用户名: 密码: 验证码:
动载冲击地压机理分析与防治实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
按照载荷的来源和加载形式,可将冲击地压分为静载冲击地压和动载冲击地压。动载冲击地压是在动、静载荷叠加作用下发生的突然失稳现象。现有的冲击地压发生机理研究主要从煤自身性质或煤岩体结构特性角度展开,而对煤及煤岩体结构特性受动静载荷影响的研究较少。
     基于此,本文根据动载冲击地压的发生特点,首次提出并设计了改进的霍普金森杆实验,并与分形断裂力学、波动力学、突变理论和混沌理论相结合,分析了动静载荷下煤及煤岩体结构的破坏特性、机制以及应力波传播规律,探讨了煤及煤岩体结构特性在动静加载下发生显著改变而导致动载冲击地压发生的机理;建立了动载冲击地压的分源防治体系,并在古山煤矿生产实践中得到有效验证。论文的主要研究内容及成果如下:
     (1)进行了煤的改进霍普金森杆实验,并基于分形断裂力学,探讨了动静加载下煤的破坏特性及冲击倾向性。分析认为,在动静加载下煤的冲击倾向性比静载下的更强,且煤中的裂隙数目和静载大小对动载的作用效果具有显著影响。
     (2)通过分析动载冲击地压的发生特点,并结合量纲分析方法,获得了动载冲击地压的9个主要影响因素。进行了煤岩组合试样的改进霍普金森杆实验,分析了动载加载下组合煤岩样的破坏特性,进而探讨了煤岩体结构特性对动静载荷的破坏效果的影响。
     (3)将突变理论和时效损伤本构模型相结合,推导了动静加载下煤岩组合模型的失稳判据、突跳位移以及释放总能量的数学表达式;在此基础上,探讨了煤岩体结构特性对动载冲击地压的发生条件、顶板下沉量和冲击强度的影响。通过建立组合煤岩体的非线性动力学模型,分析了动载冲击地压发生过程中的混沌机制。
     (4)将煤岩组合试样的改进霍普金森杆实验与波动力学相结合,探讨了动静加载下组合煤岩样中应力波的传播机制和能量耗散规律,分析了动静载下煤岩体破坏对动载的传播和耗散的影响。分析表明,当动、静载荷均较大时,才会有较多的动载参与到煤岩体结构的破坏失稳,否则动载将以反射或透射为主;并且随着动载能量的增大参与破坏的动载比重逐渐增大。动静载下煤岩体结构失稳可分为动载主导型和动载诱发型。
     (5)在总结上述理论和实验结果的基础上,提出了动载冲击地压的扰动失稳机理。并依据扰动失稳机理,初步建立了动载冲击地压的分源防治体系。通过对古山煤矿东069-2工作面动态防治实践可知,动载冲击分源防治体系有效的促进工作面的安全生产。
In accordance with the form and source of loading, rockburst can be divided intostatic-loading rockburst and dynamic-loading rockburst. Dynamic-loading rockburst(DR) isa sudden instability phenomena under coupled dynamic and static loading. However theexsiting rockburst mechanism is mainly from nature of coal and compound coal-rockangles, and the study on the effect of coupled static and dynamic loading on nature of coaland compound coal-rock is few.
     Based on the occurrence characteristics of DR, first proposed and designed to improvethe Hopkinson bar experiment, and combined with the fractal fracture mechanics, wavemechanics, catastrophe theory and chaos theory, analyzed failure characteristics of coal andcompound coal-rock and stress wave propagation mechanism under coupled static anddynamic loading, and discussed the mechanism of DR caused by the significant change ofthe characteristics of coal and coal-rock structure under coupled static and dynamic loading.The seprating source control system for DR was established and was got effective result inproduction practice of Gushan Mine. The main aspects are as the following:
     (1) Proceeded the improved Hopkinson bar experiment of coal, and based on fractalfracture mechanics, discussed the failure characteristics and outburst proneness of coalunder coupled static and dynamic loading. It is considered that the outburst proneness ofcoal under coupled static and dynamic loadings is stronger than that under static loading,and fractures number of coal and the size of static loading have a significant impact on theeffect of dynamic loading.
     (2) Based on the occurrence characteristics of DR, combined with dimensionalanalysis method, obtained the9main factors of DR. Proceeded the improved Hopkinsonbar experiment of compound coal-rock, analyzed failure characteristics of compoundcoal-rock, inquired effect of coal-rock structural characteristics on destruction undercoupled dynamic and static loadings.
     (3) The judgement formula of failure, catatrophic displacement and the total releasedenergy of compound coal-rock under coupled static-dynamic loading are obtained throughtheoretical analysis and time dependent damage model. Discussed the effect of thecoal-rock structural characteristics on the occurrence conditions, roof subsidence andimpact strength of DR. Through establishing nonlinear dynamic model of compoundcoal-rock combination, analyzed the chaotic mechanism in the occurrance process of DR.
     (4) By the improved Hopkinson bar experiment of compound coal-rock and wavemechanics, inquired stress wave propagation mechanism and energy dissipationsignificantly under coupled dynamic and static loading, discussed the effect of coal androck mass destruction on propagation and dissipation of dynamic loading. It is consideredthat When the dynamic and static loading are both large, more dynamic loading willinvolved in the destruction of compound coal-rock, otherwise dynamic load will be mainlyreflected or transmitted.
     (5) Based on summing up the theoretical and experimental results, proposeddisturbance instability mechanism for DR. And based on disturbance instability mechanism,initially established the seprating source control system for DR. The dynamic preventionpractice of Gushan Coal Mine shows that the seprating source control system for DR caneffectively promote safe production ultimately.
引文
[1]齐庆新,窦林名.冲击地压理论与技术[M].北京:中国矿业大学出版社,2008.
    [2]齐庆新,史元伟等.冲击地压粘滑失稳机理的实验研究[J].煤炭学报,1997,4,22(2):144-148.
    [3]齐庆新,毛德兵,王永秀.冲击地压的非线性非连续特征[J].岩土力学,2003,24:575-579.
    [4]窦林名,赵从国等.煤矿开采冲击矿压灾害防治[M].徐州:中国矿业大学出版社,2006.
    [5]窦林名,何江,曹安业等.动载诱发冲击机理及其控制对策探讨[J].中国煤炭学会成立五十周年高层学术论坛论文集.2012,11.
    [6]潘一山,吕祥锋,李忠华等.高速冲击载荷作用巷道动态破坏过程实验研究[J].岩土力学,2011,5.
    [7]姜耀东,赵毅鑫,刘文岗等.煤岩冲击失稳的机理和实验研究[M].北京:科学出版社,2009.
    [8]姜耀东,赵毅鑫,宋彦琦,刘文岗等.放炮震动诱发煤矿巷道动力失稳机理分析[J].岩石力学与工程学报,2005,24(17):3131-3136.
    [9]潘俊锋,宁宇,毛德兵等.煤矿开采冲击地压启动理论[J].岩石力学与工程学报2012,3,31(3):586-596.
    [10]潘俊锋,宁宇,杜涛涛等.区域大范围防范冲击地压的理论与体系[J].煤炭学报,2012,37(11):1803-1809.
    [11]王来贵,黄润秋,张悼元等.超前强扰诱发岩石力学系统失稳及其防灾的意义探讨[J].自然灾害学报,1997,6(2):55-59.
    [12]王来贵,刘向峰,马少鹏.岩石试件非稳定破坏演化过程分析[C].第六次全国岩石力学与工程学术大会论文集,武汉,2000,10.
    [13] J. Litwinszyn,The phenomenon of rock bursts and resulting shock waves. Mining Science andTechnology.1984,1:243-251.
    [14]张晓春,卢爱红,王军强.动力扰动导致巷道围岩层裂结构及冲击矿压的数值模拟[J].岩石力学与工程学报,2006,25(增1):3110~3114.
    [15]卢爱红,郁时炼,秦昊等.应力波作用下巷道围岩层裂结构的稳定性研究[J].中国矿业大学学报,2008,37(6):769-774.
    [16]卢爱红,茅献彪,赵玉成.动力扰动诱发巷道围岩冲击失稳的能量密度判据*[J].应用力学学报,2008,25(4):602-606.
    [17]布霍依诺,李玉生译.矿山压力和冲击地压[M].北京:煤炭工业出版社,1985.
    [18]佩图霍夫[俄],段可信译.冲击地压和突出的力学方法[M].北京:煤炭工业出版社1994.
    [19]齐庆新,高作志等.层状煤岩体结构破坏的冲击矿压理论[J].煤矿开采,1998(2):14-17.
    [20]齐庆新,刘天泉等.冲击地压的摩擦滑动失稳机理[J].矿山压力与顶板管理,1995. NO.3-4:174-200.
    [21]齐庆新,李宏艳等.冲击矿压防治的应力控制理论与实践[J].煤矿开采,2011,6,16(3):114-118.
    [22]章梦涛.冲击地压失稳理论与数值模拟计算[J].岩石力学与工程学报,1987,6(3):197-204.
    [23]蓝航,杜涛涛,彭永伟等.浅埋深回采工作面冲击地压发生机理及防治[J].煤炭学报,2012,37(10):1618-1623.
    [24] S. Y. Wang et al. Analytical and Numerical Study on the Pillar Rockbursts Mechanism. RockMechanics and Rock Engineering.2006,39(5):445-467.
    [25] Valery A. Anikolenko et al. Invariant kinetic approach to the description of a rock fracture processand induced seismic events. Pageoph,1996,147:367-375.
    [26]吴绵拔,刘远惠.中等应变速率对岩石力学特性的影响[J].岩土力学,1980,1,1:51-58.
    [27]刘鹏,关萍等.凝土动态强度性能影响的研究进展[J].大连大学学报,2009(6):79-84.
    [28] Attwell P B.Response of Rocks to High Velocity Impact [J].Trans Inst Min Metal,1962,71:705-724.
    [29] KumarA. Effect of Stress Rate and Temperature on the Strength of Basalt and Granite [J].Geophysics,1968,33(3):501-510.
    [30] Goldsmith W,Sackman J L,Ewert C.Static and Dynamic Fracture Strength of Barre Granite [J]. IntJ Rock Mech Min Sci&Geomech Abstr,1976,13:303-309.
    [31] Blanton TL. Effect of Strain Rates from10-2to10/s in Triaxial Compression Tests on Three Rocks[J]. Int J Rock Mech Sci&Geomech Abstr,1981,18(1):47-62.
    [32] Houpert,R.,Proc.2nd Cong. Int. Soe. Rock Mech.,Belgrade,1970Vol.2. PP.49-55.
    [33] Perkins,R.D.,Green,S. J. and Friedman,M.,Int. J. Rock Mech. Min. Sci.,Vol.7,No.5,Sept.,1970,pp.527-535
    [34] Zhao Y H,Zhao J. Compressive strength of rock material at different strain rate[A]. In:Yu M H ed.Proceddings of the International Symposium on Strength Theories’Applications andDevelopments[C]. Xi’an,China:[s. n.],1998,75-429.
    [35] Grady D E,Lipkin J. Criteria for impulsive rock fracture[J]. J.Geophys. Res. Letters,1980,7(4):255~258.
    [36] Grady D E,Kipp M E. Dynamic rock fragmentation[A]. In: Bazaut ed.Fracture Mechanics ofRocks[C]. London: Academic Press,1987,75~429.
    [37] ABRAMS D A. Effect of rate of application of load on the compressive strength of concrete (Part2)[J]. ASTM J.,1917(17):364-377.
    [38] Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete[J]. ACI J,1953.(49):732-744.
    [39] Cowellw L. Dynamic properties of plain Portland cement concrete [R]. Technical Report No.R447,1966.
    [40] Ross C A,JEROME DM. Moisture and strain rate effects on concrete strength [J]. ACI Mater J,1996(33):293-300.
    [41] Bischoff P H,Perry S H. Compressive behaviour of concrete at high strain rates [J]. Materials andStructures,1991(24):425-450.
    [42]杜修力,王阳等.混凝土材料的非线性单轴动态强度准则[J].水利学报,2010,3,41(3):300-309.
    [43]董毓利,谢和平等.不同应变率下混凝土受压全过程的实验研究及其本构模型[J].水利学报,1997,7,7:72-77.
    [44]朱哲明,李元鑫等.爆炸荷载下缺陷岩体的动态响应[J].岩石力学与工程学报,2011,6,30(6):1157-1167.
    [45]宫凤强,李夕兵,刘希灵等.一维动静组合加载下砂岩动力学特性的实验研究[J].岩石力学与工程学报,2010,10,29(10):2076-2085.
    [46]东兆星,单仁亮.岩石在动载作用下破坏模式与强度特性研究[J].爆破器材.2000,2,29(1):1-5.
    [47]陈庆寿,吴煌荣.岩石在动载作用下的破坏与强度[J].武汉地质学院学报,1987,3,12(2):206-216.
    [48]张颖,李明等.岩石动态力学性能实验研究[J].岩石力学与工程学报,2010,9,29(增2):4153-4158.
    [49]翟越,马国伟等.花岗岩和混凝土在单轴冲击压缩荷载下的动态性能比较[J].岩石力学与工程学报,2007,4,26(4):762-768.
    [50]翟越,马国伟等.花岗岩在单轴冲击压缩荷载下的动态断裂分析[J].岩土工程学报,2007,3,29(3):385-390.
    [51]李为民,许金余等.冲击荷载作用下碳纤维混凝土的力学性能[J].土木工程学报,2009,2,42(2):24-30.
    [52]李夕兵,赖海辉等.冲击载荷下岩石破碎能耗及其力学性质的探讨[J].矿业工程,1988,3,8(1):15-19.
    [53]洪亮.冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D][博士].中南大学,2008,11.
    [54]于亚伦.高应变率下的岩石动载特性[J].北京科技大学学报,1992,3,14(2):128-134.
    [55]单仁亮,耿慧辉,松岩石动力学参数的随机性研究[J].南华大学学报(自然科学版),2009,6,23(2):10-13.
    [56]刘军忠,许金余等.冲击压缩荷载下角闪岩的动态力学性能实验研究[J].岩石力学与工程学报,2009,10,28(10):2113-2120.
    [57] Brown,W.5.,Swanson,5.R.and Wawersik,W.R.,AD-734029.
    [58] Logan,J. M.and Handin,J.,《Dynamic Rock Mechanics》chapter9,NewYork,1971.
    [59]于亚伦.用三轴S.H.P.B装置研究岩石的动载特性[J].岩石力学在工程中的应用——第二次全国岩石力学与工程学术会议论文集,1989年.
    [60]刘军忠,许金余等.主动围压下岩石的冲击力学性能实验研究[J].振动与冲击,2011,30(6):120-126.
    [61]赵坚,李海波.莫尔-库仑和霍克-布朗强度准则用于评估脆性岩石动态强度的适用性[J].岩石力学与工程学报,2003,2,22(2):171-176.
    [62]苏碧军,王启智.平台巴西圆盘试样岩石动态拉伸特性的实验研究[J].长江科学院院报,2004,21(1):22-25.
    [63]李伟,谢和平等.大理岩动态劈裂拉伸的SHPB实验研究[J].爆炸与冲击2006,1,26(1):12-20.
    [64]李伟.大理岩动态力学性能的分离式霍普金森杆实验研究[J].四川大学,2005,5.
    [65] Simmons G,Brace W F. Comparison of static and dynamic measurements of compressibility ofrocks[J]. Geophysics,1965,70:5649-5656.
    [66] Cheng C H,Johnston D H. Dynamic and static moduli[J]. Geophysics,1981,8:39-42.
    [67] Walsh J B. Seismic wave attenuation in the rock due to friction[J]. Geophysics,1965,71:2591-2599.
    [68] King M S. Wave velocities in rocks as a function ofchanges in overburden pressure and pore fluidsaturants[J]. Geophysics,1965,31:50-73.
    [69] Jizba D,Nur A. Static and dynamic moduli of tight gas sandstones and their relationship toformation properties[A]. SPWLA31st Annual Logging Symposium[C]. Lafayette L A.[s.l.]:[s.n.],1990.1-21.
    [70] Jizba D,Mavko G,Nur A. Static and dynamic moduli of tight gas sandstones[J]. Geophysics,1991,59(1)87-92.
    [71] Tutuncu A N,Podio A L Sharma M M. Effects of stress,frequency and clay content oncompressional and shear velocities and attenuations in tight gas sandstones[J]. Geophysics,1992,46:49-56.
    [72]信礼田,何翔强.冲击载荷下岩石的力学性质[J].岩土工程学报19961,18(6):61-68.
    [73]李夕兵,周子龙等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,7,(27)7:1387-1395.
    [74]王其胜,万国香等.动静组合加载下岩石破坏的声发射实验[J].爆炸与冲击,2010,5,30(3):247-253.
    [75]叶洲元,李夕兵等.三轴压缩岩石动静组合强度及变形特征的研究[J].岩土力学,2009,7,30(7):1981-1986.
    [76]宫凤强,李夕兵等.三轴SHPB岩石材料动力学特性实验研究的现状和发展趋势[J].科技导报,2009,27(18):106-111.
    [77]万国香,王其胜等.动静组合加载下花岗岩的力学性能[J].应用力学学报,2010,9,27(3):630-634.
    [78]王其胜,李夕兵等.动静组合加载作用下花岗岩破碎的分形特征[J].实验力学,2009,12,24(6):587-591.
    [79]左宇军,李夕兵等.二维动静组合加载下岩石破坏的实验研究[J].岩石力学与工程学报,2006,9,25(9):1809-1820.
    [80]左宇军,李夕兵等.受静载荷的岩石在周期载荷作用下破坏的实验研究[J].岩土力学2007,5,28(5):927-932.
    [81] Caroll M M,Holt A C. Static and dynamic pore collapse relations forductile porous materials[J]. J.Applied Physics,1972,43(2):1626~1635.
    [82] Goodman M A,Cowin S C. A continuum theory for granular materials[J]. Arch. Rational Mech.Anal.1972,44:249~266.
    [83] Drumheller D S. A theory for dynamic compaction of wet porous solid[J]. Int. J. Solid andStructures,1987,23(2):211~237.
    [84] Rubin M B,Elatta D,Attia A V. Modeling additional compressibility of porosity and thethermomechanical response of wet porous rock with application to Mt. Helen tuff [J]. Int. J. Solidand Structures,1996,33:761~793.
    [85] Rubin M B,Vorobiev O Yu,Glenn L A. Mechanical and numerical modeling of porouselastoviscoplastic material with tensile failure[J]. Int. J. Solid and Structures,2000,37:1841~1870.
    [86] Bodner S R,Parton Y. A large deformation elastic-viscoplastic analysis of a thick-walled sphericalshell. ASME J Appl Mech,1972,39(9):751-756.
    [87] Bodner S R,Parton Y. Constitutive equations for elastic-viscoplastic strain-hardening materials.ASME J Appl Mech,1975,42(1):385-389.
    [88] Miller A. A unified phenomenological model for the monotonic,cyclic,and creep deformation ofstrongly work-hardending materials. Dissertation of Doctoral Degree. California: StanfordUniversity.1975.
    [89] Hart E W. Constitutive relations for the nonelastic deformation of metals. ASME Eng Mat&Tech,1976,98(7):193-202.
    [90] Walker K P. Research and development program for non-linear structural modeling with advancedtime-temperature dependent constitutive relationship. Report NASA-CR-165533, UnitedTechnologies Research Center:400Main Stress East Hartford,Connecticut,1981.
    [91] Tschibana Y,Kremplel E. Modeling of high homologous temperature deformation behavior usingthe viscoplasticity theory based on overstress(VBO)(I). ASMS Eng Mat&Tech,1995,117:456-461.
    [92] Tschibana Y,Kremplel E. Modeling of high homologous temperature deformation behavior usingthe viscoplasticity theory based on overstress(VBO)(Ⅱ). ASMS Eng Mat&Tech,1995,117:456-461.
    [93] Tschibana Y,Kremplel E. Modeling of high homologous temperature deformation behavior usingthe viscoplasticity theory based on overstress(VBO)(Ⅲ). ASMS Eng Mat&Tech,1995,117:456-461.
    [94]郑永来,夏颂佑.岩石粘弹性连续损伤本构模型[J].岩石力学与工程学报,1996,15(增):428~432
    [95]蓝航.节理岩体采动损伤本构模型及其在露井联采工程中的应用[D][博士].煤炭科学研究总院,2007,7.
    [96]王云刚.受载煤体变形破裂微波辐射规律及其机理的基础研究[D][博士].中国矿业大学,2008,5.
    [97]王亚军.模糊随机损伤力学及模糊随机损伤有限元在岩土工程中的应用[D][博士].浙江大学,2008,3.
    [98]黄兴政.节理化岩体力学参数研究[D][硕士].中南大学,2008,5.
    [99]赖勇.岩石(体)宏细观复合损伤理论与应用研究[D][博士].重庆大学,2008,6.
    [100]刘长春,吕和祥,关萍.基于不可逆热力学的黏塑性统一本构方程[J].中国科学E辑:技术科学.2008,38(1):36-43.
    [101]戚承志,王明洋,钱七虎.弹粘塑性孔隙介质在冲击荷载作用下的一种本构关系*——第一部分:状态方程[J].岩石力学与工程学报,2003,9,22(9):1405-1410.
    [102]于亚伦.岩石动力学[R].北京:北京科技大学印教材,1990.
    [103] Lindholm U S, Yeakley L M,Nagy A. The dynamic strength and fracture properties of dresserbasalt[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1974,11(2):181~191.
    [104]叶洲元.动力扰动下高应力岩石力学特性研究[D][博士].中南大学,2008,10.
    [105]胡柳青.冲击载荷作用下岩石动态断裂的机理研究[D][博士].中南大学,2005,3.
    [106]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].岩石力学与工程学报,2003,11,22(11):1771~1776.
    [107]李夕兵,左宇军,马春德.中应变率下动静组合加载岩石的本构模型[J].岩石力学与工程学报,2005,5,25(5):865-874.
    [108]何翔,信礼田等.冲击载荷下花岗岩的动态本构关系[J].第三届全国岩石动力学学术会议,桂林,1992,11.
    [109]李纪青,齐庆新等.应用煤岩组合模型方法评价煤岩冲击倾向性探讨[J].岩石力学与工程学报,2005,8,24:4805-4810.
    [110]赵毅鑫,姜耀东等.煤岩组合体变形破坏前兆信息的实验研究[J].岩石力学与工程学报,2008,2,27(2):339-346.
    [111]刘建新,唐春安等.煤岩串联组合模型及冲击地压机理的研究[J].岩土工程学报,2004,3,262:276-280.
    [112]陈忠辉,傅宇方.单轴压缩下双试样相互作用的实验研究[J].东北大学学报,1997,8,1(4):382-385.
    [113]左建平,谢和平等.深部煤岩单体及组合体的失稳机制与力学特性研究[J].岩石力学与工程学报,2011,1,30(1):84-92.
    [114]郭东明,左建平等.不同倾角组合煤岩体的强度与失稳机制研究[J].岩土力学,2011,5,32(5):1333-1339.
    [115]刘波,杨仁树等.孙村煤矿-1100m水平深部煤岩冲击倾向性组合实验研究[J].岩石力学与工程学报,2004,7,23(14):2402-2408.
    [116]窦林名,陆菜平等.组合煤岩冲击倾向性特性实验研究[J].采矿与安全工程学报,2006,3,23(1):43-46.
    [117]窦林名,田京城等.组合煤岩冲击破坏电磁辐射规律研究[J].岩石力学与工程学报,2005,10,24(19):3541-3544.
    [118]左建平,谢和平等.煤岩组合体分级加卸载特性的实验研究[J].岩土力学,2011,5,3(25):1287-1296.
    [119] Thom R. Structural Stability and MorPhogenesis. BenJemin-Addison wesley,1972.
    [120]唐春安,费鸿禄等.系统科学在岩石破裂失稳研究中的应用(一)[J].东北大学学报1994,2,15(1):24-29.
    [121]潘一山,章梦涛等.洞室岩爆的尖角型突变模型[J].应用数学和力学,1994,10,15(10):893-900.
    [122]潘岳,刘莹,顾善发.矿井断层冲击地压的折迭突变模型[J].岩石力学与工程学报,2001,20(1):43-48.
    [123]潘岳,解金玉,顾善发.非均匀围压下矿井断层冲击地压的突变理论分析[J].岩石力学与工程学报,2001,20(3):310-314.
    [124]潘岳,王志强,李爱武.岩石失稳破裂的综合刚度和综合能量准则[J].岩土力学,2009,30(12):3671-3676.
    [125]尹光志,李贺等.煤岩体失稳的突变理论模型[J].重庆大学学报,1994,1,17(1):23-28.
    [126]左宇军,李夕兵等.动静组合载荷作用下岩石失稳破坏的突变理论模型与实验研究[J].岩石力学与工程学报2005,3,24(5):741-746.
    [127]张勇,潘岳.弹性地基条件下狭窄煤柱岩爆的突变理论分析[J].岩土力学,2007,7,28(7):1469-1476.
    [128]牟宗龙,窦林名.坚硬顶板突然断裂过程中的突变模型[J].矿山压力与顶板管理,2004,21(4):90-92.
    [129]郭文兵,邓喀中,邹友峰.条带煤柱的突变破坏失稳理论研究[J].中国矿业大学学报,2005,34(1):77-81.
    [130]傅鹤林,桑玉发.用突变理论预测地下采场冲击地压发生的可能性[J].金属矿山,1996,1,235:19-21.
    [131]徐曾和,徐小荷等.坚硬顶板下煤柱岩爆的尖点突变理论分析[J].煤炭学报,1995,10,20(5):485-491.
    [132]李玉,赵国景.煤层突出的突变模式[J].北京科技大学学报,1995,2,17(1):5-9.
    [133]秦四清.斜坡失稳的突变模型与混沌机制[J].岩石力学与工程学报,2000,7,19(4):486-492.
    [134]张书敬.浅部煤层工作面冲击地压发生机理及防治研究[D][博士].煤炭科学研究总院,2012,4.
    [135]薛再君.华亭煤矿冲击地压防治研究[J].煤炭科技,2010(2):11-13.
    [136]鞠文君.急倾斜特厚煤层水平分层开采巷道冲击地压成因与防治技术研究[D][博士].北京交通大学,2009,12.
    [137]张艳博,康志强.老虎台矿巷道断层冲击地压数值模拟研究[J].矿业研究与开发,2008,4,28(2):21-23.
    [138]惠乃玲,刘耀权等.抚顺老虎台煤矿矿震震源机制的研究[J].地震地磁观测与研究,1998,2,19(1):39-45.
    [139]吕玉国,吴元良.老虎台矿冲击地压防治技术[J].煤矿安全,2009,8:41-42.
    [140]朱广轶,李远鹏.老虎台煤矿冲击地压显现规律[J].沈阳大学学报,2003,12,15(4):8-9.
    [141]李铁蔡,美峰等.采矿诱发地震的震源机制特征——以辽宁省抚顺市老虎台煤矿为例[J].地质通报,2005,2,24(2):136-144.
    [142]王应启,马良.济三煤矿6303工作面巷帮冲击地压机理研究[J].山东煤炭科技,2007(1):59-61.
    [143]张士斌,郭建泉等.济三煤矿六采区煤帮冲击发生机理研究[J].山东煤炭科技,2007年冲击地压防治专刊:109-111.
    [144]吕建为,牟宗龙.济三煤矿深部采区冲击地压综合治理技术[J].中国煤炭,2011,1,37(1):96-98
    [145]李光,翟新献.济三煤矿沿空巷道冲击地压成因探讨[J].煤炭科学技术,2007,1,35(1):88-90.
    [146]窦林名,张广文.济三矿六采区冲击类型及其防治[J].煤矿开采,2007,4,12(2):58-61.
    [147]翟新献,陈东海.济三煤矿沿空巷道矿压显现规律研究[J].山东大学学报(工学版),2008,8,39(4):92-96.
    [148]王小国,陈轶平.千秋煤矿“9·3”冲击地压灾害浅析[J].中州煤炭2000(2):37-38.
    [149]南华,李志勇.巨厚煤层冲击地压的防治研究[J].河南理工大学学报(自然科学版),2007,8,26(4):370-376.
    [150]秦玉红,窦林名等.义马千秋煤矿冲击地压危险性分析[J].贵州工业大学学报(自然科学版),2004,2,33(1):30-31.
    [151]姜红兵,王黑丑等.义马跃进煤矿冲击地压发生原因分析[J].煤炭技术,2008,3,27(3)
    [152]解小东,刘军等.跃进煤矿冲击地压预测与综合防治[J].中州煤炭,2010,3(171):75-76.
    [153]徐学锋.煤层巷道底板冲击机理及其控制研究[D][博士]中国矿业大学,2011,3.
    [154]徐学锋,窦林名等.巨厚砾岩对围岩应力分布及冲击地压影响的“O”型圈效应[J].煤矿安全,2011,7:157-160.
    [155] Jianchun Li,Guowei Ma.. Analysis of Blast Wave Interaction with a Rock Joint[J]. Rock MechRock Eng,Published online,2009.9.
    [156]林东.跃进矿集中开采条件下冲击地压防治技术研究[D][硕士].河南理工大学,2008,12.
    [157] R. Q. Huang7X. N. Wang. Analysis of dynamic disturbance on rock burst[J]. Bull Eng Geol Env(1999)57:281-284.
    [158]徐方军,毛德兵.华丰煤矿底板冲击地压发生机理[J].煤炭科学技术,2001,4,29(4):41-44.
    [159]沈孝坤.三河尖矿冲击地压地质因素分析[J].矿山压力与顶板管理,1995,3(4):178-180.
    [160]赵玉胜,陈立高.浅析三河尖矿冲击地压的特点及防治实践[J].能源技术与管理,2001(4):31-33.
    [161]翟明华,樊银辉等.三河尖煤矿冲击地压原因及分析[J].煤矿开采,1997,12(4):14-16.
    [162]王慧明.三河尖煤矿冲击地压的特点及治理[J].矿山压力与顶板管理,2004(3):115-117.
    [163]张晓春,缪协兴等.三河尖煤矿冲击地压发生机制分析[J].岩石力学与工程学报,1998,10,17(5):508-513.
    [164]朱玲方,郑永等.三河尖煤矿冲击地压事故浅析[J].煤炭科技,2001(4):43-45.
    [165]赵玉胜.三河尖煤矿高应力区冲击地压动态防治实践[J].煤炭科学技术,2005,11,33(11):1-4.
    [166]王云海,樊银辉.三河尖矿两起冲击地压原因分析[J].矿山压力与顶板管理,1999,1:68-70.
    [167]蓝航,齐庆新,潘俊锋等.我国煤矿冲击地压特点及防治技术分析[J].煤炭科学技术,2011,39(1):11-15
    [168]高峰,谢和平,赵鹏.岩石块度分布的分形性质及细观结构效应.岩石力学与工程学报,1994,13(3):240-246
    [169] Matusui G. et al. Laboratory simulation of planetesimal collision,J. Geophys. Res.,1952,87,10968-10982.
    [170] YIN Zhi-qiang,LI Xi-bing,JIN Jie-fang et al. Failure characteristics of high stress rock inducedby la disturbance under confining pressure unloading[J]. Trans. Nonferrous Met. Soc. China,22(2012):175-184.
    [171]何满潮,杨国兴,苗金丽等.岩爆实验碎屑分类及其研究方法[J].岩石力学与工程学报,2009,28(8):1521-1529.
    [172]蔡美峰.岩石力学与工程[M].北京:煤炭工业出版社,2006,10.
    [173]杨善元.岩石爆破动力学基础[M].北京:煤炭工业出版社,1993,4.
    [174] Kozhushko A A. Sinani A B. Loading rate and brittleness of solids[J]. Solid Phys,2005,47(5):812-815.
    [175] Kipp M E,Grady D E,Chen E P. Strain-rate dependent fracture initiation[J]. Int J Fracture,1980,16:471-478.
    [176]王蓓,吴继忠.采矿地质因素评定冲击危险[J].矿山压力与顶板管理,2001(1):72-75.
    [177]雷毅.冲击危险性评价模型的建立及应用研究[D].煤岩科学研究总院,2005.
    [178]谭庆明.量纲分析[M].合肥:中国科学技术出版社,2007.
    [179]钱伟长.应用数学[M].合肥:安徽科学技术出版社,1993.
    [180]倪兴华.地应力研究与应用[M].北京:煤炭工业出版社,2007.
    [181]范天佑.断裂动力学原理与应用[M].北京:北京理工大学出版社,2006.
    [182]谢和平.分形-岩石力学导论[M].科学出版社,1996.
    [183]林育梁.岩土与结构工程中不确定性问题及其分析方法[M].北京:科学出版社,2009.
    [184]秦四清,张元,黄润秋.滑坡灾害预报的非线性动力学方法.水文地质工程地质,1993,5:1-4.
    [185]田野,徐平.用岩体蠕变数据计算Lyapunov指数.长江科学院院报,1994,11(2):49-51.
    [186] Suire G,Cederbaum G. Periodic and chaotic beharior of viscoelastic nonlinear bars underharmonic excitations. International Journal of Tock Mechanics and Mining Science,1995,37(5):753-772.
    [187]陈立群,程昌钧.非线性粘弹性柱的稳定性和混沌运动.应用数学和力学,2000,21(9):890-896.
    [188]唐春安.岩石破裂过程中的灾变[M].北京:煤炭工业出版社,1993.(Tang Chun’an.Catastrophe in rock unstable failure[M]. BeiJing: Coal Industry Press,1993.(in Chinese))
    [189]杨桂通.弹塑性动力学基础[M].北京科学出版社,2008,8.
    [190] C. Grebogi,E. Ott and J. A. Yorke,Crises,sudden changes in chaotic attractors and transientchaos,Physics,7D(1983),181-200.
    [191]李夕兵,古德生.岩石冲击动力学[M].长沙:中南大学出版社,1994.
    [192]王卫华,李夕兵,周子龙等.不同应力波在张开节理处的能量传递规律[J].中南大学学报,2006,37(2):376-380.
    [193] MILLER R K. The effects of boundary friction on the propagation of elastic waves[J]. Bulletin ofthe Seismological Society of America,1978,68(4):987-998.
    [194]李夕兵.论岩体软弱结构面对应力波传播的影响[J].爆炸与冲击,1993,10,13(4):334-342.
    [195]王观石,李长洪,胡世丽等.岩体中应力波幅值随时空衰减的关系[J].岩土力学,2010,11,31(11):3487-3492.
    [196]鞠杨,杨永明,毛彦喆等.孔隙介质中应力波传播机制的实验研究[J].中国科学,2009,39(5):904-918.
    [197]鞠杨,李业学,谢和平等.节理岩石的应力波动与能量耗散[J].岩石力学与工程学报,2006,12,25(12):2426-2434.
    [198]田振农,李世海,肖南等.应力波在一维节理岩体中传播规律的实验研究与数值模拟[J].岩石力学与工程学报,2008,6,27(增1):2687-2693.
    [199] N. I. Aleksandrova,E. N. Sher,and A. G. Chernikov. Effect of viscosity of partings inblock-hierarchical media on propagation of low-frequency pendulum waves[J]. Journal of MiningScience,2008,3(44),225-234.
    [200] LEMOS J V. A distinct element model for dynamic analysis of jointed rock with application todam foundation and fault motion[Ph. D.Thesis][D]. Minnesota:University of Minnesota,1987.
    [201]周剑,张路青,胡瑞林等.大型结构面产状影响下应力波传播规律研究[J].岩石力学与工程学报,2011,4,30(4):769-780.
    [202]朱万成,尚世明,李占海等.动态荷载作用下混凝土破裂的数值模拟[J].建筑材料学报,2008,12,11(6):709-714.
    [203]王观石,李长洪,陈保君等.应力波在非线性结构面介质中的传播规律[J].岩土力学,2009,12,30(12):3747-3752.
    [204]鞠杨,王会杰,杨永明等.应力波作用下岩石类孔隙介质变形破坏与能量耗散机制的数值模拟研究[J].中国科学,2010,40(6):711-726.
    [205] Lifshitz J M,Leber H. Data processing in the split Hopkinson pressure bar tests[J]. InternationalJournal of Impact Engineering,1994,15(6):723-733.
    [206]钱鸣高,石平五,许家林.矿山压力与岩层控制[M].北京:中国矿业大学出版社,2010.
    [207]窦林名,陆菜平,牟宗龙等.冲击矿压的强度弱化减冲理论及其应用[J].煤炭学报,2005,30(5):690-694.
    [208]齐庆新.层状煤岩体结构破坏的冲击矿压理论与实践研究[D](博).煤炭科学研究总院,1996:103-104.
    [209]高尔新,杨仁树.爆破工程[M].中国矿业大学出版社,1999.
    [210]张寅.强冲击危险矿井冲击地压灾害防治[M].煤炭工业出版社,2011.
    [211]康红普,姜铁明,张晓等.晋城矿区地应力场研究及应用[J].岩石力学与工程学报,2009,28(1):1-8.
    [212]杨文采,李幼铭.应用地震层析成像[M].北京:地质出版社,1993
    [213]王书文,毛德兵,杜涛涛等.基于地震CT技术的冲击地压危险性评价模型[J].煤炭学报,2012,37(增1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700