用户名: 密码: 验证码:
深层超高温储层压裂改造关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着世界对能源需求量的不断增加和勘探技术的进步,油气资源勘探开发不断向纵深发展越来越多的主要勘探目的层呈现全面下沉的趋势,井深大于4500m,温度超过170℃的异常高温深井数日益增多。压裂作为这类储层最为有效的增产措施,也受到国内外越来越为广泛的关注。然而深部层系的高温高压也给油气层改造带来了更多地困难,耐高温压裂液(180℃以上)、超高温储层的压裂设计理论与技术不配套及大型压裂规模优化等一系列问题,已经成为制约这类油气田勘探开发效益实现的“瓶颈”。本文针对制约深层超高温储层的一些关键理论和技术展开较为系统和深入的研究,取得了以下主要成果:
     1、在调研剖析国外超高温压裂液体系的配方特征与性能指标的基础上,完成了超高温压裂液的单剂开发和实验综合评价,研究了满足深层、超高温储层压裂要求的低伤害压裂液体系,形成了满足190℃的压裂液配方。
     (1)在0.1%~0.6%交联比条件下:高温压裂液样品温度上升至40~50℃后,交联速度加快,粘度增加。温度达到120℃后,其粘度有大幅度提升,在中温区间显示出与常规压裂液体系相反的粘温特征。
     (2)HAAKE RS600流变测试最佳交联比搜索结果显示,该超高温压裂液最佳交联比范围为0.2%~0.3%。
     (3)180~200℃压裂液的粘度-温度实验结果显示,180℃时,0.55%GHPG粘度为164.5mPa.s,0.60%GHPG粘度为332.8mPa.s。
     (4)180~200℃压裂液的粘度-时间实验结果显示,在最佳交联比下,180℃、170s~(-1)连续剪切120min后其粘度仍然保持在90~100 mPa.s;190℃、170s~(-1)连续剪切120min后其粘度仍然保持在70~80mPa.s;198℃、170s~(-1)连续剪切120min后其粘度仍然保持在60-90mPa.s。实验显示出极其优异的抗温抗剪切性能,完全能满足超高温、超深层储层的加砂压裂改造施工要求。
     (5)超高温压裂液冻胶在180℃、50ppm破胶剂作用下:剪切50min后,粘度降低至20mPa.s:剪切70min后,粘度降低为10mPa.s。
     (6)破胶液表面张力为28.4mN/m,固相残渣为587 mg/L,残渣含量略高于普通压裂液。
     2、延迟交联实验表明,GHPG冻胶粘度第一拐点在4min左右,此时体系为局部交联呈线性结构,具有较强的流动性和低摩阻特性。第二拐点为8~10min左右,体系为网状结构,粘弹性很高,呈现“挑舌”特征。
     3、LOOP环流摩阻实验测试结果表明,80℃、76mm施工管柱、4~6m~3/min排量条件下,超高温压裂液摩阻与清水摩阻相比,降阻率为30%-46%。
     4、闭合压力为20.7~82.7MPa下,破胶液对支撑裂缝伤害率小于20%。
     5、基于井筒温度场和裂缝温度场计算模型,完成了超高温压裂改造的破胶剂用量优化设计。
     6、利用测井资料、岩石力学实验参数和实际施工资料,获得了丰深区块纵向地应力剖面,建立了超深储层地层破裂压力预测方法和超深储层井口压力预测模型。
     7、建立了压裂液返排中的支撑剂回流力学模型和裂缝闭合后的临界返排流速模型,实现了定量确定压裂返排参数和放喷油嘴尺寸的优化选择,并提出了支撑剂回流的控制技术和方法。
In recent years, with the growing demand and improvement of exploration technology, the exploratory development of hydrocarbon resources further develop in depth. More and more main exploration targets have the overall trend of sinking, the well depth is more than 4500m, the number of the abnormal high temperature deep wells which are more than 170℃is increasing. As the most effective stimulation for this type of reservoir, fracturing has got comprehensive attention both here and abroad. But the high temperature and high pressure of the deep layer bring more difficulty to the improvement of reservoir. High temperature fracture fluid(more than 180℃), the discrepancy of fracturing design philosophy and technology, the scale optimization of big-frac treatment constraint the exploratory development of this reservoir. This paper study some key theory and technology on abnormal high temperature deep reservoir, the main results are as follows:
     1.On the basis of analysing the formulation characteristics and performance indicators of the ultra-high temperature fracturing fluid abroad, we develop the agent of ultra-high temperature fracturing fluid, finish the experiment comprehensive evaluation, develop the low damage fracturing fluid system which is suitable for ultra-high temperature reservoir fracturing and fracturing fluid which could be used in the case of 190℃.
     (1) Under the conditions of 0.1 %~0.6% cross linking ratio, the cross linking speed and the viscosity will increase after the temperature of the high temperature fracturing fluid sample rising to 40~50℃. As the temperature reach 120℃, the viscosity will increase significantly and show the viscosity-temperature characteristic which is in contrast with the conventional fracturing fluid system in the medium temperature zone.
     (2) The result of HAAKE RS600 theological test shows that, the rage of the best cross liking ratio of the ultra-high temperature fracturing fluid is 0.2%~0.3%.
     (3) The result of the 180~200℃fracturing fluid viscosity-temperature experiment shows that the viscosity of the 0.55% GHPG is 164.5mPa.s and the viscosity of the 0.60%GHPG is 332.8 mPa.s when the temperature is 180℃.
     (4) The result of the 180~200℃fracturing fluid viscosity-time experiment shows that in the best cross linking ratio the viscosity remains at 90~100mPa.s after 120 min 180℃、170s-1 continuous shearing, the viscosity remains at 70~80mPa.s after 120 min 190℃、170s-1 continuous shearing and the viscosity remains at 60~90mPa.s after 120 min 198℃、170s-1 continuous shearing. The fluid have excellent heat-resisting property and shear performance which meet the requirements of the sand fracturing for the ultra-high temperature deep reservoir.
     (5) The ultra-high temperature fracturing fluid jel under the action of 180℃, 50ppm breaker, the viscosity will reduce to 20mPa.s after 50min shearing and the viscosity will reduce to 10mPa.s after 70min shearing.
     (6) The serface tension of breaker is 28.4mN/m, the solid residue is 587mg/L, the content of the residue is a little more than common fracturing fluid.
     2.The delay cross linking experiment shows that, the first inflection point of the GHPG gel viscosity is about 4 min, the system is partial cross linking and it has linear structure, strong liquidity and low friction. The second inflection point is about 8~10min, the system is reticulation and the viscoelasticity is high.
     3.The result of the LOOP circulation friction experiment shows that under the conditions of 80℃, 76mm operating tool string and 4~6m3/min discharge capacity, compare the friction of ultra-high temperature fracture fluid with the friction of clear water, the drag reduction rate of the former is 30%~40%.
     4.When the shut-in pressure is under 20.7~82.7Mpa the damage rate of breaker to fracture is less than 20%.
     5.Finish optimum the amount of breaker desigh for the ultra-high temperature fracturing on the basis of wellbore temperature field and fracturing temperature field calculation model.
     6.According to the well-log information, rock mechanics experimental parameter and actural construction data, we get longitudinal stress profile of Fengshen block, establish the breakdown pressure of ultra-deep reservoir prediction method and the surface pressure prediction model.
     7.Establish the proppant return mechanical model in the flowback of fracturing fluid and critical flow-back model after the closing of fracture, realize quantifying the fracturing flowback parameter and choose the best blowout choke size and present the control technique for proppant return.
引文
[1]康竹林.中国深层天然气勘探前景[J].天然气工业,2000,20(5):124.
    [2]王涛.中国深盆气田[M].北京:石油工业出版社,2002.
    [3]王金琪.中国大型致密砂岩含气区展望[J].天然气工业,2000,20(1):10-16.
    [4]黄辉,谭明文,张绍彬等.川西深层须家河组气藏压裂改造难点和工艺技术对策[J].钻采工艺,2004,27(5):27-30.
    [5]M.J.Mayerhofer.Results of U.S.Department of Energy Deep Gas Well Stimulation Study[C].SPE95639.
    [6]Weijers,L.G.Griffin.The First Successful Fracture Treatment CaMPaign Conducted in Japan:Stimulation Challenges in a Deep,Naturally Fractured Volcanic Rock[C].SPE77678.
    [7]L.Weijers,L.G.Griffin.Hydraulic Fracturing in a,Deep,Naturally Fractured Volcanic Rock in Japan DesignConsiderations and Execution Results[C].SPE77823.
    [8]王振铎,代自勇,崔明月.超深井压裂工艺技术研究[J].石油钻采工艺,1996,18(6):54-59.
    [9]王晓泉,王振铎,卢拥军.全三维压裂设计软件在超深井压裂设计中的应用[J].天然气工业,1999,19(6):60-62.
    [10]D.C.Gardner and J.V.Eikerts.Rheological Characterization of Crosslinked and Delayed Crosslinked Viscometer Fracturing Fluids Using a Closed-Loop pipe Viscometer[C].SPE 12028.
    [11]Haimson,Bezalel C.and Edl,John N.Jr.:Hydraulic Fracturing of Deep Well[C].SPE4061,1972.
    [12]Brannon H D,Ault M G.New Delayed Borate-Crosslinked Fliud Provides Improved Fracture Conductivity in High-Temperature Applications[C].SPE 22838,1991.
    [13]Ainley B R,Card R J.High-Temperature,Borate Crosslinked Fracturing Fluids:A Comparison of Delay Methodology[C].SPE 25463,1993.
    [14]卢拥军.有机硼压裂液延迟交联特性研究[J].石油与天然气化工,1995,(02).
    [15]卢拥军.有机硼交联压裂液在高温深井中的应用[J].钻井液与完井液,1995,12(6):21-28.
    [16]LAGRON C C.Chemical evolution of a high-temperature facturing fuid[C].SPE 11794,1985:623-628.
    [17]赵福麟.采油用剂[M].山东东营:石油大学出版社,1997.
    [18]GulbiJ,赵以文.水基聚合物压裂液的胶囊破胶剂[J].油气田开发工程译丛,1991,(10):34-37.
    [19]郎学军,刘洪升,王俊英等.水力压裂工艺中的分段破胶技术[J].石油钻采工艺,2003,25(4):64-66.
    [20]范文敏,徐嫒.国外压后返排的理论研究与推荐做法[J].钻采工艺,2000,23(5):42-44.
    [21]Barree R D,Mukherjee H.Engineering criteria for fracture flowback procedures[C].SPE 29600,1995.
    [22]李中华,王永伟,陈中良等.水力压裂的快速破胶工艺技术的研究与应用[J].内蒙古石油化工,2003,29(3):139-140.
    [23]AndersonA J,Ashton P J N,LangJ.Production enhancement throught aggression flowback procedures in the codell fornation[C].SPE 36468,1996.
    [24]Eiclcmeier,Ersoy."Well bore Temperature and Hot Losses During Production or Injection Operations".21st Annual Rech.Meeting of Petroleum Society of C1M,Calgary,1970.
    [25]赵金洲等.井筒内液体温度分布规律的数值计算方法.石油钻采工艺,1986.8(3).
    [26]李平,王鸿勋.水力压裂过程中井筒温度的数值计算方法.石油学报.1987,8(2).
    [27]Wheeler."Analytical Calculation of Heat Transfer from Fractures".SPE2494.
    [28]Whistt,Dystart."The Effect of Temperature on Stimulation Design".J.P.T,1970.
    [29]Setteri,Cleary."Three-Dimensional Simulation of Hydraulic Fracturing".SPE10504.
    [30]Biot,Masse,Medlin."Temperature Analysis in Hydraulic Fracturing".SPE13228.
    [31]Naceur,Stephenson."Models of Heat Transfer in Hydraulic Fracturing" SPE/DOE13865.
    [32]Kamphuis,Davies,Roodhart."A New Simulator for the Calculation of the In-Situ Temperature Profile During Well Stimulation Fracturing Treatments".J.Can.Pet.Tech.1993,32(5):38-47.
    [33]马新仿等,全三维水力压裂过程中裂缝及近缝地层的温度计算模型.石油大学学报,2001,25(5):38-41.
    [34]W K Miller et al:In-stiu stress profiling and prediction of hydraulic fracture azimuth for the Canyon sands formation,Sonora and sawyer Field,Sutton county,Texas,SPE 21848.
    [35]N R Warpinski,L W Teufel:ln-situ stress measurement at Rainier Mesa,Nevada test site-Influene of topography and lithology on stress state in Tuff..Int.J.Rock Mech.,Min,Sci&Geomech.Abstract,V.28.No.213,10.
    [36]N R Warpinski,L W Teufel:In-situ stresses in low permeability,Non-marine rocks.SPE 16402.
    [37]B M Robinson et al:The Gas Research Institute second staged field experiment:A study of hydraulic fracturing.SPE 21459.
    [38]P R Sheorey:A theory for in-situ stress in isotropic and transversely isotropic rock.Int.J.Rock Mech.,Min,Sci.&Geomech,.Abstract,V.28.No.2/3.
    [39]J.Geertsma:The effect of fluid pressure decline on volumetric changes of porous rocks,RIME.210.1957,P331-340.
    [40]L W Teufel,D W Rhett&H E Farell:Effect of Reservoir Depletion and Pore Pressure Drowdown on In-situ Stress and Deformation in the Ekoffisk Field,North Sea,Rock Mechanics as a Multidisplianary Science,Roegiers,Balkerma,Roffordan.
    [41]Lesage Marc et al:Pore-pressure and Fracture-gradient Prediction.SPE 21607.W Thiercelin,1991.
    [42]李志明、张金珠:地应力与油气勘探开发,石油工业出版社.北京1998.
    [43]Yale:In-situ Stress Orientation and the Effects of Local Strueture-Sott Field,North Sea.SPE 28146,1994.
    [44]R.I.Keda:In-situ Stress Heterogeneity and Crack Density Distribution.Int.J.Rock Mech.Min.Sci.&Geomech.Abstract.Vol.30 No.7,1013-1018,1993.
    [45]Peska P,Zoback M D:Stress and Failure of Inclined Borehole.Published 1996 by Stanford University Department of Geophysics.
    [46]Peska P,Zoback M D:Compressive and Tensile Failure of Inclined Well and Determination of In-situ Stress and Rock Strength.JGR,1995.100:B7,12791-12811.
    [47]万仁溥主编:采油技术手册(九),石油工业出版社:北京,1989.
    [48]Newberry B.M:Prediction of Vertical Hydraulic Fracture Migration Using Compress ional and Shear Wave Slowness.SPE 13895.
    [49]M J Thiercelin&R A Plumb:A core-based prediction of lithologic stress contrasts in Ea Texas Formation SPE 21847.
    [50]M Prats:Effect of burial history on the subsurface horizontal stresses of formation having different material properties.SPEJ'Dec.1981.
    [51]孙均等:地下结构有限元法解析.国济大学出版社.上海,1988.
    [52]K.J.贝斯:工程分析中的有限元法.机械工业出版社.北京,1991.
    [53]郑宏等:关于岩土工程有限元分析中的若干问题.岩土力学,1995.No.3
    [54]张顺,林春明等:松辽盆地头台油田现代地应力场分布特征研究.高校地质学报,2001,No.2.
    [55]陶良军,冯兴武等:宝浪油田地应力和裂缝特征研究与应用.钻采工艺,2001,No.2.
    [56]王世泽:川西洛带构造蓬莱镇组地层现今地应力场特征.矿物岩石.
    [57]Chrisman S A:Offshore Fracture Gradient.JPT,1973,Aug.910-914.
    [58]胡博仲:大庆油田高含水稳产技术[M].石油工业出版社.北京.
    [59]Hubbert M K,Wills D G:Mechanics of Hydraulic Fracturing.Trans,AIME(1957),210,153-160.
    [60]B A Eaton:Fracture Gradient Prediction and Its Application in Oilfield Operation.JPT,Oct.1969,1353-1360.
    [61]B.A.Eaton.Fracture Gradient Prediction Techniques and their Application in Drilling,Stimulation,and Secondary Recovery Operations[C].SPE,2136.
    [62]梁何生等.一种地层破裂压力估算的方法及应用[J].石油钻探技术,1999,No.6.
    [63]Mattews W R,Kelly J:How to Predict Formation Pressure and Fracture Gradient from Electric and Sonic Logs.Oil&Gas Journal,Feb.20,267.
    [64]黄荣樽,一种新的地层破裂压力预测方法[J].石油钻采工艺,1986,8(3).
    [65]王兴文.薄层多层压裂应力剖面与压裂缝形态研究.西南石油大学博士学位论文,2007.
    [66]R.A.Anderson etal.determining Fracture Pressure Gradient from Well Logs,JPT,1973,11(1):1259-1268.
    [67]Holbrook P W:The Use of Petro-phsical Data for Well Planning.Drilling Safety and Effience.Houston,SPWLA,37th Annual Logging Symposium,June 16-19,1996.
    [68]Holbrook P W:Discussion of a New Simple Method to Estimate Fracture Pressure Gradients.SPE Drilling and Completion,Marcg,1997.
    [69]葛洪魁等.修正Holbrook地层破裂压力预测模型[J].石油钻探技术.2001,29(3).
    [70]李传亮,孔详言.油井压裂过程岩石破裂压力计算公式的理论研究[J].石油钻采工艺.2000,22(2).
    [71]Haimson B,Fairhurst C:Initiation and Extension of Hydraulic fractures in Rock.SPFA,Sept.1967,310-318.
    [72]Lade P V,Boer R De:Concept of Effective Stress for Soil,Concrete and Rock.Gevtechnique.Vol.47,No.l,Mar.1997,61-78.
    [73]耶格JC,库克NGW著:岩石力学基础(中国科学院工程力学所译)[M].北京,科学出版社,1981,7:267-272.
    [74]李传亮,孔详言等.多孔介质的双重有效应力[J].自然杂志,1999,21(5):287-292.
    [75]Soliman,M.Y.Interpretation of pressure behavior of fractured,deviated,and horizontal wells[C].SPE 21062.
    [76]Lubinski A.The Theory of Elasticity for Porous Bodies Displaying a Strong Pore Strueture.Proc.2nd U.S.National Congress of Applied Mechanics.1954.
    [77]Yew C H.Liu G F.Pore Fliud and Wellbore stabilities[C].SPE22381,1992.
    [78]Ely,J.W.,Arnold,W.T.and Holditch,S.A.:"New Techniques and Quality Control Find Success in Enhancing productivity and Minimizing Flowback",SPE20708,1990.9.
    [79]姚飞,王晓泉.支撑剂在裂缝中运移机理研究.世界石油工业.1999,6(3):38-41.
    [80]Martins,J.P.et al:Deviated Well Fracturing and Proppant Production Control in the Prudhoe Bay Field",SPE24858,1992.10.
    [81]Vreeburg,R-J.et al:"Proppant Backproduction During Hydraulic Fracturing—A New Failure Mechanism for Resin-Coated Proppants",JPT,1994.10:884.
    [82]Clayton,EM.et al.:"TheLemanF and G Development Obtaining Commercial Production rates from a Tight Gas Reservoir",SPE20993,1990.
    [83]Baumgartner,W.E.et al.:."Fracture Stimulation of a Horizontal Well in a Deep,Tight Gas reservoix: A Case History From Offshore the Netherland",SPE26795,1993.9.
    [84]唐洪明,孟英峰等.柴达木盆地东部气田疏松砂岩气藏出砂与防砂机理探讨.天然气工业:2002.1,22(1).
    [85]Romero,J.M.et al.:"The optimization of the productivity index and the fracture geometry of a stimulated well with fracture face and choke skins",SPE81908,2003.2.
    [86]Mark Parker and Diederik Van Batenburg.Understanding Proppant Flowback.SPE 56726.
    [87]Naval Goel and Subhash N.Shah.Experimental Investigation of Proppant Flowback Phenomena Using a Large Scale.SPE 56880.
    [88]Barree,R.D.,and Mukherjee,H.Engineering Criteria for Fracture Flowback Procedures[p].SPE 29600
    [89]G.L.Gidley,G.S.Penny and P.R.McDaniel.Effect of Proppant Failure and Fines Migration on Conductivity of Propped Fractures.SPE 24008.
    [90]D.D.Sparlin and R.W.Hagen.Proppant Selection for Fracturing and Sand Control.World Oil,Jan,1995:37-40.
    [91]R.K.Bratli and R.Risnes.Stability and Failure of Sand Arches.SPE 8427.
    [92]J.Remreo and J.P.Feraud.Stability of Proppant Pack Reinforced with Fiber for Proppant Flowback Control.SPE 31093.
    [93]David Milton Tayler,Chris Stepherson,and M.L.Asigan.Factors Affecting the Stability of Proppant in Propped Fractures:Results of a Laboratory Study.SPE 24821.
    [94]Frac Teeh Ltd:"Proppant Flowback Report",2002.
    [95]Andrew,J.S.and Kjφrholt,H.:"Rock Mechanical Principles Help Predict Prppant Flowback from Hydraulic Fractures",SPE47382,1998.7.
    [96]Javier,M.et al.:"Avoiding Proppant Flowback in Tight-Gas Completions with Improved Fracture Design",SPE84310,2003.10.
    [97]Parker,M.and Weaver,J.et al.:'Understanding Proppant Flowback",SPE56726,1999.10.
    [98]Asgian,M.I.and Cundall,P.A.:"The Mechanical Stability of Propped Hydraulic Fractures",SPE28510,1994.9.
    [99]姚飞,王晓泉.水力裂缝起裂延伸和闭合的机理研究.油气藏改造论文集.北京:石油工业出版社.2000:81-86.
    [100]宋军政,郭建春.压裂气井出砂机理研究.钻采工艺.2005,3.28(2):20-21.
    [101]傅英,郭建春等.支撑剂回流室内研究.河南石油.2006,20(1):58-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700