用户名: 密码: 验证码:
电弧放电法制备新型碳—铁纳米复合材料以及碳-氮纳米材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用直流电弧放电法,分别制备了碳-铁纳米复合材料以及碳-氮纳米材料,其中碳-铁纳米复合材料包括碳包覆铁纳米颗粒(CEINPs)和铁纳米颗粒/石墨烯纳米复合材料(Fe/GNCs)。使用TEM、HRTEM、SEM、EDX、XRD、Raman光谱、XPS和TG-DSC等对电弧放电产物进行表征,考察了原料配比和阳极棒制备方法对制备CEINPs和Fe/GNCs的影响;还考察了原料配比、放电室抽洗、过渡金属催化剂使用、不锈钢片熔化和阳极棒制备方法对碳-氮纳米材料形貌和N含量的影响;初步探讨了CEINPs和Fe/GNCs的生成机理。
     以质量比为9:1的Fe2O3与石墨的混合物为原料,分别采用填充与压制法制备阳极棒。使用模具Ⅰ压制的阳极棒进行电弧放电,成功地制备了具有高铁含量(82.6%)的、近似球形的、且具有典型的核-壳结构的CEINPs,收率达到了约22.3wt.%;内核主要由含量相近的-Fe和Fe3C组成;内核的粒径分布在3-37nm,平均粒径约为20.6nm;外壳则由3-7层石墨层结构组成,层间距约为0.348nm;主要由CEINPs组成的产物具有铁磁性行为。同次实验得到的C内芯中以层间夹杂高铁含量球形颗粒的多层石墨烯为主。
     使用模具Ⅱ压制的阳极棒进行电弧放电,得到的C内芯中以Fe/GNCs为主,即在石墨烯片中分布着粒径约为3-6nm的铁纳米颗粒;但是在石墨烯片之间分布着粒径为0.1-2.2m的高铁含量的球形颗粒;该C内芯产物在室温条件下具有超顺磁性。
     使用填充阳极棒进行电弧放电,产物B主要是分布在碳材料上的铁物种颗粒,碳材料具有不完整、无序的层状结构;产物C内芯中也是以多层石墨烯为主。
     分别以6组不同的实验条件制备碳-氮纳米材料,重点考察了产物B和C内芯。前者均以颗粒和片状物为主,后者均以片状物为主。两者均以碳物种为主,N含量很低,尤其是后者。N含量随着颗粒直径的增加而增加(在一定尺寸范围内);原料中高氮化合物含量的提高以及不锈钢片熔化均有利于提高产物中的N含量;使用过渡金属催化剂对产物中的N含量无明显影响。
     阳极棒各组分分布的均匀性、铁含量、铁元素的微电场和微磁场作用、N2进气温度、电弧放电区域与冷却铜管内壁之间的温度和浓度梯度等因素均可能对CEINPs和Fe/GNCs的生成起着重要作用。
In this thesis, carbon-iron nanocomposites, including carbon-encapsulated ironnanoparticles (CEINPs) and iron/graphene nanocomposites (Fe/GNCs), andcarbon-nitrogen nanomaterials were prepared by DC arc discharge method,respectively. The products were characterized by TEM, HRTEM, SEM, EDX, XRD,Raman spectroscope, XPS, and TG-DSC. The effects of the ratios of raw materialsand methods of preparing anode on the preparations of CEINPs and Fe/GNCs wereinvestigated. The effects of the ratios of raw materials, pumping the arc dischargechamber, utilization of transition metal catalyst, melt down of stainless steel sheets,and methods of preparing anode on the morphology and the content of nitrogen ofcarbon-nitrogen nanomaterials were also investigated. The possible processes offormation of CEINPs and Fe/GNCs were discussed briefly.
     The anodes were prepared by the filling and compacting method respectively witha mixture of90wt.%iron(III) oxide and10wt.%graphite powders as raw material.The CEINPs with high iron content (82.6wt.%), quasi-spherical, and goodcore-shell structure can be successfully prepared in high yield (22.3wt.%) by DCarc discharge, using the anode prepared by the compacting method with the mold I.The cores of CEINPs mainly consist of-iron and iron carbide with similar contents;the diameters of the cores are in the range of3-37nm and their average diameter isabout20.6nm; the shells consist of about3-7graphitic layers and the interlayerspacing is about0.348nm; the product, mainly composed of CEINPs, shows typicalferromagnetic behavior. And the product CIC, prepared in this experiment, mainlyconsists of multi-layer graphene, and some quasi-spherical particles with high ironcontent are distributed among the graphene nanosheets.
     The product CIC, which mainly consists of Fe/GNCs, is prepared by DC arcdischarge, using the anode prepared by the compacting method with the mold II. TheFe/GNCs are the iron nanoparticles with diameters of3-6nm inside graphene, butsome quasi-spherical particles with diameters of0.1-2.2m and high iron contentare distributed among the graphene nanosheets. The product CICshows thesuperparamagnetic behavior at room temperature.
     When the anode prepared by the filling method was used, many iron species nanoparticles in the product B are enwrapped in the carbon material; the carbonmaterial shows imperfect and disordered layer structure. And the product CICmainlyalso consists of multi-layer graphene.
     The carbon-nitrogen nanomaterials were prepared under six groups of differentexperimental conditions, respectively. The products B and CICare investigatedmainly. The former mainly consists of the particles and flakes, and the latter mainlyconsists of the flakes. The carbon contents in them are very high, but the nitrogencontents are very low, especially in the latter. The nitrogen contents of the particlesin the products B increase with the increase of the particle sizes (within certainrange); both the increase of the amount of high nitrogen compound in raw materialand the melt down of stainless steel sheets are beneficial to improve the nitrogencontents in the products; the utilization of transition metal catalyst has no obviouseffect on the nitrogen contents in the products.
     The uniformity of compositions of anode, the content of iron, the microelectricfield and micromagnetic field of iron element, the inlet temperature of nitrogen, andgradients of temperature and concentration between the region of arc discharge andthe inner wall of cooling copper tube may play an important role in the formation ofCEINPs and Fe/GNCs.
引文
[1] Paradise M, Goseami T. Carbon nanotubes-production and industrial application.Mater. Design,2007,28(5):1477-1489
    [2] Osváth Z, Koós A A, Horváth Z E, et al. STM observation of asymmetricalY-branched carbon nanotubes and nano-knees produced by the arc dischargemethod. Mater. Sci. Eng. C,2003,23(4):561-564
    [3] Qiao W M, Song Y, Lim S Y, et al. Carbon nanospheres produced in anarc-discharge process. Carbon,2006,44(1):187-190
    [4] Ha B, Park J, Kim S Y, et al. Investigation of field emission and photoemissionproperties of high-purity single-walled carbon nanotubes synthesized byhydrogen arc discharge. J. Phys. Chem. B,2006,110(47):23742-23749
    [5] Liu Y, Ling J, Li W, et al. Effective synthesis of carbon-coated Co and Ninanocrystallites with improved magnetic properties by AC arc discharge under anN2atmosphere. Nanotechnology,2004,15(1):43-47
    [6] Li Z J, Liu P, Zhao B, et al. Improving the synthesis of single-walled carbonnanotubes by pulsed arc discharge in air by preheating the catalysts. Carbon,2008,46(13):1792-1828
    [7] Suzuki T, Guo Y, Inoue S, et al. Multiwalled carbon nanotubes mass-produced bydc arc discharge in He-H2gas mixture. J. Nanopart. Res.,2006,8(2):279-285
    [8] Sun X, Bao W R, Lv Y K, et al. Synthesis of high quality single-walled carbonnanotubes by arc discharge method in large scale. Mater. Lett.,2007,61(18):3956-3958
    [9] Zhao X L, Ohkohchi M, Inoue S, et al. Large-scale purification of single-wallcarbon nanotubes prepared by electric arc discharge. Diam. Relat. Mat.,2006,15(4-8):1098-1102
    [10] Ando Y, Zhao X L, Inoue S, et al. Mass production of high-quality single-wallcarbon nanotubes by H2-N2arc discharge. Diam. Relat. Mat.,2005,14(3-7):729-732
    [11] Qiu J S, Li Y F, Wang Y P, et al. Preparation of carbon-coated magnetic ironnanoparticles from composite rods made from coal and iron powders. FuelProcess. Technol.,2004,86(3):267-274
    [12] Jiao J, Seraphin S. Single-walled tubes and encapsulated nanoparticles:comparison of structural properties of carbon nanoclusters prepared by threedifferent methods. J. Phys. Chem. Solids,2000,61(7):1055-1067
    [13] Xing G, Jia S L, Shi Z Q. Influence of transverse magnetic field on theformation of carbon nano-materials by arc discharge in liquid. Carbon,2007,45(13):2584-2588
    [14] Ma Z B, Wang J H, Wan J. Synthesis of carbon films with diamond phase frommethanol solution by pulsed arc discharge. Diam. Relat. Mat.,2004,13(10):1889-1891
    [15] Huang H J, Marie J, Kajiura H, et al. Improved oxidation resistance of single-walled carbon nanotubes produced by arc discharge in a bowl-like cathode.Nano Lett.,2002,2(10):1117-1119
    [16] Zhu H W, Jiang B, Xu C L, et al. Synthesis of high quality single-walled carbonnanotube silks by the arc discharge technique. J. Phys. Chem. B,2003,107(27):6514-6518
    [17] Doherty S P, Buchholz D B, Chang R P H. Semi-continuous production ofmultiwalled carbon nanotubes using magnetic field assisted arc furnace. Carbon,2006,44(8):1511-1517
    [18] Hao C C, Xiao F, Cui Z L, et al. Preparation and structure of carbonencapsulated copper nanoparticles. J. Nanopart. Res.,2008,10(1):47-51
    [19] Takikawa H, Kusano O, Sakakibara T. Graphite cathode spot produces carbonnanotubes in arc discharge. J. Phys. D: Appl. Phys.,1999,32(18):2433-2437
    [20] Wang M, Wang X Q, Li Z H, et al. An efficient method to producesingle-walled carbon nanotubes by round-trip arc discharge. Mater. Chem.Phys.,2006,97(2-3):243-246
    [21] Sano N, Kawanami O, Charinpanitkul T, et al. Study on reaction field inarc-in-water to produce carbon nano-materials. Thin Solid Films,2008,516(19):6694-6698
    [22] Yamaguchi T, Bandow S, Iijima S. Synthesis of carbon nanohorn particles bysimple pulsed arc discharge ignited between pre-heated carbon rods. Chem.Phys. Lett.,2004,389(1-3):181-185
    [23] Huang H J, Yang S H, Gu G. Preparation of carbon-coated cobalt nanocrystalsin new gas blow arc reactor and their characterization. J. Phys. Chem. B,1998,102(18):3420-3424
    [24] Keidar M, Levchenko L, Arbel T, et al. Magnetic-field-enhanced synthesis ofsingle-wall carbon nanotubes in arc discharge. J. Appl. Phys.,2008,103(9):094318
    [25] Jaouen N, Babonneau D, Tonnerre J M, et al. Spin and orbital magneticmoments in carbon-encapsulated Fe50Pt50nanoparticles. Phys. Rev. B,2007,76(10):104421
    [26] Chang C-M, Chang C-C. Preparation and characterization ofpolyimide-nanogold nanocomposites from3-mercaptopropyltrimethoxysilaneencapsulated gold nanoparticles. Polym. Degrad. Stabil.,2008,93(1):109-116
    [27] Lee G H, Huh S H, Jeong J W, et al. Excellent magnetic properties of fullereneencapsulated ferromagnetic nanoclusters. J. Magn. Magn. Mater.,2002,246(3):404-411
    [28] Bystrzejewski M, Huczko A, Lange H, et al. Large scale continuous synthesisof carbon-encapsulated magnetic nanoparticles. Nanotechnology,2007,18(14):145608
    [29] Zheng R B, Meng X W, Tang F Q, et al. A general, one-step and template-freeroute to rattle-type hollow carbon spheres and their application in lithiumbattery anodes. J. Phys. Chem. C,2009,113(30):13065-13069
    [30] Pal B, Torimoto T, Ikeda S, et al. Photocatalytic preparation of encapsulatedgold nanoparticles by jingle-bell-shaped cadmium sulfide-silica nanoparticles.Top. Catal.,2005,35(3-4):321-325
    [31] Wu W Z, Zhu Z P, Liu Z Y, et al. Preparation of carbon-encapsulated ironcarbide nanoparticles by an explosion method. Carbon,2003,41(2):317-321
    [32] Liu B H, Ding J, Zhong Z Y, et al. Large-scale preparation ofcarbon-encapsulated cobalt nanoparticles by the catalytic method. Chem. Phys.Lett.,2002,358(1-2):96-102
    [33] Sunny V, Kumar D S, Yoshida Y, et al. Synthesis and properties of highlystable nickel/carbon core/shell nanostructures. Carbon,2010,48(5):1643-1651
    [34] Luo N, Li X J, Wang X H, et al. Preparation and magnetic behavior ofcarbon-encapsulated iron nanoparticles by detonation method. Compos. Sci.Technol.,2009,69(15-16):2554-2558
    [35] Taylor A, Krupskaya Y, Costa S, et al. Functionalization of carbon encapsulatediron nanoparticles. J. Nanopart. Res.,2010,12(2):513-519
    [36] Mahanandia P, Arya V P, Nanda K K, et al. Preparation temperature effect onthe synthesis of various carbon nanostructures. Mater. Sci. Eng. B,2009,164(3):140-150
    [37] Wang Z H, Zhang Z D, Choi C J, et al. Structure and magnetic properties ofFe(C) and Co(C) nanocapsules prepared by chemical vapor condensation. J.Alloys Comp.,2003,361(1-2):289-293
    [38] Bystrzejewski M. Synthesis of carbon-encapsulated iron nanoparticles via solidstate reduction of iron oxide nanoparticles. J. Solid State Chem.,2011,184(6):1492-1498
    [39] Sergiienko R, Shibata E, Akase Z, et al. Carbon encapsulated iron carbidenanoparticles synthesized in ethanol by an electric plasma discharge in anultrasonic cavitation field. Mater. Chem. Phys.,2006,98(1):34-38
    [40] Dong X P, Chen H R, Zhao W R, et al. Synthesis and magnetic properties ofmesostructured-Fe2O3carbon composites by a co-casting method. Chem.Mater.,2007,19(14):3484-3490
    [41] Panchal V, Neergat M, Bhandarkar U. Synthesis and characterization of carboncoated nanoparticles produced by a continuous low-pressure plasma process. J.Nanopart. Res.,2011,13(9):3825-3833
    [42] Bystrzejewski M, Huczko A, Lange H, et al. Combustion synthesis route tocarbon-encapsulated iron nanoparticles. Diam. Relat. Mat.,2007,16(2):225-228
    [43] Wozniak M J, Wozniak P, Bystrzejewski M, et al. Magnetic nanoparticles of Feand Nd-Fe-B alloy encapsulated in carbon shells for drug delivery systems:Study of the structure and interaction with the living cells. J. Alloys Comp.,2006,423(1-2):87-91
    [44] Bystrzejewski M, Károly Z, Szépv lgyi J, et al. Continuous synthesis ofcontrolled size carbon-encapsulated iron nanoparticles. Mater. Res. Bull.,2011,46(12):2408-2417
    [45] Bystrzejewski M, Klingeler R, Gemming T, et al. Synthesis ofcarbon-encapsulated iron nanoparticles by pyrolysis of iron citrate andpoly(vinyl alcohol): a critical evaluation of yield and selectivity.Nanotechnology,2011,22(31):315606
    [46] Borysiuk J, Grabias A, Szczytko J, et al. Structure and magnetic properties ofcarbon encapsulated Fe nanoparticles obtained by arc plasma and combustionsynthesis. Carbon,2008,46(13):1693-1701
    [47] Park J B, Jeong S H, Jeong M S, et al. Synthesis of carbon-encapsulatedmagnetic nanoparticles by pulsed laser irradiation of solution. Carbon,2008,46(11):1369-1377
    [48] Jiang M, Zhang X G, Liu Y, et al. Ferromagnetic carbon-coated iron and itscompounds nanocrystallite synthesized at high metal to carbon rate and highyield by a modified AC arc method. Mater. Sci. Eng. B,2001,87(1):66-69
    [49] Huo J P, Song H H, Chen X H. Preparation of carbon-encapsulated ironnanoparticles by co-carbonization of aromatic heavy oil and ferrocene. Carbon,2004,42(15):3177-3182
    [50] Zhang S X, Niu H Y, Hu Z J, et al. Preparation of carbon coated Fe3O4nanoparticles and their application for solid-phase extraction of polycyclicaromatic hydrocarbons from environmental water samples. J. Chromatogr. A,2010,1217(29):4757-4764
    [51] Sun G L, Li X J, Wang Q Q, et al. Synthesis of carbon-coated iron nanoparticlesby detonation technique. Mater. Res. Bull.,2010,45(5):519-522
    [52] Zhang J H, Du J, Qian Y T, et al. Shape-controlled synthesis and their magneticproperties of hexapod-like, flake-like and chain-like carbon-encapsulated Fe3O4core shell composites. Mater. Sci. Eng. B,2010,170(1-3):51-57
    [53] Ma C, Luo B, Song H H, et al. Prepatation of carbon-encapsulated metalmagnetic nanoparticles by an instant pyrolysis method. New Carbon Mater.,2010,25(3):199-204
    [54] Kim S, Sergiienko R, Shibata E, et al. Iron-included carbon nanocapsulescoated with biocompatible poly(ethylene glycol) shells. Mater. Chem. Phys.,2010,122(1):164-168
    [55] Zhang X F, Dong X L, Huang H, et al. Microstructure and microwaveabsorption properties of carbon-coated iron nanocapsules. J. Phys. D: Appl.Phys.,2007,40(17):5383-5387
    [56] Fernandez-Pacheco1R, Arruebo1M, Marquina C, et al. Highly magneticsilica-coated iron nanoparticles prepared by the arc-discharge method.Nanotechnology,2006,17(5):1188-1192
    [57] Cao H, Li R, Xue J, et al. A simple technique for preparing carbon encapsulatedLa and Eu nanoparticles. Carbon,2009,47(6):1543-1548
    [58] Butenko Y V, Chakraborty A K, Peltekis N, et al. Potassium intercalation ofcarbon onions ‘opened’ by carbon dioxide treatment. Carbon,2008,46(8):1133-1140
    [59] Song H J, Jia X H, Li N, et al. Synthesis of α-Fe2O3nanorod/graphene oxidecomposites and their tribological properties. J. Mater. Chem.,2012,22(3):895-902
    [60] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect inatomically thin carbon films. Science,2004,306(5296):666-669
    [61] http://baike.baidu.com/view/1744041.htm
    [62] Koo H Y, Lee H-J, Go H-A, et al. Graphene-based multifunctional iron oxidenanosheets with tunable properties. Chem.-Eur. J.,2011,17(4):1214-1219
    [63] Wang G, Liu T, Luo Y J, et al. Preparation of Fe2O3/graphene composite and itselectrochemical performance as an anode material for lithium ion batteries. J.Alloys Comp.,2011,509(24): L216-L220
    [64] Zhou J S, Song H H, Ma L L, et al. Magnetite/graphene nanosheet composites:interfacial interaction and its impact on the durable high-rate performance inlithium-ion batteries. RSC Adv.,2011,1(5):782-791
    [65] Xu C, Zeng Y, Rui X H, et al. Controlled soft-template synthesis of ultrathinC@FeS nanosheets with high-Li-storage performance. ACS Nano,2012,6(6):4713-4721
    [66] Zhang K, Dwivedi V, Chi C Y, et al. Graphene oxide/ferric hydroxidecomposites for efficient arsenate removal from drinking water. J. Hazard.Mater.,2010,182(1-3):162-168
    [67] Zhang W L, Choi H J. Graphene oxide added carbonyl iron microsphere systemand its magnetorheology under applied magnetic fields. J. Appl. Phys.,2012,111(7):07E724
    [68] Tsai C-W, Tu M-H, Chen C-J, et al. Nitrogen-doped graphenenanosheet-supported non-precious iron nitride nanoparticles as an efficientelectrocatalyst for oxygen reduction. RSC Adv.,2011,1(7):1349-1357
    [69] Guo P, Zhu G, Song H H, et al. Graphene-encapsulated iron microspheres on thegraphene nanosheets. Phys. Chem. Chem. Phys.,2011,13(39):17818-17824
    [70] Wang G X, Yang J, Park J, et al. Facile Synthesis and characterization ofgraphene nanosheets. J. Phys. Chem. C,2008,112(22):8192-8195
    [71] Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced grapheneoxide composites for arsenic removal. ACS Nano,2010,4(7):3979-3986
    [72] Prakash A, Chandra S, Bahadur D. Structural, magnetic, and textural propertiesof iron oxide-reduced graphene oxide hybrids and their use for theelectrochemical detection of chromium. Carbon,2012,50(11):4209-4219
    [73] Li S Z, Hu Y Y, Xu Q, et al. Iron-and nitrogen-functionalized graphene as anon-precious metal catalyst for enhanced oxygen reduction in an air-cathodemicrobial fuel cell. J. Power Sources,2012,213:265-269
    [74] Zhan Y Q, Meng F B, Yang X L, et al. Solvothermal synthesis andcharacterization of functionalized graphene sheets (FGSs)/magnetite hybrids.Mater. Sci. Eng. B,2011,176(16):1333-1339
    [75] Zhou X F, Wang F, Zhu Y M, et al. Graphene modified LiFePO4cathodematerials for high power lithium ion batteries. J. Mater. Chem.,2011,21(10):3353-3358
    [76] Khalid N R, Hong Z L, Ahmed E, et al. Synergistic effects of Fe and grapheneon photocatalytic activity enhancement of TiO2under visible light. Appl. Surf.Sci.,2012,258(15):5827-5834
    [77] Shen X P, Wu J L, Bai S, et al. One-pot solvothermal syntheses and magneticproperties of graphene-based magnetic nanocomposites. J. Alloys Comp.,2010,506(1):136-140
    [78] Wang J Z, Zhong C, Wexler D, et al. Graphene-encapsulated Fe3O4nanoparticles with3D laminated structure as superior anode in lithium ionbatteries. Chem.-Eur. J.,2011,17(2):661-667
    [79] Hsieh C-T, Lin J Y, Mo C-Y. Improved storage capacity and rate capability ofFe3O4-graphene anodes for lithium-ion batteries. Electrochim. Acta,2011,58:119-124
    [80] He H K, Gao C. Supraparamagnetic, conductive, and processablemultifunctional graphene nanosheets coated with high-density Fe3O4nanoparticles. ACS Appl. Mater. Interfaces,2010,2(11):3201-3210
    [81] Xue X Y, Ma C H, Cui C X, et al. High lithium storage performance ofα-Fe2O3/graphene nanocomposites as lithium-ion battery anodes. Solid StateSci.,2011,13(8):1526-1530
    [82] Chen W H, Yi P W, Zhang Y, et al. Composites of aminodextran-coated Fe3O4nanoparticles and graphene oxide for cellular magnetic resonance imaging.ACS Appl. Mater. Interfaces,2011,3(10):4085-4091
    [83] Luo X B, Wang C C, Luo S L, et al. Adsorption of As (III) and As (V) fromwater using magnetite Fe3O4-reduced graphite oxide-MnO2nanocomposites.Chem. Eng. J.,2012,187:45-52
    [84] Wang D W, Li Y Q, Wang Q H, et al. Nanostructured Fe2O3-graphene compositeas a novel electrode material for supercapacitors. J. Solid State Electrochem.,2012,16(6):2095-2102
    [85] Qu Q T, Yang S B, Feng X L.2D sandwich-like sheets of iron oxide grown ongraphene as high energy anode material for supercapacitors. Adv. Mater.,2011,23(46):5574-5580
    [86] Liu A Y, Cohen M L. Prediction of new low compressibility solids. Science,1989,245(4920):841-842
    [87] Liu A Y, Cohen M L. Structural properties and electronic structure oflow-compressibility materials:-Si3N4and hypothetical-C3N4. Phys. Rev. B,1990,41(15):10727-10734
    [88] Teter D M, Hemley R J. Low-compressibility carbon nitrides. Science,1996,271(5245):53-55
    [89]王艳艳,直流电弧放电法制备新型纳米碳材料:[硕士学位论文],天津;天津大学,2007
    [90] Kusano Y, Christou C, Barber Z H, et al. Deposition of carbon nitride films byionised magnetron sputtering. Thin Solid Films,1999,355:117-121
    [91] Shi C Y, Ma Z B. Synthesis of crystalline carbon nitride thin films by pulsed arcdischarge at atmospheric pressure. Plasma Sci. Technol.,2007,9(4):460-462
    [92] Galeano-Osorio D S, Vargas S, López-Córdoba L M, et al. Substratetemperature influence on the trombogenicity in amorphous carbon nitride thincoatings. Appl. Surf. Sci.,2010,256(24):7484-7489
    [93] Zhang X W, Ke N, Cheung W Y, et al. Synthesis and structure of nitrogenatedtetrahedral amorphous carbon thin films prepared by a pulsed filtered vacuumarc deposition. Diam. Relat. Mat.,2003,12(1):1-7
    [94] Kushwaha A, Mohanta A, Thareja R K. C2and CN dynamics and pulsed laserdeposition of CNxfilms. J. Appl. Phys.,2009,105(4):044902
    [95] Li Q, Yang J P, Feng D, et al. Facile synthesis of porous carbon nitride sphereswith hierarchical three-dimensional mesostructures for CO2capture. Nano Res.,2010,3(9):632-642
    [96] Bian S W, Ma Z, Song W G. Preparation and characterization of carbon nitridenanotubes and their applications as catalyst supporter. J. Phys. Chem. C,2009,113(20):8668-8672
    [97] Pang L L, Bi J Q, Bai Y J, et al. Rapid synthesis of graphitic carbon nitridepowders by metathesis reaction between CaCN2and C2Cl6. Mater. Chem. Phys.,2008,112(3):1124-1128
    [98] Ge L. Synthesis and photocatalytic performance of novel metal-free g-C3N4photocatalysts. Mater. Lett.,2011,65(17-18):2652-2654
    [99] Cui Y J, Huang J H, Fu X Z, et al. Metal-free photocatalytic degradation of4-chlorophenol in water by mesoporous carbon nitride semiconductors. Catal.Sci. Technol.,2012,2(7):1396-1402
    [100] Zhao Y C, Yu D L, Zhou H W, et al. Turbostratic carbon nitride prepared bypyrolysis of melamine. J. Mater. Sci.,2005,40(9-10):2645-2647
    [101] Okazaki T, Tosaka K. Formation of graphitic-C3N4and α-C3N4fine particlesby DC arc discharge in NH3gas. Jpn. J. Appl. Phys.,2005,44(48):L1463-L1465
    [102] Bai Y J, Lu B, Liu Z G, et al. Solvothermal preparation of graphite-like C3N4nanocrystals. J. Cryst. Growth,2003,247(3-4):505-508
    [103] Ghosh K, Kumar M, Maruyama T, et al. Micro-structural,electron-spectroscopic and field-emission studies of carbon nitride nanotubesgrown from cage-like and linear carbon sources. Carbon,2009,47(6):1565-1575
    [104]孟范成,傅正义,苏艳丽.碳氮化合物制备研究进展.硅酸盐通报,2007,26(2):324-327
    [105] http://baike.baidu.com/view/1167137.htm
    [106]于栋利,碳氮化合物合成方法及其晶体结构的研究:[博士学位论文],河北省秦皇岛;燕山大学,2001
    [107]赵元春,碳/碳氮一维纳米材料的制备、物性以及相关器件的研究:[博士学位论文],北京;中国科学院国家纳米科学中心,2008
    [108] Yan H J, Chen Y, Xu S M. Synthesis of graphitic carbon nitride by directlyheating sulfuric acid treated melamine for enhanced photocatalytic H2production from water under visible light. Int. J. Hydrog. Energy,2012,37(1):125-133
    [109] Fischer A, Müller J O, Antonietti M, et al. Synthesis of ternary metal nitridenanoparticles using mesoporous carbon nitride as reactive template. ACSNano,2008,2(12):2489-2496
    [110] Shen W Z, Ren L W, Zhou H, et al. Facile one-pot synthesis of bimodalmesoporous carbon nitride and its function as a lipase immobilization support.J. Mater. Chem.,2011,21(11):3890-3894
    [111] Cui S, Scharff P, Siegmund C, et al. Investigation on preparation ofmultiwalled carbon nanotubes by DC arc discharge under N2atmosphere.Carbon,2004,42(5-6):931-939
    [112] http://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C
    [113] http://baike.baidu.com/view/3412963.htm
    [114] http://baike.baidu.com/view/310296.htm
    [115]倪星元,姚兰芳,沈军,等,纳米材料制备技术,北京:化学工业出版社,2007,358-359
    [116] http://baike.baidu.com/view/8978645.htm
    [117]关磊,氮气氛直流电弧放电制备新型碳纳米材料:[博士学位论文],天津;天津大学,2010
    [118] http://baike.baidu.com/view/116780.htm
    [119] http://baike.baidu.com/view/106151.htm
    [120] http://baike.baidu.com/view/7956605.htm
    [121] http://baike.baidu.com/view/694841.htm
    [122]张春敬,刘玉,李立波. X射线光电子能谱技术在制浆造纸分析中的应用.纸和造纸,2011,30(6):55-57
    [123] http://baike.baidu.com/view/2426378.htm
    [124] http://baike.baidu.com/view/1940232.htm
    [125] http://baike.baidu.com/view/56031.htm
    [126] http://baike.baidu.com/view/56032.htm
    [127] Park E, Zhang J Q, Thomson S, et al. Characterization of phases formed in theiron carbide process by X-ray diffraction, Mossbauer, X-ray photoelectronspectroscopy, and Raman spectroscopy analyses. Metall. Mater. Trans. B,2001,32(5):839-845
    [128] Li Z Q, Zhou J Y, Zhang J, et al. Carbon nitrides synthesized by glowdischarge method. J. Alloys Comp.,2002,346(1-2):230-234
    [129] Cheng Y H, Qiao X L, Chen J G, et al. Synthesis of carbon nitride films bydirect current plasma assisted pulsed laser deposition. Appl. Phys. A,2002,74(2):225-231
    [130] Edwards E R, Antunes E F, Botelho E C, et al. Evaluation of residual iron incarbon nanotubes purified by acid treatments. Appl. Surf. Sci.,2011,258(2):641-648
    [131] XPS Database: http://www.lasurface.com/database/elementxps.php
    [132] Huang W, Wu J M, Guo W, et al. Preparation and magnetic properties ofnanoscale-Fe3N particles. J. Alloys Comp.,2007,443(1-2):48-52
    [133] Baker M A, Hammer P. A study of the chemical bonding and microstructure ofion beam-deposited CNxFilms including an XPS C1s peak simulation. Surf.Interface Anal.,1997,25(9):629-642
    [134] Bystrzejewski M, Grabias A. Tailoring phase composition incarbon-encapsulated iron nanoparticles. Mater. Charact.,2011,62(1):152-156
    [135] Sajitha E P, Prasad V, Subramanyam S V, et al. Synthesis and characteristics ofiron nanoparticles in a carbon matrix along with the catalytic graphitization ofamorphous carbon. Carbon,2004,42(14):2815-2820
    [136] Weissker U, L ffler M, Wolny F, et al. Perpendicular magnetization of longiron carbide nanowires inside carbon nanotubes due to magnetocrystallineanisotropy. J. Appl. Phys.,2009,106(5):054909
    [137] Sun X C, Gutierrez A, Jose Yacaman M, et al. Investigations on magneticproperties and structure for carbon encapsulated nanoparticles of Fe, Co, Ni.Mater. Sci. Eng. A,2000,286(1):157-160
    [138] Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene filmsfor stretchable transparent electrodes. Nature,2009,457(7230):706-710
    [139] Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes. Adv. Phys.,2000,49(6):705-814
    [140] Thomsen C, Reich S. Double resonant Raman scattering in graphite. Phys. Rev.Lett.,2000,85(24):5214-5217
    [141] Li Y, Chu J, Qi J Y, et al. An easy and novel approach for the decoration ofgraphene oxide by Fe3O4nanoparticles. Appl. Surf. Sci.,2011,257(14):6059-6062
    [142]杨勇辉,孙红娟,彭同江,等.石墨烯薄膜的制备和结构表征.物理化学学报,2011,27(3):736-742
    [143] Lee D, Lee K, Jeong S, et al. Process optimization for synthesis of high-qualitygraphene films by low-pressure chemical vapor deposition. Jpn. J. Appl. Phys.,2012,51(6):06FD21
    [144] Wall M. Raman spectroscopy optimizes graphene characterization. Adv. Mater.Process.,2012,170(4):35-38
    [145] Green A A, Hersam M C. Solution phase production of graphene with controlledthickness via density differentiation. Nano Lett.,2009,9(12):4031-4036
    [146] EDX-Energy Dispersive X-ray Analysis: http://www.globalsino.com/micro/1/micro9999.html
    [147] http://www.ammrf.org.au/myscope/analysis/eds/
    [148] http://www.cem.msu.edu/~cem924sg/SandraBencic.pdf
    [149] Gamaly E G, Ebbesen T W. Mechanism of carbon nanotube formation in thearc discharge. Phys. Rev. B,1995,52(3):2083-2089
    [150] Elliott B R, Host J J, Dravid V P, et al. A descriptive model linking possibleformation mechanisms for graphite-encapsulated nanocrystals to processingparameters. J. Mater. Res.,1997,12(12):3328-3344
    [151] Charinpanitkul T, Tanthapanichakoon W, Sano N. Carbon nanostructuressynthesized by arc discharge between carbon and iron electrodes in liquidnitrogen. Curr. Appl. Phys.,2009,9(3):629-632
    [152] Toennies J P, Greene E F. Dissociation energies of carbon monoxide andnitrogen from reflected shock wave studies. J. Chem. Phys.,1957,26(3):655-662
    [153] Yang W D, Wang P N, Liu Z P, et al. Enhanced dissociation and ionization ofN2in a pulsed discharge by adding NH3or CH4into nitrogen gas. J. Phys. D:Appl. Phys.,2000,33(24):3223-3227
    [154]王艳艳,崔屾,崔兰,等.电弧放电制备氮和金属元素掺杂的碳纳米颗粒.材料科学与工程学报,2008,26(1):86-89
    [155] Hatakeyama R, Jeong G H, Kato T, et al. Effects of micro-andmacro-plasma-sheath electric fields on carbon nanotube growth in a cross-fieldradio-frequency discharge. J. Appl. Phys.,2004,96(11):6053-6060
    [156] Ohno M, Yoh K. Micromagnetic simulation of magnetization reversal processand stray field behavior in Fe thin film wire. J. Appl. Phys.,2007,102(12):123908
    [157] Greenberger D, Hentschel K, Weinert F, Compendium of Quantum Physics,London New York: Springer Berlin Heidelberg,2009,862-864
    [158] Guan L, Cui L, Lin K, et al. Preparation of few-layer nitrogen-doped graphenenanosheets by DC arc discharge under nitrogen atmosphere of high temperature.Appl. Phys. A,2011,102(2):289-294
    [159] Levchenko I, Volotskova O, Shashurin A, et al. The large-scale production ofgraphene flakes using magnetically-enhanced arc discharge between carbonelectrodes. Carbon,2010,48(15):4570-4574
    [160] Keidar M. Factors affecting synthesis of single wall carbon nanotubes in arcdischarge. J. Phys. D: Appl. Phys.,2007,40(8):2388-2393
    [161] Alexandrou I, Kiely C J, Papworth A J, et al. Formation and subsequentinclusion of fullerene-like nanoparticles in nanocomposite carbon thin films.Carbon,2004,42(8-9):1651-1656
    [162] Tsakadze Z, Levchenko I, Ostrikov K, et al. Plasma-assisted self-organizedgrowth of uniform carbon nanocone arrays. Carbon,2007,45(10):2022-2030
    [163] Cvelbar U, Chen Z, Sunkara M K, et al. Spontaneous growth of superstructure-Fe2O3nanowire and nanobelt arrays in reactive oxygen plasma. Small,2008,4(10):1610-1614
    [164] Wang Z Y, Li N, Shi Z J, et al. Low-cost and large-scale synthesis of graphenenanosheets by arc discharge in air. Nanotechnology,2010,21(17):175602
    [165] Keidar M, Waas A M, Raitses Y, et al. Modeling of the anodic arc dischargeand conditions for single-wall carbon nanotube growth. J. Nanosci.Nanotechnol.,2006,6(5):1309-1314
    [166] Wu Z S, Ren W C, Guo L B, et al. Synthesis of graphene sheets with highelectrical conductivity and good thermal stability by hydrogen arc dischargeexfoliation. ACS Nano,2009,3(2):411-417
    [167] Keidar M, Waas A M. On the conditions of carbon nanotube growth in the arcdischarge. Nanotechnology,2004,15(11):1571-1575

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700