用户名: 密码: 验证码:
压裂液返排过程中支撑剂回流规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水力压裂的目的是为了获得高导流能力的裂缝,工程技术人员希望通过对返排流速的控制使支撑剂在裂缝内获得较好的铺置,进而使裂缝具有较高的导流能力。但在现场施工时由于没有选择合理的时机对支撑剂的回流进行控制,导致大量的支撑剂回流到井筒。存在这些问题的一个很重要的原因就是压裂液返排流速控制中经验成分过多,缺少可靠的理论依据。
     对于支撑剂的回流,前人的研究是集中在对缝口的支撑剂回流进行分析,认为只要缝口的支撑剂不发生回流,就判定支撑剂在裂缝内具有很好的分布。但大量的现场实验表明,支撑剂发生回流是压裂返排施工的普遍现象,要分析裂缝内的支撑剂分布,必须对裂缝内支撑剂回流规律进行研究。
     本文考虑压裂液返排过程中缝宽的动态变化,根据质量守恒定律和伯努利方程,建立压裂液返排任意时刻裂缝内任意位置缝宽数学计算模型;考虑返排过程压裂液的滤失,建立裂缝内任意垂直截面的压裂液返排流速计算模型;结合椭圆管流中流体流动压降规律,建立了返排过程裂缝内压力分布模型,得出裂缝内压力分布规律;对压裂返排过程中裂缝内的支撑剂进行力学分析,根据力矩平衡原理,建立了返排不同时期支撑剂发生回流的压裂液返排临界流速计算模型,进而提出控制支撑剂回流的合理返排方案。本文研究的意义在于通过分析压裂液返排速度对裂缝内支撑剂回流的影响,进而优选出控制支撑剂回流的合理返排制度,指导压裂返排作业。
The purpose of hydraulic fracturing is to gain flow conductivity of fractures. Engineer wish to obtain better proppant distribution by controlling speed of flowback, so that flow conductivity of fractures will be better. In site, a large number of proppants back to the wellbore because of engineer fail to choose reasonable opportunity to control backflow of proppant the important reason of arising these problems is too much experience component used in controlling current speed of flowback and leaks of dependable theory.
     Previous researches of proppant backflow focus on proppant in seam, those theories said that the proppant in the fractures should have a uniform distribution as long as the seam of the proppant does not back flow. But experimental results demonstrate that the backflow of proppant is common phenomenon in the process of fracturing flowback work. In order to analyzing the distribution of proppant in the fracture, the regular pattern of backflow of proppant must be researched.
     In this paper ,taking the dynamic variation of slot width in the process of flowback of fracturing fluid into account, according to mass conservation law and Bernoulli′s equation, the model for calculating the slot width in the fractures of fracturing fluid backflow anywhere at any time is established. Considering filtration of fracturing fluid in the process of flowback, a model for calculating speed of flowback in the fractures in any vertical section is established. Combining the fluid flow differential pressure regular pattern in ellipse tube,the pressure distributive model is established in the process of flowback,the pressure regularities of distribution in the fractures is obtained . the proppant in the fractures is been studied in the process of flowback, according to moment balance principle, the model for calculating flowback critical flow velocity of fracturing fluid in different flowback times when proppant flow back, and then appropriate scheme of flowback for controlling backflow of proppant is proposed. The research significance of this thesis lies in that, according to analysis the influence of the speed of flowback for backflow of proppant in the fractures, and optimizing the appropriate regime for controlling backflow of proppant, guiding the work of fracturing flowback.
引文
[1]王鸿勋.水力压裂原理[M].第一版,石油工业出版社,1987.
    [2]张士诚,张劲.压裂开发理论与应用[M].石油大学出版社,2003年第1版,27-37.
    [3] [美]M.J.埃克诺米德斯,K.G.诺尔特著,张保平等人译.油藏增产措施.第三版.北京:石油工业出版社,2002年4月,133-153
    [4] [美]J.L.吉得利等著.水力压裂技术新进展.北京:石油工业出版社,1995年12月,26-156.
    [5]杨秀夫,陈勉.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21-25.
    [6]何艳青,王鸿勋.用数值模拟方法预测压裂井的生产动态[J].石油大学学报,1990年,16-25.
    [7]闫建文,张士诚等.低渗透油田压裂注水采油整体优化方法[J].大庆石油地质与开发,2000年第5期,50-52.
    [8] J.W.Ely, W.T.Arnold and S.A.Holditeh.New Techniques and Quality Control Find Success in Enhancing Productivity and Minimizing Proppant Flow back [P]. SPE20708,1990.
    [9] R.D.Barree and H.Mukherjee Engineering Criteria for Fracture Flow back Procedures [P].SPE29600, 1995.
    [10] B.M.Robinson,S.A.Holditch and W.S.Whitehead. Minimizing Damage to a Propped Fracture by Controlled Flow back Procedure[J].JPT,Jul.1988:753-760.
    [11] Mark Parker and Diederik Van Batenburg.Understanding Proppant Flow back. SPE56726, 1999.
    [12] HowardG.C, Fast C.R.Hydraulic Fracture [M].Monograph series, Dallas, 1970.
    [13] Khristianovich S.A..Zhenltov,Y.P.Formation of vertical fracture by mean of highly viscous liquids[R].proceeding of the world petroleum congress, seetion 11, 1955.
    [14] Geertsma.J.Dekerk F.A rapid method of predicting width a extent of hydraulically induced fractures [J].JPT, Dec, 1969.
    [15] Daneshy A. A. Numerical solution sand transport in hydraulic fracturing [J] .JPT, Jan, 1978.
    [16] Daneshy A. A. On the design of vertical hydraulic fractures [J]. Trans, AIME,JPT (Jan. 1972):83-93.
    [17] Perkins T.K, Kern L.R.Width of hydraulic fracture [J].JPT (Sept, 1961): 937-949.
    [18] Biot M. A. ,Masse L., Medlin W. L. A two-dimensional theory of fracture propagation [R].SPEPE (Jan. 1986):17-30.
    [19] Geertsma J.A comparison of the theory for predicting width and extent of the AIME. Mach, Vol.101, 1979.
    [20] Simonson E.R., Abou Sayed, Clitfon R.J.Containment of massive hydraulic fracture [J].SPEJ, Feb, 1987.
    [21] Yew C.K., Koelsch T.A.Study on the mechanics of hydraulic fracturing. EXXON production research company special report, EPR.15PR.80.
    [22] Van Eekelen. Hydraulic fracture geometry: Fracture containment in layered formation [J].SPEJ, Junc, 1982.
    [23] Cleary M. P., Keck R. G., Mear M. E. Microcomputer models for the design of hydraulic fractures [R]. SPE 11628.
    [24] Settar A. Simulation of hydraulic fracturing processes [J]. SPEJ, Dec.1980, 487-500.
    [25]依同春,王鸿勋.水平裂缝压裂设计数值方法的研究[J].华东石油学报,1986.
    [26]吴迪祥,赵学孟,郭恩昌.水力压裂裂缝几何形态的数值模拟[J].石油钻采工艺,1986(6):59-65.
    [27]刘翔颚.水力压裂裂缝垂向延伸机理研究报告.1988.
    [28]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.
    [29]郭大力,纪禄军,赵金洲等.煤层压裂裂缝三维延伸数值模拟及产量预测研究[J].应用数学和力学,2001,22(4):337-344.
    [30] Zhao Jinzhou,Hong Yangquan,Guo Dali. Hydraulic fracturing technique of low permeability coal bed methane reservoir[R].SPE38095.
    [31]陈勉,陈志喜,黄荣樽等.非均匀地层水力压裂研究[J].东北大学学报,Vol.15,采矿专辑,1994,309-312.
    [32]陈志喜,陈勉,黄荣樽.层状介质中水力压裂的垂向扩展[J].石油大学学报,1997,21(4):23-27.
    [33]杨丽娜,陈勉.水力压裂中多裂缝间相互干扰力学分析[J].石油大学学报(自然科学版),2003,27(3):43-45.
    [34]仇伟德,鲁连军.用于预测水力裂缝缝高的新拟三维流场模型[J].石油大学学报(自然科学版),2002,26(5):48-52.
    [35] Clifton R.J., Abou-Sayed A.S.On the computation of three dimensional geometry of hydraulic fractures[R].SPE7943.
    [36] Clear M.P., Kavvadas M., Lam K.Y.A fully three-dimensional hydraulic fracture simulator[R].SPE11631.
    [37]陈勉,陈志喜,黄荣樽.三维弯曲水力压裂力学模型及计算方法[J].石油大学学报,1995年7月,第9卷.
    [38]张平,赵金洲,郭大力.水力压裂裂缝三维延伸数值模拟研究[J].石油钻采工艺,1997,19(3):53-59.
    [39] Settari A. A new general model of fluid loss in hydraulic fracturing. SPE 11625, 1983.
    [40] Y Fan and Economides M J. Fracturing fluid leak off and net pressure behavior in frac&pack stimulation. SPE29988, 1995.
    [41] Economides M J et al.Fluid-leak off delineation in High permeability fracturing.SPEPF 1999, May: 177-30.
    [42] Barree R D and Mukherjee H. Determination of pressure dependent leak off and its effecton fracture geometry.SPE 36424, 1996.
    [43] Yew C H and Hill A D et al. A study of fluid leak off in hydraulic fracture propagation. SPE 64786, 2000.
    [44] James L,Rodgerson. Impact of natural fractures in hydraulic fracturing of tight gas sands. SPE 59540, 2000.
    [45]李勇明,郭建春,赵金洲等.裂缝性储层压裂液滤失计算模型研究[J].天然气工业2005,25(3):99-101.
    [46]毛国扬,王小勇,郭精精.高渗透储层压裂液滤失模型[J].内蒙古石油化工2008,24:45-47.
    [47]王童,聂勋勇,王平全等.水力压裂中的压裂液滤失模型研究[J].钻井液与完井液,2008,3:11-12.
    [48] B.M.Robinson, S.A.Ho1ditch and W.S .Whitehead. Minimizing Damage to a Propped Fracture by Controlled Flow back Procedure [J].JPT, Jul.1988:753-760.
    [49]杨丙秀,蒋延学,丁云宏,汪永利等.裂缝强制闭合时合理返排制度优选[J].天然气经济,2004,3:60-64.
    [50]胡景宏,何顺利,李勇明等.压裂液返排率的理论计算[J].钻采工艺,2008,31(5):99-102.
    [51]宋军正,郭建春.压裂气井出砂机理研究[ J].钻采工艺, 2005, 28(2): 20-21.
    [52]张伟民,陈丽,任国平等.预固化树脂覆膜砂的研究[J].石油学报(石油加工), 2006, 22(2): 75-80.
    [53]张韶彬,谭明文,张朝举等.实现快速排液的纤维增强压裂工艺现场应用研究[ J].天然气工业, 2005, 25(11): 53-55.
    [54]郎学军,刘洪升,王俊英等.水力压裂工艺中的分段破胶技术[J].石油钻采工艺, 2003, 25(4): 64-66. [55 ]张红,李国锋,刘洪升等.表面活性剂在水基压裂液中的应用[J].钻井液与完井液, 2003,20(1):24-26.
    [56]高旺来,接金利,张为民.一种树脂覆膜砂支撑剂的研究及现场应用[J].油田化学, 2006, 23(1):39-41.
    [57]于庆红,王宏飞,隋向云等.树脂包裹支撑剂控制回流方法研究[J].石油钻采工艺, 2005(增刊):66-68.
    [58] J.L.Gidley, G.S.Penny and P.R.McDaniel.Effect of Proppant Failure and Fines Migration on Conductivity of Propped Fractures.SPE24008, SPE Production&Facilities, February 1992:20-25.
    [59] D.D.Sparlin and R.W.Hagen.Proppant Selection for Fracturing and Sand Control.World oil, Jan.1995:37-40.
    [60] R.K.Bratli and R.Risnes.Stability and Failure of Sand Arehes. SPE8427,SPE Annual Technical Conference and Exhibition,Sept.1979:23-26.
    [61] J.Romreo and J.P.Feraud.Stabi1ity of Proppant Peak Reinforced with Fiber for Proppant Flow back Control.SPE3l093, 1996.
    [62] Naval Goel and Subhash N.Shah.Experimenta1 Investigation of Proppant Flow back Phenomena Using a Large Scale Fracturing Simulator.SPE56880,1999.
    [63]胡景宏,何顺利,李勇明等.压裂液强制返排中支撑剂回流理论及应用研究[J].西南石油大学学报2008,30(4):112-114.
    [64]王雷,张士诚.压裂液返排速度对支撑剂回流及其在裂缝内分布的影响[J].油气地质与采收率2008,15(1):102-103.
    [65]张绍彬,谭明文,张朝举,吴芒.实现快速排液的纤维增强压裂工艺现场应用研究[J].天然气工业2005,25(11):53-55.
    [66]辛军,郭建春,赵金洲等.控制支撑剂回流技术新进展[J].断块油气田2008,15(5):99-102.
    [67]宋军正.压裂气井防止支撑剂回流的返排模型及合理产能研究[D].西南石油学院硕士学位论文,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700