域BrdU、CD45、CD90阳性细胞明显增多,VEGF表达及毛细血管数明显增加。MCP-1、SDF-1注射组中,归巢的CD45+细胞多于CD90+细胞。但各组心功能无明显统计学差异。
     结论:
     MCP-1、SDF-1能有效促进G-CSF外周动员的骨髓干细胞归巢到心肌梗死区域,归巢的骨髓干细胞可能促进血管新生。
Part I: Expression and significance of SDF-1 and MCP-1 after myocardial infarction
     Objective:
     To investigate the dynamic changes of the expression of SDF-1 and MCP-1 in and around myocardial infarct site.
     Methods:
     Protein and mRNA of MCP-1 and SDF-1 expression were measured by immunohistochemistry and in situ hybridization in mid-infarct zone, peri-infarct zone and non-MI normal zone in infarcted hearts or sham operated hearts at 1, 2, 4, 7, 14, 28 and 56 days post operation.
     Results:
     MCP-1 expression increased at the first day, peaked at 2nd day and decreased thereafter post MI in the center of myocardial infarct site, peaked at 7th and decresed thereafter post MI in peri-myocardial infarct site. SDF-1 expression increased and peaked at the first day and decreased thereafter post MI in the center of myocardial infarct site and peri-myocardial infarct site. However, both MCP-1 and SDF-1 remained unchanged away from myocardial site and in sham operated hearts.
     Conclusions:
     Myocardial MCP-1 and SDF-1 expression were increased in mid- and peri-infarct site only in the early phase post MI. It may affect the repair of infarct myocardium.
     Part II: The effects of SDF-1 & MCP-1 on mesenchymal stem cells homing to myocardial infarct site
     Objective:
     In the first part, we found that the expression of SDF-1 and MCP-1 increase in the early phase post MI, and the expression is not the same in different site of the myocardium.
     In this part, we are to investigate the effects of SDF-1 and MCP-1 on MSCs homing to myocardial infarct site.
     Methods:
     MSCs from donor rat were cultured and labeled with BrdU. MCP-1, SDF-1, MCP-1+SDF-1 or saline was injected into mid- and peri-infarct myocardium 4 days after MI. Then, a total of 5×106 cells in 2.5 mL of PBS or equal volume PBS alone were injected through the tail vein. The number of the labeled MSCs in the infarcted hearts was counted 3 days post injection. Cardiac function, expression of vascular endothelial growth factor (VEGF) and blood vessel density were assessed 28 days post injection. MI and non-MI saline injection groups were established as control.
     Results:
     The MSCs enrichment in the host hearts were more abundant in the MI groups than that in the non-MI group; MCP-1, SDF-1, MCP-1+SDF-1 injected group than control groups. Cardiac function improvement and blood vessel density in MCP-1, SDF-1, MCP-1+SDF-1 injected groups were more than control groups. MSCs enrichment and blood vessel density in MCP-1+SDF-1 injected group were more than MCP-1, SDF-1 injected group; but cardiac function had no difference among the three groups.
     Conclusion:
     SDF-1 and MCP-1 may enhance MSCs homing to injured heart and improved cardiac function by promoting neovascularization. The homing enhancement effect of SDF-1 plus MCP-1 is better than SDF-1 or MCP-1 respectively.
     Part III: The dose-effect relation of SDF-1 & MCP-1 on MSCs homing to myocardial infarct site
     Objective:
     To investigate the dose-effect relation of SDF-1 and MCP-1 on MSCs homing to myocardial infarct site.
     Methods:
     MSCs from donor rat were cultured and labeled with BrdU. Fifty-six days after MI, different dose of MCP-1, SDF-1 or MCP-1+SDF-1 was injected into mid- and peri-infarcted zone evenly. Then, a total of 5×106 BrdU labeled MSCs in 2.5 mL of PBS were injected through the tail vein. The number of the labeled MSCs in the infarcted hearts was counted 3 days post injection. Cardiac function, expression of VEGF and blood vessel density were assessed 28 days post injection. Saline injection group was established as control.
     Results:
     The MSCs enrichment in the host hearts were more abundant in the MCP-1, SDF-1 injected groups than that in saline injected group, and the MSCs enrichment increased dose-dependently with the increase of the dose of MCP-1, SDF-1. Expression of VEGF and blood vessel density accorded with the MSCs enrichment. The MSCs enrichment and blood vessel density in MCP-1+SDF-1 injected group were more than those in MCP-1, SDF-1 injected groups. Cardiac function was improved more than 28 days before, but no difference was found among all the groups.
     Conclusions:
     There is no significantly autologous MSCs homing 56d after MI. SDF-1 and MCP-1 may enhance MSCs homing to injured heart dose-dependently. Homed MSCs may secrete VEGF and promote neovascularization. But homed MSCs fail to improve cardiac function, it may due to late therapy. The homing enhancement effect of SDF-1 plus MCP-1 is better than SDF-1 or MCP-1 respectively.
     Part IV: The effects of SDF-1 & MCP-1 on autologous bone marrow stem cells mobilized by G-CSF homing to myocardial infarct site
     Objective:
     To investigate the effects of SDF-1 and MCP-1 on autologous bone marrow stem cells mobilized by G-CSF homing to myocardial infarct site.
     Methods:
     Fifty-six days after MI, 20μg·kg-1·d-1 recombinant human G-CSF was injected hypodermically in the rats for 5 days. Then 50μl MCP-1, SDF-1 or saline was injected into peri-infarct myocardium evenly. BrdU was injected peritoneally 50mg/Kg per day for 15days. 13 days later, the rats were sacrificed and the hearts were harvested for BrdU、CD45、CD90、VEGF、VIII detection. Cardiac function was assessed by Ultrasonic Cardiography before MCP-1, SDF-1 injection and rats sacrificed.
     Results:
     BrdU+, CD45+, CD90+ cell enrichment in the host hearts, expression of VEGF and blood vessel density were more in MCP-1, SDF-1 injected groups than saline injected group. CD45+ cell enrichment was more than that of CD90+ cell in MCP-1, SDF-1 injected groups. Cardiac function had no difference among all the three groups.
     Conclusions:
     SDF-1 and MCP-1 may enhance autologous bone marrow stem cells mobilized by G-CSF homing to injured heart. Homed bone marrow stem cells may secrete VEGF and promote neovascularization. But homed bone marrow stem cells fail to improve cardiac function, it may due to late therapy.
引文
1. Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in end-stage cardiac failure in humans. Proc Nat Acad Sci USA. 1998. 95:8801–8805.
    2. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001. 344: 1750-1757.
    3. Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med. 2002. 346: 5-15.
    4. Oh H, Bradfute SD, Gallardo TD, et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl Acad. Sci. USA. 2003.100:12313-12318.
    5. Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003.114:763-776.
    6. Ma J, Ge J, Zhang S, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005. 100: 217-223.
    7. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003.362:697-703.
    8. Lu L, Zhang JQ, Ramiras FJ, et al. Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue. Biochem Biophys Res Commun. 2004. 320: 907-913.
    9. Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 2002. 30: 831-836.
    1. Lu L, Zhang JQ, Ramiras FJ, et al. Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue. Biochem Biophys Res Commun. 2004. 320: 907-913.
    2. Ren G., Dewald O, Frangogiannis NG. Inflammatory mechanisms in myocardial infarction. Curr Drug Targets - Inflammation & Allergy. 2003. 2: 242-256.
    3. Tarzami ST, Cheng R, Miao W, et al. Chemokine Expression in Myocardial Ischemia: MIP-2 Dependent MCP-1 Expression Protects Cardiomyocytes from Cell Death. J Mol Cell Cardiol. 2002. 34: 209-221.
    4. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003.362:697-703.
    5. Ma J, Ge J, Zhang S, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005. 100:217-223.
    6. Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 2002. 30: 831-836.
    7. Shyu KG, Wang MT, Wang BW, et al. Intramyocardial injection of naked DNA encoding HIF-1alpha/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc Res. 2002. 54: 576-583.
    8. Matsusaka T, Hasebe N, Jin YT, et al. Magnesium reduces myocardial infarct size via enhancement of adenosine mechanism in rabbits. Cardiovasc Res. 2002. 54: 568-575.
    9. Domenech R, Macho P, Schwarze H, et al. Exercise induces early and late myocardial preconditioning in dogs. Cardiovasc Res. 2002. 55: 561-566.
    10. Lewis, CW, Atkins, BZ, Hutcheson, KA, et al. A loadindependent in vivo model for evaluating therapeutic interventions in injured myocardium. Am. J. Physiol. 1998. 275: H1834-1844.
    11. van den Bos EJ, Thompson RB, Wagner A, Functional assessment of myoblast transplantation for cardiac repair with magnetic resonance imaging. Eur J Heart Fail. 2005. 7:435-443.
    12. Basso C, Thiene G, Della Barbera M, et al. Endothelin A-receptor antagonist administration immediately after experimental myocardial infarction with reperfusion does not affect scar healing in dogs. Cardiovasc Res. 2002. 55: 113-121.
    13. Spears JR, Henney C, Prcevski P, Aqueous oxygen hyperbaric reperfusion in a porcine model of myocardial infarction. J Invasive Cardiol. 2002. 14: 160-166.
    14. Caligiuri G, Levy B, Pernow J,et al. Myocardial infarction mediated by endothelin receptor signaling in hypercholesterolemic mice. Proc Natl Acad Sci USA. 1999. 96: 6920-6924.
    15. Kuhlencordt PJ, Gyurko R, Han F,et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001. 04: 48-454.
    16. Braun A, Trigatti BL, Post MJ, el a1. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ Res. 2002. 90: 270-276.
    17. Dewald O, Ren G, Duerr GD, et al. Of mice and dogs: species-specific differences in the inflammatory response following myocardial infarction. Am J Pathol. 2004. 164:665-677.
    18. Yao L, Setiadi H, Xia L, et al. Divergent inducible expression of P-selectin and E-selectin in mice and primates. Blood. 1999. 94: 3820-3828.
    19. Frangogiannis NG, Smith CW, Entman M L. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002. 53: 31-47.
    20. Kumar AG, Ballantyne CM, Michael LH, et al. Induction of Monocyte Chemoattractant Protein-1 in the Small Veins of the Ischemic and Reperfused Canine Myocardium. Circulation. 1997. 95:693-700.
    21. Hohensinner PJ, Kaun C, Rychli K, et al. Monocyte chemoattractant protein (MCP-1) is expressed in human cardiac cells and is di.erentially regulated by in.ammatory mediators and hypoxia. FEBS Letters. 2006. 580: 3532-3538.
    22. Salcedo R, Ponce ML, Young HA, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000. 96: 34-40.
    23. Heil M, Ziegelhoeffer T, Wagner S, et al. Collateral artery growth (arteriogenesis) after experimental arterial occlusion is impaired in mice lacking CC-chemokine receptor-2. Circ Res. 2004. 94: 671-677.
    24. Dewald O, Zymek P, Winkelmann K, et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005. 96: 881-889.
    25. Matsumori A, Furukawa Y, Hashimoto T, et al. Plasma levels of the monocyte chemotactic and activating factor/monocyte chemoattractant protein-1 are elevated in patients with acute myocardial infarction. J Mol Cell Cardiol. 1997. 29: 419-423.
    26. Imai K, Kobayashi M, Wang J, et al. Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol. 1999. 106: 905-911.
    27. Benboubker L, Watier H, Carion A, et a1. Association between the SDF1-3'A allele and high levels of CD34(+) progenitor cells mobilized into peripheral blood in humans. Br J Haematol. 2001. 113: 247-250.
    28. Hattori K, Heissig B, Tashiro K, et a1. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood. 2001. 97: 3354-3360.
    29. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1αplays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004.110:3300-3305.
    1. Lu L, Zhang JQ, Ramiras FJ, et al. Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue. Biochem Biophys Res Commun. 2004. 320: 907-913.
    2. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003.362:697-703.
    3. Ma J, Ge J, Zhang S, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005. 100: 217-223.
    4. Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 2002. 30: 831-836.
    5. Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003. 34: 461-475.
    6. Orlic D,Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001. 410: 701-705.
    7. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Clin Invest. 2001. 107: 1395-1402.
    8. Wagers AJ, Sherwood RI, Christensen JL, et al. Little evidence for developmental plasticity of adult hematopoietic stem cells. Science. 2002. 297: 2256-2259.
    9. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004. 428:664-668.
    10. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004. 428: 668-763.
    11. Wexler SA, Donaldson C, Denning-Kendall P, et a1. Adult bone marrow is a rich source of human mesenchyma1stem cells but umbilical cord and mobilized adult blood are not. Br JHaemato1. 2003. 121: 368-374.
    12. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cellsderived from adult marrow. Nature. 2002. 418: 41-49.
    13. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997. 275: 964-967.
    14. Hristov M, Erl W, Weber PC. Endothelial progenitor cell: isolation and characterization. Trends Cardiovasu Med. 2003. 13: 201-206.
    15. Haas SJ, Bauer P, Rolfs A, et al. Immunocytochemical characterization of in vitro PKH26-labelled and intracerebrally transplanted neonatal cells. Acta Histochem. 2000. 102: 273-280.
    16. Krishan A,Dandekar PD.DAPI fluorescence in nuclei isolated from tumors. J Histochem Cytochem. 2005. 53:1033-1036.
    17. Bian J, Nazor KE, Angers R, et a1.GFP-tagged PrP supports compromised prion replication in transgenic mice. Bioehem Biophys Res Commun. 2006. 340:894-900.
    18. Greaves JM, Russo SS, Azmitia EC. Gender-specific 5-HT1A receptor changes in BrdU nuclear labeling patterns in neonatal dentate gyrus.Brain Res Dev Brain Res. 2005. 157: 65-73.
    19. Arbab AS,Wilson LB,Ashari P,et a1.A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO)nanoparticles:implications for cellular magnetic resonance imaging. NMR Biomed. 2005. 18: 383-389.
    20. Yao M, Dieterle T, Hale SL, et a1.Long-term outcome of fetal cell transplantation on postinfarction ventricular remodeling and function. J Mol Cell Cardiol. 2003. 35: 661-670.
    21. Strauer BE, Kornowsky R. Stem cell therapy in perspective. Circulation. 2003. 107: 929-934.
    22. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation. 2003. 107: 2134-2139.
    23. Wang JS, Shum-Tim D, Chedrawy E, et al. The coronary delivery of marrow stromal cells for myocardial regeneration: Pathophysiological and therapeutic implications. J Thorac Cardiovasc Surg. 2001. 122: 699-705.
    24. Strauer BE, Brehm M, Zeus T, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002.106:1913-1918.
    25. Assmus B, Sch?chinger V, Teupe C, et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE– AMI). Circulation. 2002.106:3009-3017.
    26. Kollet O, Spiegel A, Peled A, et al. Involvement of SDF-1/CXCR-4 interactions in the migration of immature CD34+ cells into liver of transplanted NOD/SCID mice (abstract). Blood. 2001. (suppl 98).
    27. Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. European Heart Journal. 2006.27:1114-1122.
    28. Kocher AA, Schutser MD, Bonaros N, et al. Use of stem cells for treatment of cardiovascular disorders. Eur Surg. 2002.34:111-113.
    29. Anderlini P, Przepiorka D, Champlin R, et al. Biological and clinical effects of granulocyte colony-stimulating factor in normal individuals.Blood. 1996. 88:2819- 2825.
    30. Buffon A, Biasucci LM, Liuzzo G, et al. Widespread coronary inflammation in unstable angina. N Engl J Med. 2002.347:5-12.
    31. Park JL, Luchessi BR. Mechanisms of myocardial reperfusion injury. Ann Thorac Surg.1999.68:1905-1912.
    32. Kahn J, Byk T, Jansson-Sjostrand L, et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood. 2004. 103:2942 - 2949.
    33. Signoret N, Oldbridge J, Perchen-Matthews A, et al. Phorbol esters and SDF-1 induce rapid endocytosis and down modulation of the chemokine receptor CXCR4. J Cell Biol. 1997. 139:651-664.
    34. Bhakta S, Hong P, Koc O. The surface adhesion molecule CXCR4 stimulates mesenchymal stem cell migration to stromal cell-derived factor-1 in vitro but does not decrease apoptosis under serum deprivation. Cardiovascr Revasc Med. 2006. 7: 19-24.
    35. Yigang W, Kh HH, Nauman A, et al. Evidence for ischemia induced host-derived bone marrow cell mobilization into cardiac allografts. J Mol Cell Cardiol. 2006. 41:478-487.
    36. Lu D, Mahmood A, Wang L, et al. Adult bone marrow mesenchymal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport. 2001. 2:559-563.
    37. Li RK, Mickle DA, Weisel RD, et a1. Optimal time for cardiomyocyte transplantationto maximize myocardial function after left ventricular injury. Ann Thorac Surg. 2001. 72: 1957-1963.
    38.赵嫣,葛均波,张少衡,等.骨髓干细胞移植治疗心肌梗死最佳时间段的选择。中国临床医学. 2005. 12: 192-195.
    39.马军,葛均波,张少衡,等.经静脉移植的人源骨髓间质干细胞在心梗大鼠体内的分布.中国临床医学. 2005. 12: 996-998.
    40. Schenk S, Mal N, Finan A, et al. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor. Stem Cell. 2007. 25: 245-251.
    41. Abbott JD, Huang Y, Liu D, et al. Stromal cell-derived factor-1αplays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004.110:3300-3305.
    42. Ehrbar M, Metters A, Zammaretti P, et a1. Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J Control Release. 2005. 101: 93-109.
    43. Jingimg L, Srinivasan B, Bian X, et a1. Vascular endothelial growth factor is increased following coronary artery occlusion in the dog heart. Mol Cel Biochem. 2002. 214: 23-30.
    44. Harvey BG, Maroni j, Donoghue KA, et a1. Safety of local delivery of low-and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions. Hum Gene Ther. 2002. l3: l5-63.
    45. Zheng W, Brown MD, Brock TA, et a1. Bradycardia-induced coronary angiogenesis is dependent on Vascular endothelial growth factor. Circ Res. 1999. 85: l82-198.
    46. Schultz A, Lavie L, Hochberg I, et a1. Interindividual heterogeneity in the hypoxic regulation of VEGF-Significance for the development of coronary artery collateral circulation. Circulation. 1999. 100: 547-552.
    47. Ruixing Y, Dezhai Y, Hai W, etal. Intramyocardial injection of vascular endothelial growth factor gene improves cardiac performance and inhibits cardiomyocyte apoptosis. Eur J Heart Fail. 2007. 9: 343-51.
    48. Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res. 2002. 53: 31-47.
    49. Frangogiannis NG, Mendoza LH, Lewallen M, et a1. Induction and suppression of interferon-inducible protein 10 in reperfused myocardial infarcts may regulate angiogenesis. FASEB J. 2001. 15: 1428-1430.
    1. Soonpaa MH , Koh GY , Klag MG , et al . Formation of nascent intercalated disks between grafted fetal cardiomyocyte and host myocardium. Science.1994.264:98-101.
    2. Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation.1999.100:II247-256.
    3. Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 2002. 30: 831-836.
    4. Yamaguchi J, Kusano KF, Masuo O, et al. Progenitor Cell Recruitment for Ischemic Neovascularization Stromal Cell-Derived Factor-1 Effects on Ex Vivo Expanded Endothelial. Circulation. 2003. 107:1322-1328.
    5. Zhong R, Law P, Wong D, et al. Small peptide analogs to stromal derived factor-1 enhance chemotactic migration of human and mouse hematopoietic cells. Exp Hematol. 2004. 32: 470-475.
    6. Tang J, Xie Q, Pan G, et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg. 2006. 30: 353-361.
    7. Yang J, Zhou W, Zheng W, et al. Effects of Myocardial Transplantation of Marrow Mesenchymal Stem Cells Transfected with Vascular Endothelial Growth Factor for the Improvement of Heart Function and Angiogenesis after Myocardial Infarction. Cardiology. 2006. 107: 17-29.
    8. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine. 1995. 1: 27-31.
    9. Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998. 92: 362-367.
    10. Aicher A, Brenner W, Zuhayra M, et al. Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation.2003. 107: 2134-2139.
    11. Orlic D,Kajstura J, Chimenti S, et al. Bone marrow cells regenerate pproachmyocardium. Nature. 2001. 410: 701-705.
    12. Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle andvascular endothelium by adult stem cells. Clin Invest. 2001. 107: 1395-1402.
    13. Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow-derived endothelial progenitor cellsparticipate in cerebral neovascularization after focal cerebral ischemia in the adultmouse. Circ Res. 2002. 90 : 284-288.
    14. Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologousbone marrow stromal cells: improved blood flow in a chronic limb ischemia model.Ann Thorac Surg. 2003.75: 204-209.
    15. Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis andangiogenesis after autologous porcine bone marrow stromal cell transplantation. JThorac Cardiovasc Surg. 2002. 123 : 1132-1140.
    16. Kinnaird T, Stabile E, Burnett MS, et al. Marrow-Derived Stromal Cells Express GenesEncoding a Broad Spectrum of Arteriogenic Cytokines and Promote In-Vitro andIn-Vivo Arteriogenesis Through Paracrine Mechanisms. Circ Res. 2004. 94: 678-685.
    17. Rehman J, Li J, Orschell C, March K. Peripheral blood endothelial progenitor cells arederived from monocyte/macrophages and secrete angiogenic growth factors.Circulation. 2003. 107: 1164-1169.
    18. Terada N, Hamazaki T, Oka M, et al . Bone marrow cells adopt the phenotype of othercells by spontaneous cell fusion. Nature. 2002. 416: 542-545.
    19. Ying QL, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion. Nature.2002. 416: 545-548.
    20. Zhao W, Lu L, Sue S, et al. Temporal and spatial characteristics of apoptosis in theinfracted rat heart. Biochem Biophysic Res Commun. 2004. 325: 605-611.
    21. Ma D, Mao J, Zhang Y, et al. Effects of transplanting bone marrow cells oncardiomyocyte apoptosis and expressions of bcl-2 and bax in post-infarction rats. Int Jof Cardiol. 1995. Supplement 1: s65 Abstract.
    22. Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemicmyocardium by human bone marrow derived angioblasts prevents cardiomyocyteapoptosis, reduces remodeling and improves cardiac function. Nature Med. 2001. 7 (4):430- 436.
    23. Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment bya single bone marrow-derived stem cell. Cell. 2001. 105 : 369-377.
    24. Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellularcardiomyoplasty: feasibility and potential clinical advantages. J Thorac CardiovascSurg. 2000. 120: 999-1005.
    25. Wagers AJ, Sherwood RI, Christensen JL, et al. Little evidence for developmentalplasticity of adult hematopoietic stem cells. Science. 2002. 297: 2256-2259.
    26. Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do nottransdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004.428:664-668.
    27. Balsam LB, Wagers AJ, Christensen JL, et al. Haematopoietic stem cells adopt maturehaematopoietic fates in ischaemic myocardium. Nature. 2004. 428: 668-763.
    28. Medvinsky A, Smith A. Stem cells: Fusion brings down barriers. Nature. 2003. 422:823-825.
    29. Yau TM, Tomita S, Weisel RD, et al. Beneficial effect of autologous celltransplantation on pproach heart function: comparison between bone marrowstromal cells and heart cells. Ann Thorac Surg. 2003. 75 : 169-177.
    30. Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Aktprevent remodeling and restore performance of pproach hearts. Nature Med. 2003.9: 1195-1201.
    31. Pak HN, Qayyum M, Kim DT, et al. Mesenchymal stem cell injection induces cardiacnerve sprouting and increased tenascin expression in a swine model of myocardialinfarction. J Cardiovasc Electrophysiol. 2003. 14: 841-848.
    32. Freyman T, Polin G, Osman H, et al. A quantitative, randomized study evaluating threemethods of mesenchymal stem cell delivery following myocardial infarction. EuropeanHeart Journal. 2006.27:1114-1122.
    33. Buschmann I, Katzer E, Bode C. Arteriogenesis– is this terminology necessary? BasicRes Cardiol. 2003. 98: 1-5.
    34. Sabbah HN, Goldstein S. Ventricular remodeling: consequences and therapy. EurHeart J. 1993. 14(Suppl C):24-28.
    35. Koh Ono, Akira Matsumori,Tetsuo Shioi,et al. Cytokine gene expression aftermyocardial infarction in rat hearts,possible implication in left ventricular remodeling.Circulation. 1998. 98:149-l56.
    36. Ross R. Atherosclerosis an inflammatory disease. N Engl J Med. 1999. 340:l15-126.
    37.龚兰生,李明洲.心肌梗塞后左心室重构.国外医学·内科学分册. 1995. 22: 1-5.
    38. Creemers EE, Cleutjens JP, Smits JF, et a1. Matrix metalloproteinases inhibition aftermyocardial infarction: a new pproach to prevent heart failure? Circ Res. 2001. 89:201-2l0.
    39. Sun Y, Weber KT. Infarct scar: a dynamic tissue. Cardiovasc Res. 2000. 46: 250-256.
    1. Valgimigli M, Rigolin GM, Cittanti C, et al. Use of granulocyte-colony stimulatingfactor during acute myocardial infarction to enhance bone marrow stem cellmobilization in humans: clinical and angiographic safety profile. Eur Heart J. 2005. 18:1838-1845.
    2. Suarez de Lezo J, Torres A, Herrera I, et al. Effects of stem-cell mobilization withrecombinant human granulocyte colony stimulating factor in patients withpercutaneously revascularized acute anterior myocardial infarction. Rev Esp Cardiol.2005. 58: 238-240.
    3. Ings SJ, Balsa C, Leverett D, et al. Peripheral blood stem cell yield in 400 normaldonors mobilized with granulocyte colony-stimulating factor (G-CSF): impact of age,sex, donor weight and type of G-CSF used. Br J Haematol. 2006. 134: 517-525.
    4. Kawada H, Fujita J, Kinjo K, et al. Nonhematopoietic mesenchymal stem cells can bemobilized and differentiate into cardiomyocytes after myocardial infarction. Blood.2004. 104: 3581-3587.
    5. Minatoguchi S, Takemura G, Chen XH, et al. Acceleration of the healing process andmyocardial regeneration may be important as a mechanism of improvement of cardiacfunction and remodelling by postinfarction granulocyte colony-stimulating factortreatment. Circulation. 2004. 109: 2572-2580.
    6. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarctedheart, improving function and survival. Proc Natl Acad Sci USA. 2001. 98:10344-10349.
    7. Hess DA, Levac KD, Karanu FN, et al. Functional analysis of human hematopoieticrepopulating cells mobilized with granulocyte colony-stimulating factor alone versusgranulocyte colony-stimulating factor in combination with stem cell factor. Blood.2002. 100: 869-878.
    8. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 onstem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet.2003.362:697-703
    9. Hasegawa H, Takano H, Shiraishi H, et al. Intracoronary injection of G-CSFameliorates the progression of left ventricular remodeling after myocardialischemia/reperfusion in rabbits(abstract). J Mol Cell Cardiol. 2006. 41: 1065.
    10. Hasegawa H, Takano H, Iwanaga K, et al. Cardioprotective Effects of GranulocyteColony-Stimulating Factor in Swine With Chronic Myocardial Ischemia. J Am CollCardiol. 2006. 47: 842-849.
    11. Ripa RS, J?rgensen E, Wang Y, et al. Stem Cell Mobilization Induced bySubcutaneous Granulocyte-Colony Stimulating Factor to Improve CardiacRegeneration After Acute ST-Elevation Myocardial Infarction Result of theDouble-Blind, Randomized, Placebo-Controlled Stem Cells in Myocardial Infarction(STEMMI) Trial. Circulation. 2006. 113: 1983-1992.
    12. Kang HJ, Kim HS, Zhang SY, et al. Effects of intracoronary infusion of peripheralblood stem-cells mobilised with granulocyte-colony stimulating factor on leftventricular systolic function and restenosis after coronary stenting in myocardialinfarction: the MAGIC cell randomized clinical trial. Lancet. 2004. 363: 751-756.
    13. Boyle AJ, Whitbourn R, Schlicht S, et al. Intra-coronary high-dose CD34+ stem cellsin patients with chronic ischemic heart disease: a 12-month follow-up. Int J Cardiol.2006. 109: 21-27.
    14. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarctedheart, improving function and survival. Proc Natl Acad Sci U S A. 2001. 98:10344-10349.
    15. Wright DE, Cheshier SH, Wagers AJ, et al. Cyclophosphamide/granulocytecolony-stimulating factor causes selective mobilization of bone marrow hematopoieticstem cells into the blood after M phase of the cell cycle. Blood. 2001. 97 : 2278 2285.
    16. Wynn RF, Hart CA, Corradi-Perini C, et al. Asmall proportion of mesenchymal stemcells strongly expresses functionally active CXCR4 receptor capable of promotingmigration to bone marrow. Blood. 2004. 104: 2643-2645.
    17. Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bonemarrow stromal cell migration in interface culture. Exp Hematol. 2002. 30: 831-836.
    18. Frangogiannis NG, Smith CW, Entman M L. The inflammatory response in myocardialinfarction. Cardiovasc Res. 2002. 53: 31-47.90
    1.Soonpaa MH , Koh GY , Klag MG , et al. Formation of nascent intercalated disks between grafted fetal cardiomyocyte and host myocaedium. Science. 1994. 264: 98-101.
    2.Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation. 1999. 100:Ⅱ247-Ⅱ2 56.
    3.Silva GV, Litovsky S, Assad JAR, et al. Mesenchymal Stem Cells Differentiate into an Endothelial Phenotype, Enhance Vascular Density, and Improve Heart Function in a Canine Chronic Ischemia Model. Circulation. 2005. 111: 150-156.
    4.Wognum AW, Eaves AC, Thomas TE. Identification and isolation of hematopoietic stem cells. Arch Med Res. 2003. 34: 461-475.
    5.Orlic D,Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infracted myocardium. Nature. 2001. 410: 701-705.
    6.Jackson KA, Majka SM, Wang H, et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Clin Invest. 2001. 107: 1395-1402.
    7.Wagers AJ, Sherwood RI, Christensen JL, et al. Little evidence for developmental plasticity of adult hematopoietic stem cells science. Science. 2002. 297: 2256-2259.
    8.Murry CE, Soonpaa MH, Reinecke H, et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004. 428: 664-668.
    9.Balsam LB, Wagers AJ, Christensen JL,et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004. 428: 668-763.
    10.Wexler SA, Donaldson C, Denning-Kendall P, et a1. Adult bone marrow is a rich source of human mesenchyma1stem cells but umbilical cord and mobilized adult blood are not. Br JHaemato1. 2003. 121: 368-374.
    11.Jiang Y, Jahagirdar BN, Reinhardt RL,et al. Pluripotency off mesenchymal stem cells derived from adult marrow. Nature. 2002. 418: 41- 49.
    12.Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997. 275: 964-967.
    13 . Hristov M, Erl W, Weber PC. Endothelial progenitor cell: isolation and characterization. Trends Cardiovasu Med. 2003. 13: 201-206.
    14.Lapidot T, Petit I. Current understanding of stem cells mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol. 2002. 30: 973-981.
    15.Yong K, Fahey A, Reeve L, et al. Cord blood progenitor cells have greater transendothelial migratory activity and increased responses to SDF-1 and MIP-3βcompared with mobilized adult progenitor cells. Br J Haematol. 1999. 107: 441-449.
    16.Mazo IB, Gutierrez-Ramos JC, Frenette PS, et al. Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med. 1998. 188: 465-474.
    17.Paul SF, Sangeetha S, Irina B, et al. Endothelial selectins and vascular cell adhesion molecule-1 promote hematopoietic progenitor homing to bone marrow. Med Sciences. 1998. 95: 14423-14428.
    18.Majdic O, St?ckl J, Pickl WF, et al. Signaling and induction of enhanced cytoadhesiveness via the hematopoietic progenitor cell surface molecule CD34. Blood.1994. 83: 1226-1234.
    19.Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000. 12: 121
    20 . Peled A, Grabovsky V, Habler L, et al. The chemokine SDF-1 stimulates integrin2mediated arrest of CD34+ cells on vascular endothelium under shear flow. J Clin Invest. 1999. 104: 1199-1211.
    21.Naiyer AJ, Jo DY, Ahn J, et al. Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin. Blood. 1999. 94: 4011-4019.
    22.Ma J, Ge J, Zhang Sh, et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res. Cardiol. 2005. 100: 217-223.
    23.Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003. 362: 697-703.
    24.Voermans C., Rood P.M.I., Hordijk P.L., et al. Adhesion molecules involved in transendothelial migration of human hematopoietic progenitor cells. Stem Cells. 2000. 18: 435-443.
    25.Lu L, Zhang JQ, Ramiras FJ, Sun Y. Molecular and cellular events at the site of myocardial infarction: from the perspective of rebuilding myocardial tissue, Biochem. Biophys. Res. Commun. 2004. 320: 907-913.
    26.Tarzami ST, Cheng R, Miao W, et al. Chemokine Expression in Myocardial Ischemia: MIP-2 Dependent MCP-1 Expression Protects Cardiomyocytes from Cell Death. Journal of Molecular and Cellular Cardiology. 2002. 34: 209-221.
    27.Wang L, Li Y, Chen J, et al. Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 2002. 30: 831-836.
    28.Rodgers KE, Xiong S, Steer R, diZerega GS. Effect of angiotensin II on hematopoietic progenitor cell proliferation. Stem Cells. 2000. 18: 287-294.
    29.Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. Contribution of cardiac renin–angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol. 1993. 25: 1369-1380.
    30.Frangogiannis NG, Perrard JL, Mendoza LH, Burns AR, Lindsey ML, Ballantyne CM, et al. Stem cell factor induction is associated with mast cell accumulation after caninemyocardial ischemia and reperfusion. Circulation. 1998. 98: 687-698.
    31.Pennington DW, Lopez AR, Thomas PS, Peck C, Gold WM. Dog mastocytoma cells produce transforming growth factor-β1. J Clin Invest. 1992. 90: 35-41.
    32.Akif?ztürk M, Güven GS, Ibrahim C. Haznedaroglu How hematopoietic stem cells know and act in cardiac microenvironment for stem cell plasticity? Impact of local renin–angiotensin systems. Medical Hypotheses. 2004. 63: 866-874.
    33.Lévesque JP, Leavesley DI, Niutta S, et al. Cytokines increase human hematopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J. Exp. Med. 1995. 181: 1805-1815.
    34.Kovach NL, Lin N, Yednock T, et al. Stem cells factor modulates avidity ofα4β1 andα5β1 integrins expressed on hematopoietic cell lines. Blood. 1995. 85: 159-167.
    35.Hidalgo A, Sanz-Rodríguez F, Rodríguez-Fernández JL, et al. Chemokine stromal cell-derived factor-1alpha modulates VLA-4 integrin-dependent adhesion to fibronect in and VCAM-1 on bone marrow hematopoietic progenitor cell. Exp Hematol. 2001. 29: 345.
    36.Masumoto A & Hemler ME. Multiple activation states of VLA-4 Mechanistic differences between adhesion to CS1/fibronectin and to vascular cell adhesion molecule-1. Journal of Biological Chemistry. 1993. 268: 228-234.
    37.Lobb RR, Antognetti G, Pepinsky RB, et al. A direct binding assay for the vascular cell adhesion molecule-1 (VCAM-1) interaction withα4 integrins. Cell Adhesion and Communication. 1995. 3: 385-397.
    38.Lichterfeld M, Martin S, Burkly L, et al. Mobilization of CD34+ hematopoietic stem cell is associated with a functional inactivation of the integrin very late antigen 4. Br J Hematol. 2000. 110: 71-81.
    39.Morrimoto K, Robin E, Le Bousse-Kerdiles MC, et al. CD44 mediates hyaluronan binding by human myeloid KG1A and KG1 cells. Blood. 1994. 83: 657-662.
    40.Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine. 1995. 1: 27-31.
    41.Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood. 1998. 92: 362-367.
    42.Goodell MA, Jackson KA, Majka SM, et al. Stem cell plasticity in muscle and bone marrow. Ann N Y Acad Sci. 2001. 938: 208-218.
    43.Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001. 98:10344-10349.
    44.Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res. 2002. 90: 284-288.
    45.Al-Khaldi A, Al-Sabti H, Galipeau J, et al. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. Ann Thorac Surg. 2003.75: 204-209.
    46.Tomita S, Mickle DA, Weisel RD, et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg. 2002. 123: 1132-1140.
    47.Kinnaird T, Stabile E, Burnett MS, et al. Marrow-Derived Stromal Cells Express Genes Encoding a Broad Spectrum of Arteriogenic Cytokines and Promote In-Vitro and In-Vivo Arteriogenesis Through Paracrine Mechanisms. Circ Res. 2004. 94: 678-685.
    48.Rehman J, Li J, Orschell C, March K. Peripheral blood endothelial progenitor cells are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003. 107: 1164-1169.
    49.Terada N, Hamazaki T, Oka M, et al. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature. 2002. 416: 542-545.
    50. Ying QL, Nichols J, Evans EP, et al. Changing potency by spontaneous fusion. Nature. 2002. 416: 545-548.
    51.Wang X, Willenbring H, Akkari Y, et al. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature. 2003. 422: 897-901.
    52.Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature. 2003. 422: 901-904.
    53. Zhao W, Lu L, Sue S, et al. Temporal and spatial characteristics of apoptosis in the infracted rat heart. Biochemical and Biophysical Research Communications. 2004. 325: 605-611.
    54. Ma D, Mao J, Zhang Y, et al. Effects of transplanting bone marrow cells on cardiomyocyte apoptosis and expressions of bcl-2 and bax in post-infarction rats. International Journal of Cardiology. 1995. Supplement 1: s65 Abstract.
    55.唐滔,胡建国,杨进福等,骨髓间充质干细胞移植对大鼠心肌梗死后细胞凋亡的作用。中南大学学报(医学版). 2004. 29(3): 274-278.
    56.Kocher AA, Schuster MD, Szabolcs MJ, et al. Neovascularization of ischemic myocardium by human bone marrow derived angioblasts prevents cardiomyocyteapoptosis, reduces remodeling and improves cardiac function. Nature Medicine. 2001. 7 (4): 430- 436.
    57.Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001. 105: 369-377.
    58.Wang JS, Shum-Tim D, Galipeau J, et al. Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages. J Thorac Cardiovasc Surg. 2000. 120: 999-1005.
    59.Medvinsky A, Smith A. Stem cells: Fusion brings down barriers. Nature. 2003. 422: 823-825.
    60.Pfeffer JM, Pfeffer MA, Fletcher PJ, et al. Progressive ventricular remodeling in rat with myocardial infarction. Am. J. Physiol. 1991. 260: H1406-1414.
    61.White HD, Norris RM, Brown MA, et al. Left ventricular end systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation. 1987. 76: 44-51.
    62.Colucci, WS. Molecular and cellular mechanisms of myocardial failure. Am. J. Cardiol. 1997. 80: 15L-25L.
    63.Ravichandran LV, Puvanakrishnan R. In vivo labeling studies on the biosynthesis and degradation of collagen in experimental myocardial infarction. Biochem. Int. 1991. 24: 405-414.
    64.Agocha A, Lee HW, Eghbali-Webb M. Hypoxia regulates basal and induced DNA synthesis and collagen type I production in human cardiac fibroblasts: effects of TGF-β, thyroid hormone, angiotensin II and basic fibroblast growth factor. J. Mol. Cell. Cardiol. 1997. 29: 2233-2244.
    65.Yau TM, Tomita S, Weisel RD, et al. Beneficial effect of autologous cell transplantation on infarcted heart function: comparison between bone marrow stromal cells and heart cells. Ann Thorac Surg. 2003. 75: 169-177.
    66.Mangi AA, Noiseux N, Kong D, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nature Medcine. 2003. 9: 1195-1201.
    67.Pak HN, Qayyum M, Kim DT, et al. Mesenchymal stem cell injection induces cardiac nerve sprouting and increased tenascin expression in a swine model of myocardial infarction. J Cardiovasc Electrophysiol. 2003. 14: 841-848.
    68. Wynn RF, Hart CA, Corradi-Perini C, et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promotingmigration to bone marrow. Blood. 2004. 104: 2643-2645.
    69.Heeschen C, Lehmann R, Honold J, et al. Profoundly Reduced Neovascularization Capacity of Bone Marrow Mononuclear Cells Derived From Patients With Chronic Ischemic Heart Disease. Circulation. 2004. 109: 1615-1622.
    70.Barbash IM, Chouraqui P, Baron J, et al. Systemic Delivery of Bone Marrow–Derived Mesenchymal Stem Cells to the Infarcted Myocardium Feasibility, Cell Migration, and Body Distribution. Circulation. 2003. 108: 863-868.
    71.Vulliet PR, Greeley M, Halloran SM, et al. Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet. 2004. 363: 783-784.
    72.Yoon YS, Park JS, Tkebuchava T, et al. Unexpected severe calcification after transplantation of bone marrow cells in acute myocardial infarction. Circulation. 2004. 109: 3154-3157.
    73.Banai S, Jaklitsch MT, Casscells W, et al. Effects of acidic fibroblast growth factor on normal and ischemic myocardium. Circ Res. 1991.69:76-85.
    74.Lee R, Springer M, Blano-Bose W, et al. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation. 2000. 102: 898-901.
    75.Murasawa S, Llevadot J, Silver M. Constitutive human telomerese reverse transcriptase express ion enhances regenerative properties of endothelial progenitor cells. Circulation. 2002. 106:1133-1139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700