用户名: 密码: 验证码:
丛枝菌根真菌对柑橘铁吸收的效应及其作用机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丛枝菌根真菌是地球上广谱分布的一类土壤微生物,能够与寄主植物形成互惠共生体,帮助寄主植物从土壤中吸收更多的矿质元素和水分,因而对植物的生长和发育尤其重要。在栽培条件下柑橘根系根毛很少且短,甚至无,需要依赖丛枝菌根的吸收作用维持其正常生长,从而对丛枝菌根的依赖性强。柑橘是一类缺铁敏感的果树,生产上常常因土壤中高钙或高pH等因子影响出现缺铁现象,严重引起产量降低、品质下降。本研究以柑橘常用砧木枳和红橘为试材、以丛枝菌根真菌球囊霉属(Glomus)中的3个菌种为菌剂,探讨其对柑橘铁吸收的影响及其作用机理,为阐明菌根真菌提高矿质营养吸收提供理论依据,进而为丛枝菌根真菌在柑橘上的应用提供参考。本研究主要内容和结果如下:
     (1)丛枝菌根真菌对柑橘及其微域环境影响的研究。以G.mosseae、G.versiforme和G.diaphanum为供试菌种,接种于枳(Poncirus trifoliata(L)Raf.)实生苗上进行4种基质盆栽试验,从菌根发育、植株生长和土壤微生物等方面比较上述3种菌种的接种效果。结果表明,丛枝菌根真菌对柑橘的作用存在种间差异,4种基质中,接种G.versiforme的枳实生苗菌根发育最好(如菌根侵染率和菌丝密度最高),其株高、茎粗和根系体积明显高于接种G.mosseae和G.diaphanum的,且根围土壤中细菌、真菌和放线菌的微生物量最大,分别达到了155.66×10~6 cfu/g、71.25×10~6 cfu/g和36.61×10~5 cfu/g,其它两种真菌效应比较没有一定规律。因此,G.versiforme是这3种丛枝菌根真菌中最适合柑橘接种的。
     (2)不同pH下丛枝菌根真菌对柑橘铁吸收影响。以G.versiforme为供试菌种,接种于枳(Poncirus trifoliata(L.)Raf.)和红橘(Citrus reticulata Blanco)实生苗上进行盆栽砂培试验,营养液pH值分别设置4个水平,枳的为pH 5.0、6.0、7.0和pH 8.0,红橘的设置为pH 5.2、6.2、7.2和pH 8.2。从植株生长量、叶绿素和叶片铁含量、根系质子分泌等方面衡量菌种G.versiforme对柑橘铁吸收的影响。结果显示,丛枝菌根真菌提高了枳和红橘实生苗株高、干重、叶绿素、叶片活性铁和全铁含量,最大增幅分别为33.34%、26.83%、32.72%、24.37%和13.75%。在高pH处理下,未接种的枳和红橘根系分泌大量的质子,表现出强烈的缺铁信号,而接种处理的质子分泌量明显较少,这说明丛枝菌根真菌提高了柑橘体内铁营养。
     (3)缺铁和重碳酸盐处理下丛枝菌根真菌对柑橘铁吸收的作用。以G.versiforme为供试菌种,接种于枳和红橘实生苗上进行盆栽砂培试验,缺铁和重碳酸盐处理分别设置4个水平,枳的为CK(pH 6.0)、-Fe(pH 6.0)、CaCO_3(pH 7.0)和CaCO_3 {pH 8.0),红橘的设置为CK(pH 6.2)、-Fe(pH 6.2)、CaCO_3(pH 7.2)和CaCO_3(pH 8.2)。从植株生长量、叶绿素和叶片活性含量、叶片组织结构以及叶片矿质元素的比值及根系FCR活性、总酚等方面研究接种G.versiforme对柑橘铁吸收的作用。结果显示,缺铁条件下,柑橘叶片变薄,栅栏组织和海绵组织二者界限模糊,细胞排列紧密;接种G.versiforme促进了叶片活性铁的积累和叶绿素的合成,提高了叶片Fe/Mn和K/Ca的比值,增强了叶片POD、CAT以及根系FCR活性和总酚含量,最大增幅分别为66.67%、22.46%、54.04%、50.17%、12.87%和12.70%;降低了P/Fe、50(10P+K)/Fe,最大降幅分别达到了52.33%和35.58%。
     (4)丛枝菌根真菌与柑橘不同根围土壤中各形态铁的关系。以G.versiforme为供试菌种,接种于枳和红橘实生苗上进行盆栽砂培试验,利用根袋技术将根围土壤分为0-2 cm、2-4 cm和4-8 cm 3个土层,研究丛枝菌根真菌对柑橘不同根围土壤中交换态铁,氧化锰结合态铁,碳酸盐结合态铁,有机质结合态铁,无定型氧化铁结合态铁,晶形氧化铁结合态铁、残渣态铁和有效铁及土壤球囊霉素年动态变化的影响。结果表明,残渣态铁、有机结合态铁以及交换态铁是土壤中有效性铁的组成部分,而碳酸盐结合态铁和无定形氧化铁结合态铁则抑制了土壤中铁的有效性。丛枝菌根真菌基本上降低了不同根围土壤中残渣态铁、有机结合态铁以及交换态铁的含量,最大降幅分别达到55.27%、42.15%和59.10%,促进有效铁的吸收。此外,土壤中球囊霉素能够螯合铁、锰、铜和锌等金属,具有缓解土壤铁紧张的作用。
     (5)柑橘根系FR01基因克隆以及丛枝菌根真菌对FR01表达分析。提取枳和红橘根系RNA,利用同源序列法克隆柑橘根系FR01基因,并利用Real time QT-PCR技术分析接种G.versiforme对柑橘根系FR01表达的影响。结果显示,同源序列法克隆了枳和红橘根系FR01基因,片段长度同为350 bp,与豌豆、苜蓿中三价铁螯合物还原酶基因同源性达到80%以上。接种丛枝菌根真菌提高了不同时期柑橘根系FR01表达量,且缺铁条件下,其表达量要高于正常铁处理的。
Arbuscular mycorrhizal(AM) fungus is a kind of microbe widely present in the earth, which could form mutualistic symbioses with host plants.AM fungi play very important role in plant growth due to it's improvement of mineral elements and water.Citrus has no or,if any short root hairs in field and is fairly dependent on AM fungi that are most of Glomus species.Citrus is very susceptible to iron chlorosis that is the most frequent nutritional problem in this type of fruit due to high calcium or high pH in soil,which cause decreased yield and neglectly affected of fruit quality.This study deals with two citrus rootstoks(Poncirus trifoliata(L.) Raf.and Citrus reticulata Blanco) and three arbuscular mycorrhizal fungi of Glomus in order to evaluate the effect and mechanism of AM fungi on iron uptake in citrus,so as to provide basic theory for improvement of mineral elements.The main contents and results in the present study are as follows:
     (1)Study on effects of AM fungi on citrus and microenvironment
     Experiment was carried out in pot culture and effects of three Glomus species(Glomus mosseae,G.versiforme and G.diaphanum) on mycorrhizal development,plant growth and soil microbes in trifoliate orange(Poncirus trifoliata(L.) Raf.) were studied. Different AM fungi showed the difference of inter-species in citrus seedlings.Inoculation with G.versiforme showed the greatest effects compared with G mosseae and G. diaphanum in trifoliate orange seedlings which had highest AM colonization,hyphal density,plant height,stem diameter,root volume and density of bacteria(×10~6cfu/g), fungus(×10~6cfu/g) and actonimycetes(×10~5 cfu/g) in rhizospheric soil.It suggested that G. versiforme was the best in the three AM fungus in citrus.
     (2)Effects of AM fungus on iron uptake in citrus under different pH conditions
     The effect of the arbuscular mycorrhizal(AM) fungus(Glomus versiforme) on iron contents in two citrus rootstocks[trifoliate orange(Poncirus trifoliata L.Raf) and red tangerine(Citrus reticulata Blanco)]was studied in sand culture under different pH conditions.The experiment was carried out at four pH levels by applying nutrient solution at pH 5.0,6.0,7.0 or 8.0 to P.trifoliata and pH 5.2,6.2,7.2 or 8.2 to C.reticulata.Plant biomass,chlorophyll,leaf active iron and H~+ excreted were used to analyze the effects of AM fungi on iron uptake.The results indicated that colonization by G.versiforme led to higher plant height,dry weights,chlorophyll content,active iron and total iron of leaves compared with non-mycorrhizal treatments and the maximum extent was 33.34%, 26.83%,32.72%,24.37%and 13.75%.In heigh pH treatments,amounts of H~+ excreted from the two rootstock roots without AM fungi inoculum showed strong signal of iron deficient.However,H~+ excreted less in AM treatments,suggesting that.AM fungi improved the iron nutrition in citrus.
     (3)Function of AM fungi on iron uptake in citrus under iron deficiency and heavy bicarbonate stress
     Effects of arbuscular mycorrhizal fungus(Glomus versiforme) on iron nutriton of trifoliate orange and red tangerine were investigated with a sand culture under iron deficiency and heavy bicarbonate stress.The experiment was carried out at four pH levels by applying nutrient solution at CK(pH 6.0),-Fe(pH 6.0),CaCO_3(pH 7.0) or CaCO_3 (pH 8.0) to trifoliate orange and CK(pH 6.2),-Fe(pH 6.2),CaCO_3(pH 7.2) or CaCO_3 (pH 8.2) to red tangerine.The plant biomass,chlorophyll,active iron,tissue structure and ratios of mineral elements in leaves,root ferric-chelate reductase(FCR) activities and total phenolics were measured.Results showed that the frontier between palisade and spongy tissue got vague and cells were arranged tightly.The colonization of G versiforme significantly increased active iron accumulation and the sythesis of chlorophyll,improved Fe/Mn and K/Ca,and enhanced activities of POD,CAT and root FCR and the contents of total phenolics in citrus roots,and the maximum extent was 66.67%,22.46%,54.04%, 50.17%,12.87%and 12.70%respectively;decreased P/Fe,50(10P+K)/Fe,and the depth downrange was 52.33%and 35.58%respectively.
     (4)Relation ship between AM fungi and each iron species in different rhizospherie soil of citrus
     Sand culture was carried out in trifoliate orange and red tangerine inoculded with G versiforme.Seasonal variation of soil iron species such as Exch-Fe,MnOX-Fe,Carb-Fe, OM-Fe,AOFe-Fe,COFe-Fe,RES-Fe,available Fe and glomalin in different soil range (0-2 cm,2-4 cm,4-8 cm) apart from taproot by root confinement were studied in normal management.The results indicated that RES-Fe,OM-Fe and Exch-Fe made up of soil available Fe,and Carb-Fe and AOFe-Fe showed the negative effects.Colonization of G versiforme decreased RES-Fe,OM-Fe and Exch-Fe,and the depth downrange was 55.27%,42.15%and 59.10%respectively,improved available Fe uptake.Furthermore,Fe, Mn,Cu and Zn could be sequestered by soil glomalin,showing the buffer action of iron deficient.
     (5)FRO1(FCR gene) gene clone in citrus root and effects of AM fungi on FRO1 expression
     Total RNA was extracted from trifoliate orange and red tangerine roots and cDNA fragment encoding FRO1 gene was obtained by RT-PCR.Effects of AM fungi on FRO1 expression was studied via Real time PCR.Results showed that the partial cDNA length of FRO1 gene in trifoliate orange and red tangerine was 350 bp in size,and above 80% homology was found with Pisum sativum and Medicago truncatula.Inoculated with AM fungi enhanced the gene expression during different stage and higher in iron dificient treatment than normal iron conditions.
引文
1.H·马斯纳著,曹一平,陆景陵译.高等植物的矿质营养.北京农业大学出版社,1991,308-310
    2.安华明,樊卫国.果树铁营养研究进展.西南农业学报,2003,14(3):83-89
    3.鲍士旦.土壤农化分析.北京:中国农业出版社,2000,495
    4.曹慧,韩振海,许雪峰,张勇.高等植物的铁营养.植物生理学通讯,2002,38(2):180-186
    5.陈华林.柑桔砧木基因型对石灰性紫色土缺铁黄化的抗性差异-选择利用的潜力.西南农业学报,1993,6(4):61-66
    6.陈宁,王幼珊,李晓林,张美庆,邢礼军,冯固,倪小会.宿主植物栽培密度对AM真菌生长发育的影响.菌物系统,2003,22(1):88-94
    7.陈善春.植物基因工程及其在柑桔育种中的应用.果树科学,1993,10(3):169-173
    8.陈应龙,弓明钦,王风珍,陈羽.VA菌根菌剂的生产及接种潜力的测定.热带亚热带土壤科学,1997,6(2):113-120
    9.迟丽华.吉林省野生果树菌根的调查研究.[硕士学位论文].长春:吉林农业大学,2003
    10.崔美香,薛进军,王秀茹,台社珍,张福锁,李绍华.树干高压注射铁肥矫正苹果失绿症及其机理.植物营养与肥料学报,2005,11(1):133-136
    11.董昌金,赵斌.影响AM真菌孢子萌发的几种因素研究.植物营养与肥料学报,2003,9(4):489-494
    12.段立红,丁红,李文学,张福锁.机理Ⅰ植物铁吸收与运输的分子机制.植物营养与肥料学报,2007,13(4):739-744
    13.冯固、杨茂秋、白灯莎.VA菌根真菌对石灰性土壤不同形态磷酸盐有效性的影响.植物营养与肥料学报,1997,3(2):43-48
    14.盖京萍,刘润进,李晓林.山东省不同植被区内野生植物根围AM菌的生态分布.生态学杂志,2000,19(4):18-22
    15.盖京萍,蒋家慧,刘培利.AM菌资源及生态学研究进展.莱阳农学院学报,1998,15(2):135-140
    16.高明,车福才,魏朝富,谢德体,杨剑虹.长期施用有机肥对紫色水稻土铁锰铜锌形态的影响.植物营养与肥料学报,2000,6(1):11-17
    17.葛均青,于贤昌,王竹红.VAM对植物矿质营养的效应.土壤,2002,13(6):337-343
    18.葛均青,于贤昌,王竹红.丛枝菌根(AM)及其在园艺作物上的应用.山东农业大学学报,2003,34(2):303-306
    19.关松荫.土壤酶及其研究方法.北京:农业出版社,1987,274-328
    20.郭世伟,邹春琴,江荣凤,张福锁.提高植物体内铁再利用效率的研究现状及进展.中国农业大学学报,2000,5(3):80-86
    21.韩振海,许雪峰.不同铁效率果树基因型研究的现状和前景.园艺学年评,1995,1:1-16
    22.何新华.铁的生物无机化学.昆明:云南科技出版社,1994,248
    23.何绪生.铁肥及其使用.磷肥与复肥,2002,17(4):69-71
    24.胡又厘.中国的果树菌根研究进展.福建农业大学学报,1998,27(1):52-61
    25.黄勤.柑桔VA菌根的研究进展.园艺学报,1994,21(1):47-53
    26.黄万荣,秦岭,柳振亮.碱地上VA菌根苹果苗的生长表现.中国果树,1995,4:23-24
    27.吉前华,李玉堂,王永清.石灰性土壤上柑桔缺铁黄化研究进展.四川农业大学学报,1998,16(3):365-369
    28.姜德锋,蒋家慧,李敏,刘润进,李晓林.AM菌对玉米某些生理特性和籽粒产量的影响.中国农业科学,1998,31(1):15-20
    29.姜远茂,顾曼如,束怀瑞.红星苹果营养诊断.园艺学报,1995,22(3):215-220
    30.蒋廷惠,胡蔼堂,秦怀英.土壤中铜、铁、锌、锰的形态与有效性的关系.土壤通报,1989,20(5):228-231
    31.蒋廷惠,胡霭堂,秦怀英.土壤锌、铜、铁、锰形态区分方法的选择.环境科学学报,1990,10(3):280-286
    32.金樑,赵洪,李博.我国菌根研究进展及展望.应用与环境生物学报,2004,10(4):515-520
    33.李阜棣.土壤微生物学.北京:中国农业出版社,1996,180-233
    34.李合生.植物生理生化实验原理和技术.北京:中国农业科技出版社,2000,164-165,278
    35.李凌.小金海棠和香橙耐缺铁机理研究.[博士学位论文].重庆:西南大学,2002
    36.李树林,赵士杰,赵立志.VA菌根对茄子、黄瓜的促生和防病效应.植物保护学报,1997,24,(2):117-120
    37.李晓林,冯固.丛枝菌根生态生理.北京:华文出版社,2001,1-358
    38.李晓林,姚青.VA菌根与植物的矿质营养.自然科学进展,2000,10(6):524-531
    39.李学柱,罗泽民,何绍兰.石灰性紫色土改良措施对枳砧锦橙吸铁及生长的效应.中国农业科学,1990,23(4):35-42
    40.李燕婷,白灯莎·买买提艾力,张福锁,江荣风,毛达如.酸性根际肥对石灰性土壤pH和铁有效性的影响研究.植物营养与肥料学报,2003,9(3):312-316
    41.梁秀棠.VA菌根对芒果实生苗吸收营养和生长的影响.广西农学院学报,1990,9(4):83-86
    42.凌宏清.国际植物营养教学培训班暨植物营养学科研讨会.2004
    43.柳参奎.植物碳酸盐逆境生理及其分子机制的研究.哈尔滨:东北林业大学出版社,2006,1-175
    44.刘广深,徐冬梅,许中坚,王红宇,刘维平.用通径分析法研究土壤水解酶活性与土壤性质的关系.土壤学报,2003,40(5):756-762
    45.刘润进,高秋莲,生兆江,韩殿一,姜德峰.杜梨菌根苗几种培养方法的试验.莱阳农学院学报,1990,7(4):298-300
    46.刘润进,郝文英.VA菌根真菌对植物水分代谢的影响.土壤学报,1994,31:46-53
    47.刘润进,李晓林等.丛枝菌根及应用.北京:科学出版社,2000,1-224
    48.刘润进,裘维蕃.内生菌根(VAM)诱导植物抗病性研究的新进展.植物病理学报,1994,21(1):1-4
    49.刘润进,王发园,孟祥霞.渤海湾岛屿的丛枝菌根真菌.菌物系统,2002,21(4):525-532
    50.刘润进.VA菌根与农业生产.北京农业科学,1992,10(6):34-38
    51.刘润进.丛枝菌根菌提高棉花抗黄萎病机制的初步研究.见:全国第二届青年农学学术年会论文集.北京:中国农业科技出版社.1995,336-540
    52.刘文科,杜连凤,刘东臣.果树铁营养诊断及缺铁失绿症的施肥矫治研究现状.中国农学通报,2002a,18(4):67-70,79
    53.刘文科,杜连凤,刘东臣.有机肥与植物种类对铁肥形态转化及其有效性的影响.土壤与环境,2002b,11(3):286-289
    54.鹿金颖,毛永民,申连英,彭士琪.VA菌根对酸枣实生苗吸收土壤磷锌铁元素的影响.河北农业大学学报,2002,25(1):42-47
    55.陆景陵.植物营养学.北京:北京农业大学出版社,1991
    56.罗英,孙辉,唐学芳,唐亚.珠穆朗玛峰北坡土壤过氧化氢酶与蔗糖酶活性研究.土壤学报,2007,44(6):1144-1147
    57.潘幸来,王永杰,张贵云.黄土高原VAM真菌孢子数量的调查研究初报.土壤学报,1994,31:64-70
    58.彭仁,邱业先,汪金莲.土壤微生物脲酶研究.见:中国生物化学与分子生物学会第八届会员代表大会暨全国学术会议论文摘要集.中国生物化学与分子生物学会第八届会员代表大会暨全国学术会议,上海,2001,398-399
    59.齐国辉,郗荣庭,丁平海,高克祥,王国英,杜国强.VA菌根菌对苹果组培苗水分吸收和利用的影响.河北林果研究,2000,15(2):135-139
    60.齐国辉.VA菌根对苹果、葡萄组培苗生理效应的研究.[硕士学位论文].保定:河北农业大学,1996
    61.邵玺文,张瑞珍,童淑媛,杜震宇,杨沫,孙长占.松嫩平原盐碱土对水稻叶绿素含量的影响.中国水稻科学,2005,19(6):570-572
    62.宋福强,杨国亭,孟繁荣,田兴军,董爱荣.丛枝茵根化大青杨苗木根际微域环境的研究.生态环境,2004,13(2):211-216
    63.宋勇春,冯固,李小林.泡囊丛枝菌根对红三叶草根际土壤磷酸酶活性的影响.应用与环境生物学报,2000,6(2):171-175
    64.唐振尧,何首林.VA菌根对柑桔吸收铁素效应研究初报.园艺学报,1990,17(4):257-262
    65.唐振尧,何首林.菌根促进柑桔吸收难溶性磷肥的机理研究.中国柑桔,1991,20(2):7-10
    66.仝瑞建,杨晓红,李东彦.丛枝菌根真菌种间差异对柚苗营养生长及矿质含量的影响.应用生态学报,2006,17(7):1229-1233
    67.汪李平.植物的铁素营养及缺铁症的防治(综述).安徽农业大学学报,1995,22(1):17-22
    68.王春华,杨晓红,李东彦,于桂宝,秦琴.AM真菌种间差异对枳壳苗营养生长及矿质含量的影响.中国农学通报,2006,22(12):199-203
    69.王发园,林先贵,周健民.中国AM真菌的生物多样性.生态学杂志,2004,23(6):149-154
    70.王改改,傅瓦利,魏朝富,袁红.消落带土壤铁的形态变化及其对有效磷的影响.土壤通报,2008,39(1):66-70
    71.王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995,146-151
    72.王明元,夏仁学.VA菌根真菌孢子分离的白砂糖离心法研究.福建果树,2005,133:6-7
    73.王秀茹,薛进军,杨青芹,台社珍,李绍华,张福锁.苹果不同施肥方式对铁的吸收、运输与分配的影响.园艺学报,2006,33(3):597-600
    74.王艳玲,胡正嘉.VA菌根真菌对番茄线虫病的影响.华中农业大学学报,2000,19(1):25-28
    75.王幼珊,刘相梅,张美庆,刑礼军.盆栽后处理、种植密度及农药对AM真菌生长繁殖的影响.华北农学报,2002,17(1):94-99
    76.王幼珊,张美庆,王克宁,刑礼军.我国东南沿海地区的AM真菌Ⅳ.四个我国新纪录种.菌物系统,1998,17(4):301-303
    77.王中英,王艺.果树的菌根.世界农业,1994,4:33-35
    78.魏孝荣,郝明德,邵明安.黄土高原旱地长期种植作物对土壤微量元素形态和有效性的影响. 生态学报,2005,25(12):3196-3203
    79.魏孝荣.旱地长期定位试验对土壤锌、铜、锰、铁化学特性影响的研究.[硕士学位论文].杨凌:西北农林科技大学,2004
    80.吴强盛,夏仁学,胡正嘉.丛枝菌根对枳实生苗抗旱性的影响研究.应用生态学报,2005,16(3):459-463
    81.吴强盛,夏仁学.果树VA菌根的研究与应用.植物生理学通讯,2003,39(5):536-540
    82.吴强盛,夏仁学.水分胁迫下丛枝菌根真菌对枳实生苗生长和渗透调节物质含量的影响.植物生理与分子生物学学报,2004,30(5):583-588
    83.吴强盛,夏仁学.新型果树生物肥料丛枝菌根的效应及机理.土壤肥料科学,2004,20(2):120-122
    84.吴强盛.丛枝菌根真菌对柑橘抗旱性的作用及其机理研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    85.肖艳,陈清,王敬国,魏荔,曹一平.滴灌施肥对土壤铁、磷有效性及番茄生长的影响.中国农业科学,2004,37(9):1322-1327
    86.肖艳,李燕婷,曹一平.不同铁制剂与施用方法对矫正花生缺铁黄化症的效果.土壤肥料,2003,5:21-25,28
    87.谢国生,朱伯华,彭旭辉,杨梅.水稻苗期对不同pH值下NaCl和NaHCO3胁迫响应的比较.华中农业大学学报,2005,24(2)121-124
    88.薛炳烨,罗新书.VAM真菌对再植桃实生苗生长的作用.果树科学,1992,9(2):106-109
    89.薛进军,赵风平,台社珍.果树体内铁及其再利用.河北果树,2000,2:4-5
    90.薛进军,赵风平,田自武,崔美香,台社珍,李绍华,张福锁.果树断根铁素营养研究.中国农业科学,2000,33(5):1-7
    91.杨青琴,薛进军,王秀茹,赵志军,台社珍,张福锁,李绍华.铁肥根系输液矫正果树缺铁失绿症机理.植物营养与肥料学报,2001,7(4):435-440
    92.杨晓红.AM真菌特性及其对柑桔生长影响的研究.[博士学位论文].重庆:西南大学,2001
    93.杨兴洪,罗新书,刘润进.VA菌根对西瓜生长、产量及品质的影响.果树科学,1994,11(2):117-119
    94.姚青,冯固,李晓林.不同作物对VA菌根真菌的依赖性差异.作物学报,2000,26(6):874-878
    95.姚青,李道高,石井孝昭.VA菌根菌与磷的互作关系及其对柑桔果实着色的影响.西南农业大学学报,1997,19(3):231-234
    96.姚青,李道高,石井孝昭.菌根真菌对柑桔果汁成分和果皮着色的影响.果树科学,1999,16(1):38-42
    97.姚青,朱红惠,羊宋贞.丛枝菌根真菌对香蕉试管苗植株生长和矿质营养吸收的影响.果树学报,2004,21(5):425-428
    98.于善凯,张英.不同品种杭白菊中酚类物质含量和清除自由基活性的比较.食品科学,2001,22(4):84-87
    99.余舜武,刘鸿艳,罗利军.利用不同实时定量PCR方法分析相对基因表达差异.作物学报,2007,33(7):1214-1218
    100.曾广文.植物生理.成都:成都科技大学出版社,1998,286
    101.翟丙年,刘海轮,尚浩博,杨岩荣.植物吸收利用铁的机理.西北植物学报,2002,22(1): 184-189
    102.张朝红,王跃进,张剑侠.潜在性缺铁条件下注射黄叶绿制剂对酥梨的影响.西北农业学报,2002,11(4):32-35
    103.张福锁.环境胁迫与植物根际营养.北京:中国农业出版社,1998,56-66
    104.张福锁.环境胁迫与植物营养.北京:北京农业大学出版社,1993,369-383
    105.张福锁.土壤与植物营养研究动态.北京:北京农业大学出版社,1992,15-93
    106.张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社,1993,81-96
    107.张光先,陈德万,孙凡.树干注射不同含铁化合物防治柑橘失绿研究.中国柑橘,1993,22(4):27-30
    108.张凌云,张宪法,翟衡.土壤因子对植物缺铁失绿的影响.土壤通报,2002,33(1):74-77
    109.张美庆,王幼珊,邢礼军.球囊霉目一新种:长孢球囊霉.菌物系统,1997,16(4):241-243
    110.张英,刘润进.目前AM真菌培养特性方面研究的基本情况.微生物学通报,2002,29(4):86-90
    111.张勇,谢丽源,熊丙全等.银杏根际丛枝菌根真菌生长与根系黄酮含量的相关性研究.菌物学报,2004,23:133-138
    112.张勇,曾明,熊丙全等.(AM)生物技术在现代农业体系中的生态意义.应用生态学报,2003,14(4):613-617
    113.张玉霞,李志刚,李美娟,杜晓艳.四种草地早熟禾抗盐碱生理生化特性的研究.中国农学通报,2004,20(5):209-213
    114.张祝新,杨凯艳,王平,高艳.旱作黄潮土中铁元素的有效性研究.土壤肥料,2001,5:27-30
    115.赵斌,何绍江.微生物学实验.北京:科学出版社,2002,113-130
    116.赵兰坡,姜岩.土壤磷酸酶活性测定方法的探讨.土壤通报,1986,17(3):138-142
    117.赵士杰,李树林.VA菌根促进韭菜增产的生理基础研究.土壤肥料,1993,4:38-40
    118.赵士杰,李树林.VA菌根促进青椒生长的生理研究.华北农学报,1994,9(1):81-86
    119.赵小蓉,林启美,李保国.微生物溶解磷矿粉能力与pH及分泌有机酸的关系.微生物学杂志,2003,23(3):5-7
    120.赵之伟,杜刚.云南热带蕨类植物根际土壤中的六种VA菌根真菌.菌物系统,1997,16(3):208-211
    121.赵之伟.云南热带、亚热带蕨类植物根际土壤中的VA菌根真菌.云南植物研究,1998,20(2):183-192
    122.郑世学,董秀丽,喻子牛,赵斌.以新鲜根段进行AM真菌的分子检测及竞争性侵染研究.菌物学报,2004,23(1):126-132
    123.周厚基,仝月澳.苹果树缺铁失绿研究的进展.Ⅱ.铁逆境对树体形态及生理生化作用的影响.中国农业科学,1988,21(4):46-50
    124.朱红惠,姚青,龙良坤,羊宋贞.不同氮形态对AM真菌孢子萌发和菌丝生长的影响.菌物学报,2004,23(4):590-595
    125.朱维琴,林咸永,章永松.铁、锰等金属元素的微生物还原及其在环境生物修复中的意义.应用生态学报,2002,13(3):369-372
    126.Abdalla M E,Abdel-Fattah G M.Influence of the endomycorrhizal fungus Glomus mosseae on the development of peanut pod rot disease in Egypt.Mycorrhiza,2000,10:29-35
    127.Adholeya A.Commercial production of AMF through industrial mode and its large scale application.In:Abstracts,4~(th)International Conference on Mycorrhizae.Montreal,Canada,2003,pp 240
    128.Akiyama K,Matsuzaki K,Hayashi H.Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi.Nature,2005,435:824-827
    129.Albano J P,Miller W B.Iron deficiency stress influences physiology of iron acquisition in marigold(Tagetes erecta L.).J Am Soc Hortic Sci,1996,121:438-441
    130.Aliasgharzadeh N,Rastin N S,Towfighi H,Alizadeh A.Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz plain of Iran in relation to some physical and chemical properties of soil.Mycorrhiza,2001,11:119-122
    131.Al-Karaki G N,Clark R B.Growth,mineral acquisition,and water use by mycorrhizal wheat grown under water stress.J Plant Nutri,1998,21:263-276
    132.Alvarez-Fernández A,García-Marco S,Lucena J J.Evaluation of synthetic iron(Ⅲ)-chelates (EDDHA/Fe~(3+),EDDHMA/Fe~(3+) and the novel EDDHSA/Fe~(3+)) to correct iron chlorosis.Eur J Agron,2005,22:119-130
    133.Andrade G,Mihara K L,Linderman R J,.Bethlenfalvay G J.Bacteria from rhizosphere and hyphosphere of different arbuscular mycorrhizal fungi.Plant Soil,1997,192:71-79
    134.Artursson V,Finlay R D,Jansson J K.Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species.Environ Microbiol,2005,7:1952-1966
    135.Artursson V,Finlay R,Jansson J K.Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth.Environ Microbiol,2006,8:1-10
    136.Artursson V,Jansson J K.Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscular mycorrhizal hyphae.Appl Environ Microbiol,2003,69:6208-6215
    137.Ban O H,Han S S,Lee Y N.Identification of a potent protease-producing bacterial isolate,Bacillus amyloliquefaciens CMB01.Ann Microbiol,2003,53:95-103
    138.Banuls J,Quinones A,Martín B,Primo-Millo E,Legaz F.Effects of the Frequency of Iron Chelate Supply by Fertigation on Iron Chlorosis in Citrus.J plant nutr,2003,26:10-11
    139.Barea J M.Rhizosphere and mycorrhiza of field crops.In:Toutant J P,Balazs E,Galante E,Lynch J M,Schepers J S,Werner D,Werry P A Eds.,Biological Resource Management:Connecting Science and Policy(OECD),INRA,Editions and Springer,Berlin,2000.110-125
    140.Bavaresco L,Frashini P,Perino A.Effect of the rootstock on the occurrence of lime-induced chlorosis of potted Vitis vinifera L.cv.'Pinot blanc'.Plant Soil,1993,157:305-311
    141.Bavaresco L,Giachino E,Colla R.Iron chlorosis paradox in grapevine.J plant nutri,1999,22:1589-1597
    142.Belkhodja R,Morales F,Sanz M,Abadia A,Abadia J.Iron deficiency in peach trees:Effects on leaf chlorophyll and nutrient concentrations in flowers and leaves.Plant Soil,1998,203:257-268
    143.Bethlenfavay G J,Ames R N.Comparison of two methods for quantifying extraradical mycelium of vesicular-arbuscular mycorrhizal fungi.Soil sci Soc AM J,1987,51:834-837
    144.Bianciotto V,Minerdi D,Perotto S,Bonfante P.Cellular interactions between arbuscular mycorrhizal fungi and rhizospheric bacteria.Protoplasma,1996,193:123-131
    145.Borowicz V A.A fungal root symbiont modifies plant resistance to an insect herbivore.Oecologia,1997,112:534-542
    146.Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,1976,72:248-254
    147.Broek A V,Vanderleyden J.Genetics of the Azospirillum-plant root association.Crit Rev Plant Sci, 1995,14:445-466
    148.Bryla D R,Duniway J M.Effects of mycorrhizal infection on drought tolerance and recovery in safflower and wheat.Plant Soil 1997,197:95-103
    149.Burne R A,Chen Y-Y M.Bacterial ureases in infectious diseases.Microbes Infect,2000,2:553-542
    150.Burton S A Q,Prosser J I.Autotrophic ammonia oxidation at low pH through urea hydrolysis.Appl Environ Microbiol,2001,67:2952-2957
    151.Cakmak I,Marschner H.Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase,and glutathione reductase in bean leaves.Plant Physiol,1992,98:1222-1227
    152.Camprubi A,Calvet C.Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies.Hort Sci,1996,31(3):366-369
    153.Caris C,Hordt W,Hawkins H J,Romheld V,George E.Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants.Mycorrhiza,1998,8:35-39
    154.Carvalho L M,Correia P M,Martins-Loucao M A.Arbuscular mycorrhizal fungal propagules in a salt marsh.Mycorrhiza,2004,14(3):165-170
    155.Chatterjee C,Gopal R,Dube B K.Impact of iron stress on biomass,yield,metabolism and quality of potato(Solanum tuberosum L.).Sci Hortic-Amsterdam,2006,108:1-6
    156.Chen F,Lu J W.Effect of chelate application on citrus in the Three Gorges Area.Southeast China,2006,1:33-35
    157.Chen X,Wu C H,Tang J J,Hu S J.Arbuscular mycorrhizae enhance heavy metal lead.uptake and growth of host plants under a sand culture experiment.Chemosphere,2005,60:665-671
    158.Chouliaras V,Dimassi K,Therios I,Molassiotis A,Diamantidis G.Root-reducing capacity,rhizosphere acidification,peroxidase and catalase activities and nutrient levels of Citrus taiwanica and C.volkameriana seedlings,under Fe deprivation conditions.Agronomie,2004a,24:1-6
    159.Chouliaras V,Therios I,Molassiotis A,Diamantidis G.Iron chlorosis in grafted sweet orange (Citrus sinensis L.) plants:Physiological and biochemical responses.Biol Plantarum,2004b,48:141-144
    160.Christensen H,Jakobsen I.Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizospheric of cucumber(Cucumis sativus L.).Biol Fert Soils,1993,15:253-258
    161.Clark R B,Zero S K.Iron acquisition by mycorrhizal maize grown on alkaline soil.J Plant Nutri,1996a,19:247-264
    162.Clark R B,Zeto S K.Mineral acquisition by arbuscular mycorrhizal plants.J Plant Nutri,2000,23:867-902
    163.Clark R B,Zeto,S K.Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil.Soil Biol Biochem,1996b,28:1495-1503
    164.Clark R B.Arbuscular mycorrhizal adaptation,spore germination,root colonization,and host plant growth and mineral acquisition at low pH.Plant Soil,1997,192:15-22
    165.Cloyd R A,Sadof C S.Effects of plant architecture on the attack rate of Leptomastix dactylopii (Hymenoptera:Encyrtidae),a parasitoid of the citrus mealybug(Homoptera:Pseudococcidae).Environ Ent,2000,29,535-541
    166.Colla G,Rouphael Y,Cardarelli M,Tullio M,Rivera C M,Rea E.Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration.Biol Fertil Soils,2008,44:501-509
    167.Davies F S,Albrigo L G.Citrus.Wallingford:CAB International,1994
    168.de Souza P V D,Schmitz JA K,de Freitas R S,Carniel E,Carrenho R.Identification and quantification of native arbuscular mycorrhizae fungi of citrus in the State of Rio Grande do Sul,Brazil.Pesq Agropec Bras,2002,37:553-558
    169.Dellorto M,Santi S,Nisip D E,Cesco S,Varanini Z,Zocchi G,Pinton R.Development of Fe deficiency responses in cucumber(Cucumis sativus L.) roots:involvement of plasma membrane H~+-ATPase activity.J Exp Bot,2000,51(345):695-701
    170.Diedhiou P M.Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato.Mycorrhiza,2003,13:199-204
    171.Diem H G.Myeorrhizae of actinorhizal plants.Acta Bot Gall,1997,143:581-592
    172.Djeridane A,Yousfi M,Nadjemi B,Boutassouna D,Stocker P,Vidal N.Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds.Food Chem,2006,97:654-660
    173.Douds D D,Reider C.Inoculation with myeorrhizal fungi increases the yield of green peppers in a high P soil.Biol Agric Hort,2003,21(1):91-102
    174.Doyle D J,Stotzky G.Methods for the detection of changes in the microbial ecology of soil caused by the introduction of micro-organisms.Microbial Rel,1993,2:.63-72
    175.Driver J D,Holben W E,Rillig M C.Characterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi.Soil Biol Biochem,2005,37:101-106
    176.Eide D,Broderius M,Fett J,Guerinot M L.A novel iron-regulated metal transporter from plants identified by functional expression in yeast.Proc NatlAcad Sci USA,1996,93:5624-5628
    177.Faber B A,Zasoske R J,Munns D N,Shackel K.A method for measuring hyphal nutrition and water uptake in mycorrhizal plants.Can J Bot,1991,69:87-94
    178.Feng G,Su Y B.Li X L,Wang H.Histochemical visualizatioin of phosphatase released by arbuscular mycorrhizak fungi in soil.J Plant Nutri,2002,25(5):969-980
    179.Fester T,Hause B.Drought and symbiosis-why is abscisie acid necessary for arbuscular mycorrhiza? New Phytol,2007,175:381-383
    180.Fidelibus M W,Martin C A,Stutz J C.Geographic isolates of Glomus increase root growth and whole-plant transpiration of Citrus seedlings grown with high phosphorus.Mycorrhiza,2001,I0:231-236
    181.Fortin J A,Bécard G,Declerek S,Dalpé Y,St-Amaud M,Coughlan A P,Piché Y.Arbuscular mycorrhiza on root-organ cultures.Can J Bot,2002,80:1-20
    182.Gadkar V,David-Schwartz R,Kunik T,Kapulnik Y.Arbuscular mycorrhizal fungal colonization.Factors involved in host recognition.Plant Physiol,2001,127:1493-1499
    183.Garmendia I,Aguirreolea J,Goicoechea N.Defence-related enzymes in pepper roots during interactions with arbuscular mycorrhizal fungi and/or Verticillium dahliae.Biocontrol,2006,15:293-310
    184.Gehring C A.Growth responses to arbuscular mycorrhizae by rain forest seedlings vary with light intensity and tree species.Plant Ecol,2003,167:127-139
    185.Genre A,Chabaud M,Timmers T,Bonfante P,Barker D G.Arbuseular myeorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection.Plant Cell,2005,17:3489-3499
    186.George E,Marschner H,Jakobsen I.Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil.Special issue on arbuscular mycorrhizae:biotechnological applications:an environmental sustainable biological agent.Crit Rev Biotechnol,1995,15:257-270
    187.Gerdemann J W,Nicolson T H.Spores of mycorrhizal Endogone species extracted from the soil by wet sieving and decanting.Trans Br Mycol Soc,1963,46:235-244
    188.Gibson D T,Sayler G S.Scientific foundations of bioremediation:current status and future needs.American Academy of Microbiology,Washington:National Academy Press,1992,234-240
    189.González-Chávez M C,Carrillo-Gonzáleza R,Wright S F,Nichols K A.The role of glomalin,a protein produced by arbuscular mycorrhizal fungi,in sequestering potentially toxic elements.Environ Poll,2004,130:317-323
    190.Greipsson S,Crowder A A.Amelioration of copper and nickel toxicity by iron plaque on roots of rice(Oryza sativa).Can J Botany,1992,70:824-830
    191.Guerinot M L,Yi Y.Iron:nutritious,noxious,and not readily available.Plant Physiol,1994,104:815-820
    192.Guillemin J P,Orozco M O,Gianinazzi-Pearson V,Gianinazzi S.Influence of phosphate fertilization on fungal alkaline phosphatase and succinate dehydrogenase activities in arbuscular mycorrhiza of soybean and pineapple.Agr Ecosyst Environ,1995,53:63-69
    193.Hause B,Mrosk C,Isayenkov S,Strack D.Jasmonates in arbuscular mycorrhizal interactions.Phytochemistry,2007,68:101-110
    194.Hernández G,Cuenca G,García A.Behaviour of arbuscular-mycorrhizal fungi on Vigna luteola growth and its effect on the exchangeable(~(32)P) phosphorus of soil.Biol Fert Soils,2000,31:232-236
    195.Hewit E J.Essential and functional metals in plants.In:Robb D A,Pierpoint W S eds.,Metals and Micronutrients Uptake and Utilization by Plants.New York:Academic Press,1983,277-323
    196.Higuchi K,Suzuki K,Nakanishi H,Yamaguchi H,Nishizawa N K,Mori S.Cloning of nicotianamine synthase genes:Novel genes involved in the biosynthesis of phytosiderophores.Plant Physiol,1999,119(2):471-480
    197.http://ebook.mumayi.net/12/gljx/ts012044.pdf
    198.http://soiltest.coafes.umn.edu
    199.Huang Y,Chen Y J,Tao C.Uptake and distribution of Cu,Zn,Pb and Cd in maize related to metals speciation change in rhizosphere.Chin J Appl Ecol,2002,13:860-862
    200.Igartua E,Grasa R,Sanz M,Abadía A,Abadía J.Prognosis of iron chlorosis from the mineral composition of flowers in peach,J Hort Sci Biotech,2000,75:111-118
    201.Jakobsen I,Gazey C,Abbott L K.Phosphate transport by communities of arbuscular mycorrhizal fungi in intact soil cores.New Phytol,2001,149:95-103
    202.Johansson J F,Paul L R,Finlay R D.Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture.FEMS Microbiol Ecol,2004,48:1-13
    203.John F,Schultze M.Analysis of arbuscular mycorrhizas using symbiosis-defective plant mutants.New Phytol,2001,150:525-532
    204.Jolley V D,Fairbanks D J,Stevens W B,Terry R E,Orf J H.Root iron-reduction capacity for genotypic evaluation or iron efficiency in soybean,J Plant Nutri,1992,15:1679-1690
    205.Joner E J,Leyvalm C.Uptake of ~(10+)Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium.New Phytol,1997,135:353-360
    206.Khan A G,Kuek C,Chaudhry T M,Khoo C S,Hayes W J.Role of plants,mycorrhizae and phytochelatorsin heavy metal contaminated land remediation.Chemosphere,2000,41:197-207
    207.Koike S,Inoue H,Mizuno D,Takahashi M,Nakanishi H,Mori S,Nishizawa N K.OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem.Plant J,2004,39:415-424
    208.Koseoglu A T,Acikgoz V.Determination of iron chlorosis with extractable iron analysis in peach leaves.J Plant Nutri,1995,18(1):153-161
    209.Koseoglu A T.Effect of iron chlorosis on mineral composition of poach leaves.J Plant Nutri,1995,18:765-776
    210.Krishnaraj P U,Sreenivasa M N.Increased root colonization by bacteria due to inoculation of vesicular-arbuscular mycorrhizal fungus in chilli(Capsicum annuum).Zentr Mikrobiol,1992,147:131-133
    211.Leyval C,Turnau K,Haselwandter K.Effect of heavy metal pollution on mycorrhizal colonization and function:Physiological,ecological and applied aspects.Mycorrhizae,1997,7:139-153
    212.Li L,Cheng X,Ling H Q.Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomato.Plant Mol Bio,2004,54:125-163
    213.Linderman R G.Effects of mycorrhizas on plant tolerance to diseases.In:Kapulnik Y,Douds D D J Eds.,Arbuscular Mycorrhizas:Physiology and Function,Kluwer Academic Publishers,Dordrecht,the Netherlands,2000.345-365
    214.Linderman R G.Vesicular-arbuscular mycorrhizae and soil microbial interactions.In:Mycorrhizae in Sustainable Agriculture,ASA Publication,Madison,USA,1992,45-68
    215.Lindsay W L,Schwab A P.The chemistry of iron in soils and its availability to plants.J Plant Nutri,1982,5:821-840
    216.Liu A,Hamel C,Hamilton R I,Ma B L,Smith D L.Acquisition of Cu,Zn,Mn and Fe by mycorrhizai maize(Zea mays L.) grown in soil at different P and micronutrient levels.Mycorrhiza,2000,9:331-336
    217.Liu A,Wang B,Hamel C.Arbuscular mycorrhiza colonization and development at suboptimal root zone temperature.Mycorrhiza,2004,14:93-101
    218.Liu R J.Effect of vesicular-arbuscular mycorrhizal fungi on vercticillium wilt of cotton.Mycorrhiza,1995,5:293-297
    219.Lucena J J,Manzanares M,Gárate A.A test to evaluate the efficacy of commercial Fe-chelates.J Plant Nutri,1992,15:1553-1566
    220.Mahmoudi H,Ksouri R,Gharsalli M,Lachaal M.Differences in responses to iron deficiency between two legumes:lentil(Lens culinaris) and chickpea(Cicer arietinum).J Plant Physiol,2005,162:1237-1245
    221.Mar Vazquez M,Cesar S,Azcon R,Barea J M.Interactions between arbuscular mycorrhizal fungi and other microbial inoculants(Azospirillum,Pseudomonas,Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants.Appl Soil Ecol,2000,15:261-272
    222.Marschner H,Dell B.Nutrient uptake in mycorrhizal symbiosis.Plant Soil,1994,159:89-102
    223.Marschner H,Romheld V,Kissel M.Different strategies in higher plants in mobilization and uptake of iron.J Plant Nutri,1986,9:695-713
    224.Marschner H,Romheld V.Strategies of plants for acquisition of iron.Plant Soil,1994,165:261-274
    225.Marschner H.Functions of mineral nutrients:micronutrients.Iron.Mineral Nutrition of Higher Plants.Academic Press,Cambridge,1995.889
    226.Mcallister C B,Garcia-Romera A,Oeampo J A.In vitro interactions between Trichoderma koningii,Fusarium solani and Glomus mosseae.Soil Biol Biochem,1994,26:1369-1374
    227.McAllister C B,Garcia-Garrido J M,Garcia-Romera A,Godeas A,Ocampo J A.In vitro interaction between Alternaria alternata,Fusarium equiseti and Glomus mosseae.Symbiosis,1996,20:163-174
    228.Mengel K.Iron availability in plant tissues-iron chlorosis on calcareous soils.In:Abadia J eds., Iron Nutrition in Soils and Plants,1995,371-389
    229.Mobankumar V.Techniques in Mycorrhizal Resarch.(eds.Raman N,et al).University of Madras,Madras,India,1988,88-117
    230.Monron A,Azcon R.Relevance ofmycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species,Agr Ecosyst Environ,1996,60(1):9-15
    231.Monz C A,Hunt H W,Reeves F B,Elliot E T.The response of mycorrhizal colonization to elevated CO_2 and climate change in Pascopyrum smithii and Bouteloua gracilis.Plant Soil,1994,165:75-80
    232.Moog P R,Bruggemann W.Iron reductase systems on the plant plasma membrane:A review.Plant Soil,1994,165:241-260
    233.Mori S.Reevaluation of the genes induced by iron deficient in barely roots.In:Ando T,Mori S eds.,Plant Nutrition for Sustainable Food Production and Environment.The Netherlands:Kluwer Academic Publishers,1997.249-254
    234.Nyomara A,Brown P.Fall foliar-applied boron increased tissue boron concentration and nut set in almond.J Amer Soc Hort Sci,1997,122(3):405-410
    235.Olsson P A,Baath E,Jakobsen I,Soderstrom B.Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi.Soil Biol Biochem,1996,28:463-470
    236.Pacovsky R S,Fuller G.Mineral and lipid composition of Glycine-Glomus-Bradyrhizobium symbioses.Physiol Plantarum,1988,72:733-746
    237.Pascual J A,Moreno J L,Hernández T,García C.Persistence of immobilized and total urease and phophatase activities in a soil amended with organic wastes.Bioresource Technol,2002,82:73-78
    238.Pattinson G S,Warton D I,Misman R,McGee P A.The fungicides Terrazole and Terraclor and the nematicide Fenamiphos have little effect on root colonisation by Glomus mosseae and growth of cotton seedlings.Mycorrhiza,1997,7:155-159
    239.Pestana M,Correia P J,Varennes A D,Abadia J,Faria E A.The use of floral analysis to diagnose the nutritional status of orange trees,J Plant Nutri,2001,24:1913-1923
    240.Pestana M,Varennes A D,Abadia J,Faria E A.Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution.Sci Hortic-Amsterdam,2005,104:25-36
    241.Pestana M,Varennes A D,Faria E A.Diagnosis and correction of iron chlorosis in fruit trees:A review.J Food Agri Environ,2003,1:46-51
    242.Phillips J M,Hayman D S.Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection.Trans Br Mycol Soc,1970,55:158-161
    243.Pommerening-Roser A,Koops H P.Environmental pH as an important factor for the distribution of urease positive ammonia-oxidizing bacteria.Microbiol Res,2005,160:27-35
    244.Porcel R,Ruiz-Lozano J M.Arbuscular mycorrhizal influence on leaf water potential,solute accumulation,and oxidative stress in soybean plants subjected to drought stress.J Exp Bot,2004,55:1743-1750
    245.Quilambo O A,Weissenhorn I,Doddema H,Kuiper P J C,Stulen I.Arbuscular mycorrhizal inoculation of peanut in low-fertile tropical soil.Ⅱ.Alleviation of drought stress.J Plant Nutri,2005,28:1645-1662
    246.Razeto B,Castro M.Fruit analysis as a new approach to evaluate boron status in avocado,J Plant Nutri,2007,30:1-5
    247.Razeto B,Palacios J.2006b.Fruit analysis as an alternative to leaf analysis for diagnosing iron status of avocado tree.http://www.avocadosource.com/WAC6/en/Extenso/3a-95.pdf
    248.Razeto B,Salgado J.The inflorescence and fruit peduncle as indicators of nitrogen status of the avocado tree.Hort Science,2004,39:1173-1174
    249.Razeto B,Valdés G.Fruit analysis as an indicator of the iron status of.nectarine and kiwi Plant.HortTechnology,2006a,16(4):579-582
    250.Riley D,Barber S A.Bicarbonate accumulation and pH changes at the soybean root-soil interface.Soil Sci Soc Am Proc,1969,33:905-908
    251.Riley D,Barber S A.Salt accumulation at the soybean root-soil interface.Soil Sci Soc Am Proc,1970,34:154-155
    252.Rombolà A D,Brüggemann W,Tagliavini M,Marangoni B,Moog P P.Iron source affects Fe reduction and regreening of kiwifruit(Actinidea deliciosa) leaves.J Plant Nutri,2000,23:1751-1765
    253.Ruíz-Lozano J M,Azcón R.Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status.Physiol Plantarum,1995,95:472-478
    254.Sagee O,Shaked A,Hasdai D,Hamou M.Rapid evaluation of new citrus rootstocks under semi controlled condition.In Fifth International Symposium on Orchard and Plamation Systerms,Tel Aviv,Israel,21-26 June 1992,Acta Horticulturae,1993,349:197-201
    255.Samuelsen A I,Martin R C,Mok D W S,Mok M C.Expression of the yeast FRE genes in transgenic tobacco.Plant Physiol,1995,118:51-58
    256.Sanz M,Belkhodja R,Toselli M,Montanés L,Abadía A,Tagliavini M,Marangoni B,Abadía J.Floral analysis as a possible tool for prognosis of iron deficiency in peach.Acta Horticulturae,1997,448:241-245
    257.Schreiner R P,Mihara K L,McDaniel H,Bethlenfalvay G J.Mycorrhizal fungi influence plant and soil functions and interactions.Plant Soil,1997,185:199-209
    258.Sharrock R A,Sinclair F L.A global assessment using PCR techniques of mycorrhizal fungal populations colonising Tithonia diversifolia.Mycorrhiza,2004,14:103-109
    259.Sheng T H.Vesicular-arbuscular mycorrhizal influence on growth and phosphorus nutrition of trifoliate orange in red soil.In:Huang B Y,Yang Q eds.,Proceedings of the international citrus symposium.Bei Jing:China Building Industry Press,1991,502-505
    260.Shojima S,Nishizawa N K,Fushiya S,Nozoe S,Irifune T,Mod S.Biosynthesis of phytosiderophores.Plant Physiol,1990,93:1497-1503
    261.Singh S,Kapoor K K.Inoculation with phosphate-solubilizing microorganisms and a vesicular arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil.Biol Fert Soils,1999,28:139-144
    262.Smith S E,Read D J.Mycorrhizal Symbiosis,Second ed.Academic Press,SanDiego,CA,1997.605
    263.Song Y C,Feng G,Li X L.Effect of VAM fungi on phosphatase activity in the rhizosphere of clover.Chin J Appl Environ Biol,2000,6(2):171-175
    264.Subramanian K S,Charest C,Dwyer L W,Hamilton R I.Effects of arbuscular mycorrhizae on leaf water potential,sugar content,and P content during drought and recovery of maize.Can J Bot,1997,75:1582-1591
    265.Subramanian K S,Charest C.Influence of arbuscular mycorrhizae on the metabolism under drought stress.Mycorrhiza,1995,5:273-278
    266.Subramanian K S,Santhanakrishnan P,Balasubramanian P.Responses o.f field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress.Sci Hort,2006,107:245-253
    267.Sylvia D M,Williams S E.Vesicular arbuscular mycorrhizae and environmental stress.In:Mycorrhizae in sustainable agriculture.ASA Special Publication,1992,54:101-124
    268.Syvertsen J P,Graham J H.Phosphorus supply and arbuscular mycorrhizas increase growth and net gas exchange responses of two Citrus spp.grown at elevated[CO_2].Plant Soil,1999,208:209-219.
    269.Takahashi M,NakanishiI H,Kawasaki S,Nishizawa N K,Mori S.Enhanced tolerance of rice to lowiron availability in alkaline soils usingbarleynicotianamine aminotransferase genes.Nat Biotechnol,2001,19(5):466-469
    270.Takizawa R,Nishizawa N K,Nakanishi H,Mori S.Effect of iron deficient on S-Adensosylmethionine synthetase in barely roots.J Plant Nutri,1996,19:1189-1200
    271.Tessier A,Campbell P G C,Bisson.Sequential extraction procedure for the speciation of particulate trace metals.Anal Chem,1979,51(7):844-851
    272.Thingstrup I,Kahiluoto H,Jakoben I.Phosphate transport by hyphae of field communities of arbuscular mycorrhizal fungi at two levels of P fertilization.Plant Soil,2000,221:181-187
    273.Tisserant B,Gianinazzi-Pearson V,Gianinazzi S,Gollorte A.In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections.Mycol Res,1993,97:245-250
    274.Toro M,Azcón R,Barea J M.The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype,myeorrhizal fungi,phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa.New Phytol,1998,138:265-273
    275.van der Putten W H,Vet L E M,Harvey J A,Wackers F L.Linking above- and below ground multitrophic interactions of plants,herbivores,pathogens,and their antagonists.Trends Ecol Evol,2001,16,547-554
    276.Vert G,Grotzn,Dédaldéchamp F,Gaymard F,Guerinot M L,Briat J F,Curie C.IRT1,an arabidopsis transporter essential for iron uptake from the soil and for plant growth.Plant Cell,2002,14(6):1223-1233
    277.Walley F L,Germida J J.Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria.Mycorrhiza,1996,6:3-49
    278.Wang F Y,Lin X G,Yi R,Wu L H.Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under unsterilized conditions.Appl Soil Ecol,2006,31:110-119
    279.Wang G M,Stribey D P,Tinker P B,Walker C.Effects ofpH on Arbuscular Mycorrhiza.I.Field observations on the long term liming experiments at Rothamsted and Wobum.New Phytol,1993,124:465-472
    280.Wang M Y,Xia R X,Hu L M,Dong T,Wu Q S.Arbuscular mycorrhizal fungi alleviate iron deficient chlorosis in Poncirus trifoliata L.Raf under calcium bicarbonate stress.J Hort Sci Biotech,2007,82(5):776-780
    281.Waschkies C,Schropp A,Marschner H.Relations between grapevine replant disease and root colonization of grapevine(Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi.Plant Soil,1994,162:219-227
    282.Waters B M,Blevins D G,Eide D J.Characterization of FRO1,a pea ferric-chelate reductase involved in root iron acquisition.Plant Physiol,2002,129:85-94
    283.Weissenhorn I,Leyval C,Berthelin J.Cd-tolerant arbuscular mycorrhizal fungi from heavy metal contaminated soil.Plant Soil,1993,157:247-256
    284.Welkie G W,Miller G W.Plant iron uptake physiology by nonsiderophore systems.In:Barton L L,Hemming B C,eds.,Iron Chelation in Plants and Soil Microorganisms.Academic Press,Inc.Harcout Brace Jovanovich,Publishers,1993,345-366
    285.Whitelaw M A,Harden T J,Helyar K R.Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum.Soil Biol Biochem,1999,31:655-665
    286.Wik R M,Fisher P R,Kopsell D A,Argo W R.Iron form and concentration affect nutrition of container-grown Pelargonium and Calibrachoa.HortScience,2006,41(1):244-251
    287.Wright S F,Franke-Snyder M,Morton J B,Upadhyaya A.Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots.Plant Soil,1996,181,193-203
    288.Wright S F,Upadhyaya A.Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi.Soil Sci,1996,161,575-586
    289.Wright S F,Upadhyaya A.A survey of soils for aggregate stability and glomalin,a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi.Plant Soil,1998,198:97-107
    290.Wu C Q,Chen F,Wang X,Kim H J,He G Q,Vivian H Z,Huang G.Antioxidant constituents in feverfew(Tanacetum parthenium) extract and their chromatographic quantification.Food Chem,2006,96:220-227
    291.Wu H,Li L,Du J.Molecular and biochemical characterization of Fe(Ⅲ)-chelate reductase gene family inArabidopsis thaliana.Plant Cell Physiol,2005,46:1505-1514
    292.Wu Q S,Xia R X.Arbuscular mycorrhizal fungi influence growth,osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions.J Plant Physiol,2006,163:417-425
    293.Wurst S,Jones T H.Indirect effects of earthworms(Aporrectodea caliginosa) on an above-ground tritrophic interaction.Pedobiologia,2003,47:91-97
    294.Yano K,Yamauchi A,Kono Y.Localized alteration in lateral root development in roots colonized by an arbuscular mycorrhizal fungus.Mycorrhiza,1996,6:409-415
    295.Yano-Melo A M,Saggin O J,Mala L C.Tolerance of mycorrhized banana(Musa sp.cv.Pacovan)plantlets to saline stress.Agric Ecosyst Environ,2003,95(1):343-348
    296.Yao Q,Li X L,Feng G,Christie P.Mobilization of sparingly soluble inorganic phosphates by the external mycelium of an abuscular mycorrhizal fungus.Plant Soil,2001,230:279-285
    297.Yehuda Z,Shenker M,Romheld V,Marschner H,Hadar Y,Chen Y.The role of ligand exchange in the uptake of iron from microbial siderophores by gramineous plants.Plant Physiol,1996,112:1273-1280
    298.Yi Y,Guerinot M L.Genetic evidence that induction of root Fe~(3+) chelate reductase activity is necessary for iron deficiency.Plant J,1996,10:835-844
    299.Zak D R,Pregitzer K S,Curtis P S,Teeri J A,Fogel R,Randlett D.Elevated atmospheric CO_2and feedback between carbon and nitrogen cycles.Plant Soil,1993,151:105-117
    300.Zhang F S,Romheld V,Marschner H.Role of the root apoplasm for iron acquisition by wheat plants.J Plant Physiol,1991,97:1302-1305

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700