用户名: 密码: 验证码:
戊型肝炎病毒感染机制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
戊型肝炎病毒(HEV)不稳定易降解,难以从载毒标本中分离,而迄今为止仍没有有效的细胞培养模型,这很大程度上限制了HEV感染致病机制的研究。近年来,随着对HEV研究的深入,较好模拟了HEV病毒衣壳表面结构的重组蛋白为研究HEV与宿主细胞相互作用提供了一条新的途径。
     HEV衣壳由单一蛋白(pORF2)组成,大量研究表明pORF2的重组表达片段p239(aa368—606)很好地模拟了HEV的免疫优势中和表位。p239对HEV与原代肝细胞、HepG2细胞的吸附阻断,p239对多株细胞系具有与HEV相似的嗜性,以及多株HEV特异单抗对p239与HepG2细胞结合的特异阻断,强有力地提示p239同时也很好地模拟了HEV与细胞膜的结合所具备的表面结构特征。因此,p239与HepG2细胞的吸附模型是探讨HEV与细胞膜相瓦作用的可靠工具。
     不同结合区域的HEV单抗及其Fab片段对p239吸附细胞的阻断结果提示,p239表面至少存在两个细胞受体结合区域:其一为HEV的主要免疫优势中和表位(ORF2 aa459-606),另一个区域为aa423-438。这两个区域均对p239与细胞的特异性吸附有贡献,均能单独介导p239与嗜性细胞的吸附,但aa459-606区域吸附细胞的能力要明显强于后者,是介导p239吸附的主要部位。aa423-438区域与细胞表面作用力弱,在HEV结合过程中很可能只是增加病毒与主要受体结合的机会。
     缺失了aa423-438的p239突变体Δ239保留了免疫优势中和表位,与p239一样均能阻断天然HEV对HepG2细胞的感染吸附。而丧失免疫优势表位的233N则不能有效阻断。此结果表明HEV与嗜性细胞的结合很可能同p239与HepG2细胞之间的结合一样,也是通过这两个区域,并且主要免疫优势区域(ORF2aa459-606)在HEV与细胞结合过程中发挥主要作用。
     通过酵母双杂交,从人肝细胞cDNA文库中筛出四个可能与HEV衣壳蛋白相结合的蛋白:肝细胞药物代谢酶(p450)、转化相关蛋白(TRP13)、p38相结合蛋白(p38IP)、DDAH2。并通过免疫共沉淀初步验证了p38IP与E2的结合,提示HEV ORF2激活MAPK p38通路的可能。
     通过亲和层析筛选HepG2、猴肝组织中与p239相结合的蛋白,并利用二维电泳(2-DE)结合生物质谱技术分离鉴定这些结合蛋白,得到6个可能与p239相互作用的蛋白:HSP90、GRP78/Bip、alpha tubulin、P43、ATPase beta subunit、某未命名蛋白。并通过免疫共沉淀、细胞共定位等多种实验手段进一步验证了GRP78/Bip、HSP90与p239的结合。结果表明,GRP78/Bip与p239、HSP90与p239在HepG2细胞内共定位。并且p239与E.coli表达经纯化的GRP78/Bip可直接结合,提示它们在细胞内的相互作用不是经由第三者为中介的结合。同时,ATP的加入会导致p239与GRP78/Bip结合的可逆解离,提示p239与GRP78/Bip的结合是ATP依赖的特异性结合,GRP78/Bip的ATPase活性在这种结合中有重要的作用。
     本文建立了能较好模拟HEV与细胞的吸附过程的p239-HepG2吸附模型,进一步发现HEV上至少具有两个细胞受体结合区域。其中一个结合力较强的区域与HEV主要中和表位区域重叠,而另一个区域结合力较弱。为阐明HEV吸附机制奠定了良好基础,并提供了重要的研究工具。而对细胞内的p239结合蛋白的分离鉴定则为阐明HEV的复制、致病机制提供了重要线索。
Hepatitis E Virus [HEV] has emerged to be a dominant cause of acute hepatitis, replacing hepatitis A virus in some areas and comparable in others. Research into pathogenesis and epidemiology of infection caused by this virus has been severely hampered, because the virus could not be efficiently propagated in cell culture.
     Previous studies suggest that p239, a recombinant protein specified by ORF2 of the HEV genome, models the HEV neutralization sites identified by the HEV neutralizing antibodies, 8C11 and 8H3, as well as other structural features of the protrusion projecting from the basal shell of the virus capsid identified by other monoclonal antibodies. Taking advantage of this structural resemblance, the objective of my thesis is to use this peptide as a probe to study interaction of HEV with its host cells. To this end, I have established a transient infection model for HEV, using the HepG2 and a variety of other cell line and analyzed the interactions between these cells and p239.
     The results suggest that binding of p239 to HepG2 cells may occur via at least 2 separate sites locating to aa423-438 and aa459-606, respectively, of the HEV structural protein. These sites were distinguished by using a panel of monoclonal antibodies and also by mutagenesis.
     Further analysis identified at least 7 host cell proteins which bind with p239, and suggest that these p239 binding host cell proteins include HSP90、GRP78/Bip、alpha tubulin、P43、ATPase beta subunit and an unknown cellular protein. Moreover, it was shown that binding of p239 to one of these cellular proteins, GRP78/Bip, is ATP dependent.
     The most critical step of infection is for virus to gain entry into its host cells. The present study took advantage of the structural resemblance of a recombinant protein, p239, to neutralization sites and other structural features of the HEV capsid, and use it as a probe to analyze the mechanism by which the virus gain entry to its host cells. The findings that p239 could effectively block HEV infection of a variety of cell lines susceptible to infection by this virus suggests that this novel approach is valid for studying virus-cell interaction. The findings described in this thesis suggest that this is a complex process, brought about by concerted actions involving direct and indirect binding of the virus structural protein with multiple of host cell proteins locating to spatially distinct sites on the virus capsid, and the process may require energy expenditure. Further studies will be required to identify the major cellular proteins involved in direct and indirect binding with the virus and how the interactions act in concert to bring about HEV entry to host cells.
引文
[1] Ugolini S, Mondor I, Sattentau QJ. HIV-1 attachment: another look[J]. Trends Microbiol, 1999, 7(4): 144-149.
    [2] Vlasak M, Goesler I, Blaas D. Human rhinovirus type 89 variants use heparan sulfate proteoglycan for cell attachment[J]. J Virol, 2005, 79(10):5963-5970.
    [3] Young JTY. Virus entry and uncoating. I// Knipe D, Howley P (eds) Fields Virology[C], Fourth edn. Philadelphia: Lippincott Williams & Wilkins, 2001: 87-103.
    [4] Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin[J]. Annu Rev Biochem, 2000, 69(531-569.
    [5] Stehle T, Harrison SC. High-resolution structure of a polyomavirus VP1-oligosaccharide complex: implications for assembly and receptor binding[J]. Embo J, 1997, 16(16):5139-5148.
    [6] Tsai B, Gilbert JM, Stehle T et al. Gangliosides are receptors for murine polyoma virus and SV40[J]. Embo J, 2003,22(17):4346-4355.
    [7] Triantafilou K, Fradelizi D, Wilson K et al. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization[J]. J Virol, 2002, 76(2):633-643.
    [8] Long D, Berson JF, Cook DG et al. Characterization of human immunodeficiency virus type 1 gp120 binding to liposomes containing galactosylceramide[J]. J Virol, 1994, 68(9):5890-5898.
    [9] Puri A, Hug P, Jernigan K et al. The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein[J]. Proc Natl Acad Sci U S A, 1998,95(24): 14435-14440.
    [10] Byrnes AP, Griffin DE. Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation[J]. J Virol, 2000,74(2):644-651.
    [11] Klimstra WB, Ryman KD, Johnston RE. Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor[J]. J Virol, 1998, 72(9):7357-7366.
    [12] Bielefeldt-Ohmann H, Meyer M, Fitzpatrick DR et al. Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains[J]. Virus Res, 2001, 73(1):81-89.
    [13] Daughaday CC, Brandt WE, McCown JM et al. Evidence for two mechanisms of dengue virus infection of adherent human monocytes: trypsin-sensitive virus receptors and trypsin-resistant immune complex receptors[J]. Infect Immun, 1981, 32(2):469-473.
    [14] Jindadamrongwech S, Thepparit C, Smith DR. Identification of GRP 78 (BiP) as a liver cell expressed receptor element for dengue virus serotype 2[J]. Arch Virol, 2004, 149(5):915-927.
    [15] Earp LJ, Delos SE, Park HE et al. The many mechanisms of viral membrane fusion proteins[J]. Curr Top Microbiol Immunol, 2005, 285(25-66.
    [16] Harrison SC. Mechanism of membrane fusion by viral envelope proteins[J]. Adv Virus Res, 2005, 64(231-261.
    [17] Kielian M, Rey FA. Virus membrane-fusion proteins: more than one way to make a hairpin[J]. Nat Rev Microbiol, 2006, 4(1):67-76.
    [18] Marsh M, Bron R. SFV infection in CHO cells: cell-type specific restrictions to productive virus entry at the cell surface[J]. J Cell Sci, 1997, 110 ( Pt 1)(95-103.
    [19] Dohner K, Sodeik B. The role of the cytoskeleton during viral infection[J]. Curr Top Microbiol Immunol, 2005, 285(67-108.
    [20] Helenius A, Kartenbeck J, Simons K et al. On the entry of Semliki forest virus into BHK-21 ceils[J]. J Cell Biol, 1980, 84(2):404-420.
    [21] Marsh M, Helenius A. Virus entry into animal cells[J]. Adv Virus Res, 1989, 36(107-151.
    [22] Chandran K, Sullivan NJ, Felbor U et al. Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection[J]. Science, 2005, 308(5728): 1643-1645.
    [23] Ebert DH, Deussing J, Peters C et al. Cathepsin L and cathepsin B mediate reovirus disassembly in murine fibroblast celIs[J]. J Biol Chem, 2002, 277(27):24609-24617.
    [24] Simmons G, Gosalia DN, Rennekamp AJ et al. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry[J]. Proc Natl Acad Sci U S A, 2005, 102(33):11876-11881.
    [25] Robinson MS. Adaptable adaptors for coated vesicles[J]. Trends Cell Biol, 2004, 14(4): 167-174.
    [26] Pelkmans L, Fava E, Grabner H et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis[J]. Nature, 2005, 436(7047):78-86.
    [27] Anderson HA, Chen Y, Norkin LC. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae[J]. Mol Biol Cell, 1996, 7(11): 1825-1834.
    [28] Kartenbeck J, Stukenbrok H, Helenius A. Endocytosis of simian virus 40 into the endoplasmic reticulum[J]. J Cell Biol, 1989, 109(6 Pt 1):2721-2729.
    [29] Stang E, Kartenbeck J, Parton RG Major histocompatibility complex class I molecules mediate association of SV40 with caveolae[J]. Mol Biol Cell, 1997, 8(1):47-57.
    [30] Marsh M, Helenius A. Virus entry: open sesame[J]. Cell, 2006,124(4):729-740.
    [31] Pelkmans L, Kartenbeck J, Helenius A. Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER[J]. Nat Cell Biol, 2001, 3(5):473-483.
    [32] Smith AE, Lilie H, Helenius A. Ganglioside-dependent cell attachment and endocytosis of murine polyomavirus-like particles[J]. FEBS Lett, 2003, 555(2): 199-203.
    [33] Pelkmans L, Puntener D, Helenius A. Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae[J]. Science, 2002, 296(5567):535-539.
    [34] Damm EM, Pelkmans L, Kartenbeck J et al. Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae[J]. J Cell Biol, 2005, 168(3):477-488.
    [35] Tagawa A, Mezzacasa A, Hayer A et al. Assembly and trafficking of caveolar domains in the cell: caveolae as stable, cargo-triggered, vesicular transporters[J]. J Cell Biol, 2005, 170(5):769-779.
    [36] Damke H, Baba T, van der Bliek AM et al. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin[J]. J Cell Biol, 1995, 131(1):69-80.
    [37] Johnson DC, Huber MT. Directed egress of animal viruses promotes cell-to-cell spread[J]. J Virol, 2002, 76(1): 1-8.
    
    [38] Steven AC, Heymann JB, Cheng N et al. Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity[J]. Curr Opin Struct Biol, 2005, 15(2):227-236.
    [39] Hogle JM. Poliovirus cell entry: common structural themes in viral cell entry pathways[J]. Annu Rev Microbiol, 2002, 56(677-702.
    [40] Smith AE, Helenius A. How viruses enter animal cells[J]. Science, 2004, 304(5668):237-242.
    
    [41] Greber UF. Signalling in viral entry[J]. Cell Mol Life Sci, 2002, 59(4):608-626.
    [42] Chen Y, Norkin LC. Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae[J]. Exp Cell Res, 1999, 246(1):83-90.
    [43] Lehmann MJ, Sherer NM, Marks CB et al. Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells[J]. J Cell Biol, 2005, 170(2):317-325.
    [44] Coyne CB, Bergelson JM. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions[J]. Cell, 2006, 124(1): 119-131.
    [45] Parton RG. Ultrastructural localization of gangliosides; GM1 is concentrated in caveolae[J]. J Histochem Cytochem, 1994, 42(2): 155-166.
    [46] Parton RG, Richards AA. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms[J]. Traffic, 2003, 4(11):724-738.
    [47] Sharma DK, Brown JC, Choudhury A et al. Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol[J]. Mol Biol Cell, 2004, 15(7):3114-3122.
    [48] Ono A, Freed EO. Role of lipid rafts in virus replication[J]. Adv Virus Res, 2005, 64(311-358.
    [49] Karger A, Mettenleiter TC. Identification of cell surface molecules that interact with pseudorabies virus[J]. J Virol, 1996, 70(4):2138-2145.
    [50] Haywood AM. Virus receptors: binding, adhesion strengthening, and changes in viral structure[J]. J Virol, 1994,68(1):1-5.
    [51] Salas-Benito JS, del Angel RM. Identification of two surface proteins from C6/36 cells that bind dengue type 4 virus[J]. J Virol, 1997, 71(10):7246-7252.
    
    [52] Maisner A, Schneider-Schaulies J, Liszewski MK et al. Binding of measles virus to membrane cofactor protein (CD46): importance of disulfide bonds and N-glycans for the receptor function[J]. J Virol, 1994,68(10):6299-6304.
    [53] Gastka M, Horvath J, Lentz TL. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay[J]. J Gen Virol, 1996, 77 ( Pt 10)(2437-2440.
    
    [54] Fields BN. Fundamental Virology. I//, 2nd edn. New York: Raven press, 1990: 87-95.
    [55] Li W, Moore MJ, Vasilieva N et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus[J]. Nature, 2003,426(6965):450-454.
    [56] Reyes-del Valle J, del Angel RM. Isolation of putative dengue virus receptor molecules by affinity chromatography using a recombinant E protein ligand[J]. J Virol Methods, 2004, 116(1):95-102.
    [57] Mitchell DA, Marshall TK, Deschenes RJ. Vectors for the inducible overexpression of glutathione S-transferase fusion proteins in yeast[J]. Yeast, 1993, 9(7):715-722.
    [58] Kim JH, Hahm B, Kim YK et al. Protein-protein interaction among hnRNPs shuttling between nucleus and cytoplasm[J]. J Mol Biol, 2000, 298(3):395-405.
    [59] Rigaut G, Shevchenko A, Rutz B et al. A generic protein purification method for protein complex characterization and proteome exploration[J]. Nat Biotechnol, 1999, 17(10):1030-1032.
    [60] Lazarides E, Lindberg U. Actin is the naturally occurring inhibitor of deoxyribonuclease I[J]. Proc Natl Acad Sci U S A, 1974,71(12):4742-4746.
    [61] Schaerer MT, Kannenberg K, Hunziker P et al. Interaction between GABA(A) receptor beta subunits and the multifunctional protein gC1q-R[J]. J Biol Chem, 2001, 276(28):26597-26604.
    [62] Needham PG, Casper JM, Kalman-Maltese V et al. Adeno-associated virus rep protein-mediated inhibition of transcription of the adenovirus major late promoter in vitro[J]. J Virol, 2006, 80(13):6207-6217.
    [63] Williams C, Addona TA. The integration of SPR biosensors with mass spectrometry: possible applications for proteome analysis[J]. Trends Biotechnol, 2000, 18(2):45-48.
    [64] Ying M, Flatmark T. Binding of the viral immunogenic octapeptide VSV8 to native glucose-regulated protein Grp94 (gp96) and its inhibition by the physiological ligands ATP and Ca2+[J]. Febs J, 2006, 273(3):513-522.
    [65]Luo H,Chen Q,Chen Jet al.The nucleocapsid protein of SARS coronavirus has a high binding affinity to the human cellular heterogeneous nuclear ribonucleoprotein Al[J].FEBS Lett,2005,579(12):2623-2628.
    [66]Mochizuki N,Yamashita S,Kurokawa K et al.Spatio-temporal images of growth-factor-induced activation of Ras and Rapl[J].Nature,2001,411(6841):1065-1068.
    [67]Sunner J,Dratz E,Chen YC.Graphite surface-assisted laser desorption/ionization time-of-flight mass spectrometry of peptides and proteins from liquid solutions[J].Anal Chem,1995,67(23):4335-4342.
    [68]Zhang Q.[Research on the separation of three isomers of hydroxybenzoic acid by capillary zone electrophoresis][J].Se Pu,2001,19(3):217-218.
    [69]Ligon WV,Dorn S.Improved secondary ion mas spectral sensituvity for adenosine triphosphate disodium salt[J].Fres,Z Anal,Chem,1986,325(7):625-626.
    [70]刘程,江小梅.表面活性剂应用大全[M]北京:北京工业大学出版社,1992.
    [71]Vestling M,Fenselau C.Poly(vinylidene difluoride) Membranes as the Interface between Laser Desorption Mass Spectromety,Gel Electrophoresis,and in Situ Proteolysis[J].Anal Chem,1994,66(4):471-477.
    [72]Henzel WJ,Billeci TM,Stuits JT et ai.Identifying proteins from two-dimensional gels by molecular mass searching of peptide fragments in protein sequence databases[J].Proc Natl Acad Sci U S A,1993,90(11):5011-5015.
    [73]Mann M,Wilm M.Error-tolerant identification of peptides in sequence databases by peptide seqence tags[J].Anal Chem,1994,66(4390-4399.
    [74]O'Farrell PH.High resolution two-dimensional electrophoresis of proteins[J].J Biol Chem,1975,250(10):4007-4021.
    [75]Kang SM,Shin MJ,Kim JH et al.Proteomic profiling of cellular proteins interacting with the hepatitis C virus core protein[J].Proteomics,2005,5(8):2227-2237.
    [76]Agrawal S,Gupta D,Panda SK.The 3' end of hepatitis E virus(HEV) genome binds specifically to the viral RNA-dependent RNA polymerase(RdRp)[J].Virology,2001,282(1):87-101.
    [77]FitzGerald K.In vitro display technologies - new tools for drug discovery[J].Drug Discov Today, 2000,5(6):253-258.
    [78] Fields S, Song O. A novel genetic system to detect protein-protein interactions[J]. Nature, 1989, 340(6230):245-246.
    [79] Causier B, Davies B. Analysing protein-protein interactions with the yeast two-hybrid system[J]. Plant Mol Biol, 2002, 50(6):855-870.
    [80] Qi m, Huang MJ, Chen F. Isolation of transcription factors binding auxin response elements using a yeast one-hybrid system[J]. SCIENCE IN CHINA (LIFE SCIENCES), 2002,45(2): 177-185.
    [81] SenGupta DJ, Zhang B, Kraemer B et al. A three-hybrid system to detect RNA-protein interactions in vivo[J]. Proc Natl Acad Sci U S A, 1996,93(16):8496-8501.
    [82] Aronheim A. Protein recruitment systems for the analysis of protein-protein interactions[J]. Biochem Pharmacol, 2000, 60(8):1009-1013.
    [83] Brachmann RK, Vidal M, Boeke JD. Dominant-negative p53 mutations selected in yeast hit cancer hot spots[J]. Proc Natl Acad Sci U S A, 1996,93(9):4091-4095.
    [84] Tsuchiya T, Kominato Y, Ueda M. Human hypoxic signal transduction through a signature motif in hepatocyte nuclear factor 4[J]. J Biochem (Tokyo), 2002, 132(1):37-44.
    [85] Marsolier MC, Prioleau MN, Sentenac A. A RNA polymerase III-based two-hybrid system to study RNA polymerase II transcriptional regulators[J]. J Mol Biol, 1997, 268(2):243-249.
    [86] Shen B, Chen X. BOC-MP study on the mechanism of partical oxidation of Ch3OH to HCHO ovr a silver surface and the promoting effect of halogen to the catalyst[J]. Surface Science, 1998,408(1-3):128.
    [87] Shen B, Vihinen M. RankViaContact: Ranking and visualisation of amino acid contacts[J]. Bioinformatics, 2003, 19(0): 1.
    [88] Legrain P, Wojcik J, Gauthier JM. Protein-protein interaction maps: a lead towards cellular functions[J]. Trends Genet, 2001, 17(6):346-352.
    [89] Pellegrini M, Marcotte EM, Thompson MJ et al. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles[J]. Proc Natl Acad Sci U S A, 1999, 96(8):4285-4288.
    
    [90] Gaasterland T, Ragan MA. Microbial genescapes: phyletic and functional patterns of ORF distribution among prokaryotes[J]. Microb Comp Genomics, 1998, 3(4):199-217.
    [91] Tamames J, Casari G, Ouzounis C et al. Conserved clusters of functionally related genes in two bacterial genomes[J]. J Mol Evol, 1997,44(1):66-73.
    [92] Overbeek R, Fonstein M, D'Souza M et al. Use of contiguity on the chromosome to predict functional coupling[J]. In Silico Biol, 1999, 1(2):93-108.
    
    [93] Fryxell KJ. The coevolution of gene family trees[J]. Trends Genet, 1996, 12(9):364-369.
    [94] Pages S, Belaich A, Belaich JP et al. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain[J]. Proteins, 1997, 29(4):517-527.
    [95] Gobel U, Sander C, Schneider R et al. Correlated mutations and residue contacts in proteins[J]. Proteins, 1994, 18(4):309-317.
    [96] Ortiz AR, Skolnick J. Sequence evolution and the mechanism of protein folding[J]. Biophys J, 2000, 79(4): 1787-1799.
    [97] Ortiz AR, Kolinski A, Rotkiewicz P et al. Ab initio folding of proteins using restraints derived from evolutionary information[J]. Proteins, 1999, Suppl 3(177-185.
    [98] Kar-Roy A, Korkaya H, Oberoi R et al. The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase[J]. J Biol Chem, 2004, 279(27):28345-28357.
    [99] Huynen M, Snel B, Lathe W, 3rd et al. Predicting protein function by genomic context: quantitative evaluation and qualitative inferences[J]. Genome Res, 2000, 10(8): 1204-1210.
    [100] von Mering C, Krause R, Snel B et al. Comparative assessment of large-scale data sets of protein-protein interactions[J]. Nature, 2002,417(6887):399-403.
    [101] Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae[J]. Nature, 2000,403(6770):623-627.
    [102] Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome[J]. Proc Natl Acad Sci U S A, 2001,98(8):4569-4574.
    [103] Hazbun TR, Fields S. Networking proteins in yeast[J]. Proc Natl Acad Sci U S A, 2001, 98(8):4277-4278.
    
    [104] Formstecher E, Aresta S, Collura V et al. Protein interaction mapping: a Drosophila case study[J].Genome Res,2005,15(3):376-384.
    [105]Giot L,Bader JS,Brouwer C et al.A protein interaction map of Drosophila melanogaster[J].Science,2003,302(5651):1727-1736.
    [106]Viswanathan R.Epidemiology[J].Indian J Med Res,1957,45(Suppl.):1-29.
    [107]Wong DC,Purcell RH,Sreenivasan MA et al.Epidemic and endemic hepatitis in India:evidence for a non-A,non-B hepatitis virus aetiology[J].Lancet,1980,2(8200):876-879.
    [108]Khuroo MS.Study of an epidemic of non-A,non-B hepatitis.Possibility of another human hepatitis virus distinct from post-transfusion non-A,non-B type[J].Am J Med,1980,68(6):818-824.
    [109]Dawson G J,Chau KH,Cabal CM et al.Solid-phase enzyme-linked immunosorbent assay for hepatitis E virus IgG and IgM antibodies utilizing recombinant antigens and synthetic peptides[J].J Virol Methods,1992,38(1):175-186.
    [110]Pringle CR.Virus taxonomy-1999.The universal system of virus taxonomy,updated to include the new proposals ratified by the International Committee on Taxonomy of Viruses during 1998[J].Arch Virol,1999,144(2):421-429.
    [111]Worm HC,van der Poel WH,Brandstatter G.Hepatitis E:an overview[J].Microbes Infect,2002,4(6):657-666.
    [112]Arora NK,Panda SK,Nanda SK et al.Hepatitis E infection in children:study of an outbreak[J].J Gastroenterol Hepatol,1999,14(6):572-577.
    [113]Naik SR,Aggarwal R,Salunke PN et al.A large waterborne viral hepatitis E epidemic in Kanpur,India[J].Bull World Health Organ,1992,70(5):597-604.
    [114]Velasquez O,Stetler HC,Avila C et al.Epidemic transmission of enterically transmitted non-A,non-B hepatitis in Mexico,1986-1987.[J].Jama,1989,263(3):3281-3285.
    [115]庄辉,朱万乎,李凡.我国戊型肝炎研究进展[J].中华微生物学和免疫学杂志,1999,19(5):448-450.
    [116]Purcell RH,EmersonSU.Hepatitis E virus.I//Knipe DM,Roizman B,Howley PM et al.(eds) Fields Virology[C],4th edn.Philadelphia:Lippincott,Williams and Wiikins,2001:
    [117]Khuroo MS,Teli MR,Skidmore S et al.Incidence and severity of viral hepatitis in pregnancy[J].Am J Med,1981,70(2):252-255.
    [118]Jaiswai SP,Jain AK,Naik G et al.Viral hepatitis during pregnancy[J].Int J Gynaecol Obstet,2001,72(2):103-108.
    [119]郑英杰,张军,夏宁邵.戊型肝炎是否一种人畜共患病?[J].中国人兽共患病杂志,2003,72(2):103-108.
    [120]Tei S,Kitajima N,Takahashi K et al.Zoonotic transmission of hepatitis E virus from deer to human beings[J].Lancet,2003,362(9381):371-373.
    [121]Tam AW,Smith MM,Guerra ME et al.Hepatitis E virus(HEV):molecular cloning and sequencing of the full-length viral genome[J].Virology,1991,185(1):120-131.
    [122]Tam AW,White R,Reed E et al.In vitro propagation and production of hepatitis E virus from in vivo-infected primary macaque hepatocytes[J].Virology,1996,215(1):1-9.
    [123]Kabrane-Lazizi Y,Meng XJ,Purcell RH et al.Evidence that the genomic RNA of hepatitis E virus is capped[J].J Virol,1999,73(10):8848-8850.
    [124]Magden J,Takeda N,Li T et al.Virus-specific mRNA capping enzyme encoded by hepatitis E virus[,l].J Virol,2001,75(14):6249-6255.
    [125]Torresi J,Li F,Locarnini SA et al.Only the non-glycosylated fraction of hepatitis E virus capsid(open reading frame 2) protein is stable in mammalian cells[,l].J Gen Virol,1999,80(Pt 5)(1185-1188.
    [126]Panda SK,Nanda SK,Zafrullah M et al.An Indian strain of hepatitis E virus(HEV):cloning,sequence,and expression of structural region and antibody responses in sera from individuals from an area of high-level HEV endemicity[J].J Clin Microbiol,1995,33(10):2653-2659.
    [127]Li F,Torresi J,Locarnini SA et ai.Amino-terminal epitopes are exposed when full-length open reading frame 2 of hepatitis E virus is expressed in Escherichia coil,but carboxy-terminal epitopes are masked[J].J Med Virol,1997,52(3):289-300.
    [128]Anderson DA,Li F,Riddeii Met al.EL1SA for IgG-class antibody to hepatitis E virus based on a highly conserved,conformational epitope expressed in Escherichia coli[J].J Virol Methods,1999,81(1-2):131-142.
    [129]Li F,Riddell MA,Seow HF et al.Recombinant subunit ORF2.1 antigen and induction of antibody against immunodominant epitopes in the hepatitis E virus capsid protein[J].J Med Virol,2000,60(4):379-386.
    [130]Purdy MA,McCaustland KA,Krawczynski K et al.Expression of a hepatitis E virus (HEV)-trpE fusion protein containing epitopes recognized by antibodies in sera from human cases and experimentally infected primates[J]. Arch Virol, 1992, 123(3-4):335-349.
    [131] Tsarev SA, Tsareva TS, Emerson SU et al. ELISA for antibody to hepatitis E virus (HEV) based on complete open-reading frame-2 protein expressed in insect cells: identification of HEV infection in primates[J]. J Infect Dis, 1993, 168(2):369-378.
    [132] Hepatitis E among U.S. travelers, 1989-1992[J]. MMWR Morb Mortal Wkly Rep, 1993, 42(1): 1-4.
    [133] He J, Ching WM, Yarbough P et al. Purification of a baculovirus-expressed hepatitis E virus structural protein and utility in an enzyme-linked immunosorbent assay[J]. J Clin Microbiol, 1995, 33(12):3308-3311.
    [134] Zhang Y, McAtee P, Yarbough PO et al. Expression, characterization, and immunoreactivities of a soluble hepatitis E virus putative capsid protein species expressed in insect cells[J]. Clin Diagn Lab Immunol, 1997,4(4):423-428.
    [135] Li TC, Yamakawa Y, Suzuki K et al. Expression and self-assembly of empty virus-like particles of hepatitis E virus[J]. J Virol, 1997, 71(10):7207-7213.
    [136] Robinson RA, Burgess WH, Emerson SU et al. Structural characterization of recombinant hepatitis E virus ORF2 proteins in baculovirus-infected insect cells[J]. Protein Expr Purif, 1998,12(1):75-84.
    [137] Zafrullah M, Ozdener MH, Kumar R et al. Mutational analysis of glycosylation, membrane translocation, and cell surface expression of the hepatitis E virus ORF2 protein[J]. J Virol, 1999, 73(5):4074-4082.
    [138] Carl M, Isaacs SN, Kaur M et al. Expression of hepatitis E virus putative structural proteins in recombinant vaccinia viruses[J]. Clin Diagn Lab Immunol, 1994, 1(2):253-256.
    [139] Jameel S, Zafrullah M, Ozdener MH et al. Expression in animal cells and characterization of the hepatitis E virus structural proteins[J]. J Virol, 1996, 70(1):207-216.
    [140] Torresi J, Meanger J, Lambert P et al. High level expression of the capsid protein of hepatitis E virus in diverse eukaryotic cells using the Semliki Forest virus replicon[J]. J Virol Methods, 1997, 69(1-2):81-91.
    [141]Xiaofang L,Zafrullah M,Ahmad F et al.A C-Terminal Hydrophobie Region is Required for Homo-Oligomerization of the Hepatitis E Virus Capsid(ORF2) Protein[J].J Biomed Biotechnol,2001,1(3):122-128.
    [142]Korkaya H,Jameel S,Gupta D et al.The ORF3 protein of hepatitis E virus binds to Src homology 3 domains and activates MAPK[J].J Biol Chem,2001,276(45):42389-42400.
    [143]Tyagi S,Korkaya H,Zafrullah Met al.The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein,ORF2[J].J Biol Chem,2002,277(25):22759-22767.
    [144]Tam AW,White R,Yarbough PO et al.In vitro infection and replication of hepatitis E virus in primary cynomolgus macaque hepatocytes[J].Virology,1997,238(1):94-102.
    [145]Huang RT,Li DR,Wei J et al.Isolation and identification of hepatitis E virus in Xinjiang,China[J].J Gen Virol,1992,73(Pt 5)(1143-1148.
    [146]Wei S,Walsh P,Huang R et al.93G,a novel sporadic strain of hepatitis E virus in South China isolated by cell culture[J].J Med Virol,2000,61(3):311-318.
    [147]Meng J,Pillot J,Dai X et al.Neutralization of different geographic strains of the hepatitis E virus with anti-hepatitis E virus-positive serum samples obtained from different sources[J].Virology,1998,249(2):316-324.
    [148]Meng J,Dubreuil P,Pillot J.A new PCR-based seroneutralization assay in cell culture for diagnosis of hepatitis E[J].J Clin Microbiol,1997,35(6):1373-1377.
    [149]乐耕耘,吴娟,马雁冰等.戊型肝炎病毒在人胚肺二倍体细胞Kmb17等传代细胞中的繁殖[J].中国医学科学院学报,2001,23(6):590-593.
    [150]Emerson SU,Clemente-Casares P,Moiduddin N et al.Putative neutralization epitopes and broad cross-genotype neutralization of Hepatitis E virus confirmed by a quantitative cell-culture assay[J].J Gen Virol,2006,87(Pt 3):697-704.
    [151]Thakral D,Nayak B,Rehman Set al.Replication of a recombinant hepatitis E virus genome tagged with reporter genes and generation of a short-term cell line producing viral RNA and proteins[J].J Gen Virol,2005,86(Pt 4):1189-1200.
    [152]Panda SK,Ansari IH,Durgapai H et al.The in vitro-synthesized RNA from a cDNA clone of hepatitis E virus is infectious[J].J Virol,2000,74(5):2430-2437.
    [153]Huang YW,Haqshenas G,Kasorndorkbua C et al.Capped RNA transcripts of full-length cDNA clones of swine hepatitis E virus are replication competent when transfected into Huh7 cells and infectious when intrahepatically inoculated into pigs[J]. J Virol, 2005, 79(3):1552-1558.
    [154] Emerson SU, Nguyen H, Graff J et al. In vitro replication of hepatitis E virus (HEV) genomes and of an HEV replicon expressing green fluorescent protein[J]. J Virol, 2004, 78(9):4838-4846.
    [155] Emerson SU, Nguyen H, Torian U et al. ORF3 protein of hepatitis E virus is not required for replication, virion assembly or infection of hepatoma cells in vitro[J]. J Virol, 2006,
    [156] Khudyakov Yu E, Favorov MO, Jue DL et al. Immunodominant antigenic regions in a structural protein of the hepatitis E virus[J]. Virology, 1994,198(1):390-393.
    [157] Khudyakov YE, Lopareva EN, Jue DL et al. Antigenic domains of the open reading frame 2-encoded protein of hepatitis E virus[J]. J Clin Microbiol, 1999, 37(9):2863-2871.
    [158] Xing L, Kato K, Li T et al. Recombinant hepatitis E capsid protein self-assembles into a dual-domain T = 1 particle presenting native virus epitopes[J]. Virology, 1999, 265(1):35-45.
    
    [159] Riddell MA, Li F, Anderson DA. Identification of immunodominant and conformational epitopes in the capsid protein of hepatitis E virus by using monoclonal antibodies[J]. J Virol, 2000, 74(17):8011-8017.
    
    [160] Schofield DJ, Glamann J, Emerson SU et al. Identification by phage display and characterization of two neutralizing chimpanzee monoclonal antibodies to the hepatitis E virus capsid protein[J]. J Virol, 2000, 74(12):5548-5555.
    [161] Zhang M, Emerson SU, Nguyen H et al. Immunogenicity and protective efficacy of a vaccine prepared from 53 kDa truncated hepatitis E virus capsid protein expressed in insect cells[J]. Vaccine, 2001, 20(5-6):853-857.
    [162] Meng J, Dai X, Chang JC et al. Identification and characterization of the neutralization epitope(s) of the hepatitis E virus[J]. Virology, 2001, 288(2):203-211.
    [163] Li SW, Zhang J, He ZQ et al. Mutational analysis of essential interactions involved in the assembly of hepatitis E virus capsid[J]. J Biol Chem, 2005, 280(5):3400-3406.
    [164] Zhou YH, Purcell RH, Emerson SU. An EL1SA for putative neutralizing antibodies to hepatitis E virus detects antibodies to genotypes 1, 2, 3, and 4[J]. Vaccine, 2004, 22(20):2578-2585.
    [165]Zhang JZ,Ng MH,Xia NS et al.Conformational antigenic determinants generated by interactions between a bacterially expressed recombinant peptide of the hepatitis E virus structural protein[J].J Med Virol,2001,64(2):125-132.
    [166]李少伟,张军,何志强等.大肠杆菌表达的戊型肝炎病毒Orf2片段的聚合现象研究[J].生物工程学报,2002,18(04):463-467.
    [167]李新兰,任晖,梁新海等.感染戊型肝炎10年后患者血清抗病毒抗体的检测[J].地方病通报,2002,17(03):14-17.
    [168]Zhang J,Ge SX,Huang GY et al.Evaluation of antibody-based and nucleic acid-based assays for diagnosis of hepatitis E virus infection in a rhesus monkey model[J].J Med Virol,2003,71(4):518-526.
    [169]葛胜祥,张军,彭耿等.基于多聚化重组抗原的检测戊型肝炎病毒lgM与IgG抗体的ELISA的建立及初步评估[J].病毒学报,2003,19(01):74-82.
    [170]葛胜祥,张军,黄果勇等.大肠杆菌表达的戊型肝炎病毒Orf2多肽对恒河猴的免疫保护研究[J].微生物学报,2003,43(01):36-43.
    [171]顾颖,葛胜祥,黄果勇等.戊型肝炎病毒中和性单克隆抗体的鉴定[J].病毒学报,2003,19(3):217-223.
    [172]Zhang J,Gu Y,Ge SX et ai.Analysis of hepatitis E virus neutralization sites using monoclonal antibodies directed against a virus capsid protein[J].Vaccine,2005,23(22):2881-2892.
    [173]何志强,张军,李少伟等.颗粒化重组戊型肝炎病毒农壳蛋白及其抗原性与免疫原性[J].生物工程学报,2004,20(02):262-268.
    [174]张军,李益民,李少伟等.大肠杆菌重组颗粒性戊型肝炎疫苗对恒河猴的免疫保护[J].病毒学报,2004,20(01):1-6.
    [175]张军,顾颖,欧山海等.戊型肝炎病毒农壳蛋白中和表位间的构象诱导[J].病毒学报,2004,20(2):104-109.
    [176]萨姆布鲁克 J,弗里奇EF,曼尼阿蒂斯T.分子克隆操作指南[M],第二版.北京:科学出版社,,1998.
    [177]Emerson SU,Arankalle VA,Purcell RH.Thermal stability of hepatitis E virus[J].J Infect Dis,2005,192(5):930-933.
    [178] Ahn JM, Kang SG, Lee DY et al. Identification of novel human hepatitis E virus (HEV) isolates and determination of the seroprevalence of HEV in Korea[J]. J Clin Microbiol, 2005, 43(7):3042-3048. [179] Flynn GC, Chappell TG, Rothman JE. Peptide binding and release by proteins implicated as catalysts of protein assembly[J]. Science, 1989, 245(4916):385-390.
    
    [180] Munro S, Pelham HR. An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein[J]. Cell, 1986, 46(2):291-300.
    [181] Palleros DR, Reid KL, Shi L et al. ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis[J]. Nature, 1993, 365(6447):664-666.
    [182] Thomson BJ. Viruses and apoptosis[J]. Int J Exp Pathol, 2001, 82(2):65-76.
    [183] Murphy PM. Viral exploitation and subversion of the immune system through chemokine mimicry [J]. Nat Immunol, 2001, 2(2): 116-122.
    
    [184] Goodbourn S, Didcock L, Randall RE. Interferons: cell signalling, immune modulation, antiviral response and virus countermeasures[J]. J Gen Virol, 2000, 81(Pt 10):2341-2364.
    [185] Chisari FV. Cytotoxic T cells and viral hepatitis[J]. J Clin Invest, 1997, 99(7): 1472-1477.
    [186] Masuhara M, Yasunaga M, Tanigawa K et al. Expression of hepatocyte growth factor, transforming growth factor alpha, and transforming growth factor beta 1 messenger RNA in various human liver diseases and correlation with hepatocyte proliferation[J]. Hepatology, 1996, 24(2):323-329.
    [187] Taub R. Liver regeneration 4: transcriptional control of liver regeneration[J]. Faseb J, 1996, 10(4):413-427.
    [188] Inui T, Shinomiya N, Fukasawa M et al. Telomerase activation and MAPK pathways in regenerating hepatocytes[J]. Hum Cell, 2001, 14(4):275-282.
    [189] Davis RJ. Signal transduction to the nucleus by MAP kinase. I// Gutkind JS (ed) Signalling Networks and Cell Cycle Control: The Molecular Basis of Cancer and other Diseases.[C]. Totowa, NJ: Humana Press, 2000: 153-164.
    [190] Shimamura A, Ballif BA, Richards SA et al. Rskl mediates a MEK-MAP kinase cell survival signal[J]. Curr Biol, 2000, 10(3): 127-135.
    
    [191] Panteva M, Korkaya H, Jameel S. Hepatitis viruses and the MAPK pathway: is this a survival strategy?[J]. Virus Res, 2003, 92(2): 131-140.
    [192] Balasubramanian A, Ganju RK, Groopman JE. Hepatitis C virus and HIV envelope proteins collaboratively mediate interleukin-8 secretion through activation of p38 MAP kinase and SHP2 in hepatocytes[J]. J Biol Chem, 2003, 278(37):35755-35766.
    [193] Major ME, Rehermann B, Feinstone M. Hepatitis C viruses. I// Knipe DM, Howley PM (eds) Field's Virology[C], fourth edn. Phladelphia, PA: Lippincott, Williams and Wilkins, 2001: 1127-1161.
    [194] Hollinger FB, Liang TJ. Hepatitis B virus. I// Knipe DM, Howley PM (eds) Field's Virology[C], fourth edn. Philadelphia, PA: Lippincott, Willliams and Wilkins, 2001: 2971-3036.
    [195] Hartl FU. Molecular chaperones in cellular protein folding[J]. Nature, 1996, 381(6583):571-579.
    [196] Choukhi A, Ung S, Wychowski C et al. Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins[J]. J Virol, 1998, 72(5):3851-3858.
    [197] Craig EA, Gambill BD, Nelson RJ. Heat shock proteins: molecular chaperones of protein biogenesis[J]. Microbiol Rev, 1993, 57(2):402-414.
    [198] Earl PL, Moss B, Doms RW. Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein[J]. J Virol, 1991, 65(4):2047-2055.
    [199] Gaudin Y. Folding of rabies virus glycoprotein: epitope acquisition and interaction with endoplasmic reticulum chaperones[J]. J Virol, 1997, 71(5):3742-3750.
    [200] Hurtley SM, Bole DG, Hoover-Litty H et al. Interactions of misfolded influenza virus hemagglutinin with binding protein (BiP)[J]. J Cell Biol, 1989, 108(6):2117-2126.
    [201] Mulvey M, Brown DT. Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope glycoproteins[J]. J Virol, 1995, 69(3): 1621-1627.
    [202] Brodsky JL, Schekman R. Heat shock cognate proteins and polypeptide translocation across the endoplasmic reticulum membrane. I// Marimot R, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones.[C]. New York: Cold Spring Harbor Laboratory Press, 1994: 85-109.
    [203] Gething MJ, Blond-Elguindi S, Mori K et al. Structure, function , and regulation of the endoplasmic reticulum chaperone, Bip. I// Marimoto RI, Tissieres A, Georgopoulos C (eds) The biology of heat shock proteins and molecular chaperones.[C]. New York: Cold Spring Harbor Laboratory Press, 1994: 111-135.
    
    [204] Chappell TG, Welch WJ, Schlossman DM et al. Uncoating ATPase is a member of the 70 kilodalton family of stress proteins[J]. Cell, 1986,45(1):3-13.
    [205] Hong S, Choi G, Park S et al. Type D retrovirus Gag polyprotein interacts with the cytosolic chaperonin TRiC[J]. J Virol, 2001, 75(6):2526-2534.
    
    [206] Lingappa JR, Hill RL, Wong ML et al. A multistep, ATP-dependent pathway for assembly of human immunodeficiency virus capsids in a cell-free system[J]. J Cell Biol, 1997, 136(3):567-581.
    [207] Gurer C, Cimarelli A, Luban J. Specific incorporation of heat shock protein 70 family members into primate lentiviral virions[J]. J Virol, 2002, 76(9):4666-4670.
    [208] Macejak DG, Luftig RB. Association of HSP70 with the adenovirus type 5 fiber protein in infected HEp-2 cells[J]. Virology, 1991, 180(1):120-125.
    [209] Macejak DG, Sarnow P. Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells[J]. J Virol, 1992, 66(3): 1520-1527.
    [210] Cripe TP, Delos SE, Estes PA et al. In vivo and in vitro association of hsc70 with polyomavirus capsid proteins[J]. J Virol, 1995, 69(12):7807-7813.
    [211] Santoro MG. Heat shock proteins and virus replication: hsp70s as mediators of the antiviral effects of prostaglandins[J]. Experientia, 1994, 50(11-12): 1039-1047.
    [212] Wainberg Z, Oliveira M, Lerner S et al. Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-l[J]. Virology, 1997, 233(2):364-373.
    [213] Hu J, Seeger C. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase[J]. Proc Natl Acad Sci U S A, 1996, 93(3): 1060-1064.
    [214] Park SG, Jung G. Human hepatitis B virus polymerase interacts with the molecular chaperonin Hsp60[J]. J Virol, 2001, 75(15):6962-6968.
    
    [215] Nozawa N, Yamauchi Y, Ohtsuka K et al. Formation of aggresome-like structures in herpes simplex virus type 2-infected cells and a potential role in virus assembly [J]. Exp Cell Res, 2004, 299(2):486-497.
    [216] Guzhova IV, Arnholdt AC, Darieva ZA et al. Effects of exogenous stress protein 70 on the functional properties of human promonocytes through binding to cell surface and internalization[J]. Cell Stress Chaperones, 1998, 3(1):67-77.
    [217] Multhoff G, Botzler C, Jennen L et al. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells[J]. J Immunol, 1997, 158(9):4341-4350.
    [218] Takashima S, Sato N, Kishi A et al. Involvement of peptide antigens in the cytotoxicity between 70-kDa heat shock cognate protein-like molecule and CD3+, CD4-, CD8-, TCR-alpha beta-killer Tcells[J].J Immunol, 1996, 157(8):3391-3395.
    [219] Tamura Y, Tsuboi N, Sato N et al. 70 kDa heat shock cognate protein is a transformation-associated antigen and a possible target for the host's anti-tumor immunity[J]. J Immunol, 1993, 151(10):5516-5524.
    [220] Tsuboi N, Ishikawa M, Tamura Y et al. Monoclonal antibody specifically reacting against 73-kilodalton heat shock cognate protein: possible expression on mammalian cell surface[J]. Hybridoma, 1994, 13(5):373-381.
    [221] Delpino A, Castelli M. The 78 kDa glucose-regulated protein (GRP78/BIP) is expressed on the cell membrane, is released into cell culture medium and is also present in human peripheral circulation[J]. Biosci Rep, 2002,22(3-4):407-420.
    [222] Triantafilou M, Fradelizi D, Triantafilou K. Major histocompatibility class one molecule associates with glucose regulated protein (GRP) 78 on the cell surface[J]. Hum Immunol, 2001,62(8):764-770.
    [223] Jumars PA, Martinez Del Rio C. The tau of continuous feeding on simple foods[J]. Physiol Biochem Zool, 1999, 72(5):633-641.
    [224] Shin BK, Wang H, Yim AM et al. Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function[J]. J Biol Chem, 2003, 278(9):7607-7616.
    [225] Asea A, Kraeft SK, Kurt-Jones EA et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine[J]. Nat Med, 2000,6(4):435-442.
    
    [226] Botzler C, Issels R, Multhoff G. Heat-shock protein 72 cell-surface expression on human lung carcinoma cells in associated with an increased sensitivity to lysis mediated by adherent natural killer cells[J]. Cancer Immunol Immunother, 1996, 43(4):226-230.
    [227] Botzler C, Li G, Issels RD et al. Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response[J]. Cell Stress Chaperones, 1998, 3(1):6-11.
    [228] Botzler C, Schmidt J, Luz A et al. Differential Hsp70 plasma-membrane expression on primary human tumors and metastases in mice with severe combined immunodeficiency [J]. Int J Cancer, 1998, 77(6):942-948.
    [229] Di Cesare S, Poccia F, Mastino A et al. Surface expressed heat-shock proteins by stressed or human immunodeficiency virus (HlV)-infected lymphoid cells represent the target for antibody-dependent cellular cytotoxicity[J]. Immunology, 1992, 76(2):341-343.
    [230] Ishiyama T, Koike M, Akimoto Y et al. Heat shock-enhanced T cell apoptosis with heat shock protein 70 on T cell surface in multicentric Castleman's disease[J]. Clin Exp Immunol, 1996, 106(2):351-356.
    [231] Wallace GR, Ball AE, MacFarlane J et al. Mapping of a visceral leishmaniasis-specific immunodominant B-cell epitope of Leishmania donovani Hsp70[J]. Infect Immun, 1992, 60(7):2688-2693.
    [232] Deshaies RJ, Koch BD, Schekman R. The role of stress proteins in membrane biogenesis[J]. Trends Biochem Sci, 1988, 13(10):384-388.
    
    [233] Arnold D, Faath S, Rammensee H et al. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96[J]. J Exp Med, 1995, 182(3):885-889.
    [234] Birk OS, Gur SL, Elias D et al. The 60-kDa heat shock protein modulates allograft rejection[J]. Proc Natl Acad Sci U S A, 1999, 96(9):5159-5163.
    
    [235] Ciupitu AM, Petersson M, O'Donnell CL et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes[J]. J Exp Med, 1998, 187(5):685-691.
    
    [236] Isa P, Realpe M, Romero P et al. Rotavirus RRV associates with lipid membrane microdomains during cell entry[J]. Virology, 2004, 322(2):370-381.
    
    [237] Crill WD, Roehrig JT. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells[J].J Virol,2001,75(16):7769-7773.
    [238]Prodromou C,Roe SM,O'Brien R et al.Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone[J].Cell,1997,90(1):65-75.
    [239]Reyes-Del Valle J,Chavez-Salinas S,Medina F et al.Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells[J].J Virol,2005,79(8):4557-4567.
    [240]Momose F,Naito T,Yano K et al.Identification of Hsp90 as a stimulatory host factor involved in influenza virus RNA synthesis[J].J Biol Chem,2002,277(47):45306-45314.
    [241]Cho G,Park SG,Jung G.Localization of HSP90 binding sites in the human hepatitis B virus polymerase[J].Biochem Biophys Res Commun,2000,269(1):191-196.
    [242]Hu J,Anselmo D.In vitro reconstitution of a functional duck hepatitis B virus reverse transcriptase:posttranslational activation by Hsp90[J].J Virol,2000,74(24):11447-11455.
    [243]Sumanasekera WK,Yien ES,Turpey R et al.Evidence that peroxisome proliferator-activated receptor alpha is complexed with the 90-kDa heat shock protein and the hepatitis virus B X-associated protein 2[J].J Biol Chem,2003,278(7):4467-4473.
    [244]Hu J,Fiores D,Toft D et ai.Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function[J].J Virol,2004,78(23):13122-13131.
    [245]Okamoto T,Nishimura Y,Ichimura T et al.Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90[J].Embo J,2006,25(20):5015-5025.
    [246]Burch AD,Weller SK.Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus[J].J Virol,2005,79(16):10740-10749.
    [247]Gober MD,Wales SQ,Aurelian L.Herpes simplex virus type 2 encodes a heat shock protein homologue with apoptosis regulatory functions[J].Front Biosci,2005,10(2788-2803.
    [248]孙水平,吴胜利,耿智敏等.肝细胞肝癌中HSP90的表达及意义[J].中国普外基础与临床杂志,2003,10(3):243-246.
    [249]Yao DF,Wu XH,Su XQ et al.Abnormal expression of HSP gp96 associated with HBV replication in human hepatoceilular carcinoma[J].Hepatobiliary Pancreat Dis lnt,2006,5(3):381-386.
    [250]蒋业贵,王宇明.慢性已型肝炎肝组织中HSP27、70和90α的表达及意义[J].肝脏,2003,8(4):39-41.
    [251]Lim SO,Park SG,Yoo JH et al.Expression of heat shock proteins(HSP27,HSP60,HSP70,HSP90,GRP78,GRP94) in hepatitis B virus-related hepatocellular carcinomas and dysplastic nodules[J].World J Gastroenterol,2005,11(14):2072-2079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700