用户名: 密码: 验证码:
基于周期和非周期畴反转铁电晶体的多波长转换及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全光网络传输速度和容量的不断提高,以及超短脉冲光信号处理、双波长光学干涉层析、THz信号产生和检测等技术的兴起,对全光频率转换的带宽提出了新的要求。本文因此研究了基于周期性和非周期畴反转铁电晶体中的多波长全光频率转换,探索了周期性畴反转铁电晶体中二阶非线性参量过程的竞争关系,同时利用二阶非线性极化率的空间调制,优化设计了非周期畴反转铁电晶体,实现了基于级联二阶和频差频的多波长全光频率转换,并在此基础上探索了非线性拉曼纳斯衍射倍频输出的空间调制。
     本文从二阶非线性光学效应的理论出发,介绍了基于畴反转铁电晶体的准位相匹配技术,推导了在该非线性晶体中的二阶非线性耦合波方程,并详细分析了该方程在周期性畴反转结构和非周期畴反转结构中的不同结果,作为本课题研究的理论基础。介绍了铁电晶体的基本光学特性,回顾了基于室温电场极化法的畴反转制备方法。在此基础上制备的周期性畴反转铌酸锂晶体和非周期畴反转胆酸锂晶体,是本课题研究的实验基础。
     基于Type I型准位相匹配条件的多波长频率转换中,由于倍频过程与和频过程同时满足准位相匹配条件,两种参量过程将相互竞争,导致各自响应曲线畸变。本文研究了这两种参量过程同时发生时的相互竞争关系,数值模拟了其响应曲线畸变的情况,并在实验中加以验证。对二阶非线性光学参量过程竞争的研究,有助于对多波长频率转换器件进行优化设计。
     基于Type0型准位相匹配条件,本文利用模拟退火算法优化的非周期畴反转铁电晶体实现了在光通信波段具有平顶宽带特性的多波长频率转换,解决了周期性结构和其他非周期结构中频率转换响应曲线狭窄,带顶响应起伏大以及制备精度要求高的问题。基于设计的非周期畴反转铁电晶体,我们模拟了皮秒脉冲序列在晶体中的传输过程,证实了设计晶体在多波长频率转换性能上的提升。同时,以二阶级联倍频差频过程为基础,演示了其多波长输出的波长可调性和选择性。
     本文从准位相匹配技术出发理论推导并预测了畴反转铁电晶体结构对非线性拉曼纳斯衍射倍频输出分布的影响。实验上,应用设计的非周期畴反转结构,实现了对非线性拉曼纳斯衍射倍频输出的空间调制,为利用非线性拉曼纳斯衍射进一步对涡旋光轨道角动量的调制提供了理论依据和实验基础。
In all-optical wavelength division multiplexing communicationnetworks, frequency conversion is the key technology to resolve thenode frequency blocking and competition. Nowadays, the frequencyconverter based on periodically domain inverted ferroelectric crys-tals have attracted much more favors and are believed to be the mostpromising one due to its pure nonlinear optical interaction, such asstrictly transparency to signal format and transmission rate, flexi-bility to realize frequency broadcasting. Nevertheless, the period-ic quasi-phase-matched structure has a negative impact by limitingthe bandwidth of the frequency conversion on the demand of multi-wavelength response for ultrafast signal processing, dual-band opti-cal coherence tomography, THz generation and so on. In this dis-sertation, we use the periodic and aperiodic domain inverted ferro-electric crystal to solve this problem, make a deep study on the op-timization process of the inverted domains’ distribution to achievetarget frequency conversion response which is then applied into spa-tial modulation of the nonlinear Raman-Nath diffraction.
     Quasi-phased-matching (QPM) theory is the foundation of our researches, from which we deduce the quadratic nonlinear opticalcoupling process inside of periodic domain inverted ferroelectric crys-tals, and then bring it into aperiodic crystals.
     After an introduction of the optical properties, especially thequadratic nonlinear optical effect, of domain inverted ferroelectriccrystals, we review the common technique to produce domain in-versions, the poling at room temperature by external electrical fieldtechnique. The samples used in the experiments of this dissertation,periodic and aperiodic, are both produced in this way.
     Using type I QPM in periodic domain inverted ferroelectric crys-tals, multi-wavelength second harmonic generation (SHG) at the com-munication band has been achieved. Nevertheless, sum frequen-cy generation (SFG) takes place simultaneously, and consumes thepumps’ energy together with the SHGs, which leads to the compe-tition between SHGs and SFG, resulting in a big fluctuation in thefrequency conversion response. In the dissertation, we analyze thiscompetition process, theoretically predict and experimentally veri-fy the change in the response curves of both SHGs and SFG, whichhelps to better understand the second-order nonlinear parametric pro-cesses.
     Type0QPM, due to its advantage of using the largest nonlinearcoefficient d33, has attract more interesting in the ferroelectric crys-tals, and various engineering has been used to offer a benefit of broadbandwidth for multi-wavelength conversion such as linearly chirpedgrating (LCG), step chirped grating (SCG) and their apodizations. However, they still bring two problems: noticeable ripples on theconversion efficiency curves lead to a bad flatness response in LCGand SCG; the small chirp step in LCG (i.e. a few hundred picome-ters), and the smallness of the initial inverted domain attributed fromapodization (i.e. one or two micrometers) lead to fabrication diffi-culties. In the dissertation, we use engineered MgO-doped lithiumniobate (MgO:APPLN) to solve these problems. Each domain ofthe crystal has an uniform width of3μm for easy fabrication, andthe arrangement of the inverted domains is optimized by the simu-lated annealing algorithm to achieve a flattop broadband for multi-wavelength conversion. Based on this engineered crystal, the multi-wavelength conversion is not only flexibly tunable through chang-ing the wavelength, wavelength spacing, and power of two employedpumps, but also selective for output by tuning the operation tempera-ture. We then numerically simulate the transmission process of seriesof picosecond pulses at1.5μm in MgO:APPLN crystal with engi-neered structure, compare its benefit with the results in other periodicor aperiodic gratings.
     Through a detailed analysis of the nonlinear Raman-Nath d-iffraction, we find that the frequency doubling output angles dependon the distribution of the second-order nonlinear coefficient, namelythe arrangement of inverted domains in ferroelectric crystals. Sincethe frequency doubling via the nonlinear Raman-Nath diffraction canbe used to generate and modulate the vortex beams, it is important tospatially modulate its output distribution. Therefore, we theoretical- ly deduce the connection between its output angles and the inverteddomain structure. By using the self-adjusted algorithm for optimiza-tion, we demonstrate the spatial modulation of the frequency dou-bling via the nonlinear Raman-Nath diffraction. The experimentalresults are in good accord with theoretical predicts, and parameters,such as fundamental frequency beam waist and its position of inci-dence that affect the nonlinear Raman-Nath diffraction, are discussedin detail, indicating that this type of frequency doubling is not a lo-cal reaction but should take all domains of the crystal into accounts.These analyses and discussion will help with better understanding ofthe nonlinear Raman-Nath diffraction and its further applications incontrolling orbital angular momentum (OAM) of vortex beams.
引文
[1] MAIMAN T H. Stimulated Optical Radiation in Ruby[J]. Nature,1960,187:493–494.
    [2] T.DITMIRE. High-power Lasers The invention of the laser50years ago has ledto the latest generation of devices, with power bursts thousands of times that ofthe nation’s entire electrical grid[J]. Am Sci,2010,98:394–401.
    [3] HANSCH T W.50Years of Laser Celebrating an invention that changed ourlives[J]. Laser Photonics Rev,2010,4:A5–A6.
    [4] MARANGOS J P. Journal of Modern Optics celebrates50years of the laser[J].J Mod Optic,2010,57:827–829.
    [5] STUR M.50Years of Laser[J]. Spekrum Augenheilkd,2010,24:248–250.
    [6] MITRA P P, STARK J B. Nonlinear limits to the information capacity of opticalfibre communications[J]. Nature,2001,411:1027–1030.
    [7] SABELLA R, DEV. E T, ROME IANNONE E, et al. Impact of TransmissionPerformance on Path Routing in All-optical Transport Networks[J]. Journal ofLightwave Technology,1998,16(11):1965–1971.
    [8]龚龚明军.基于周期极化掺镁铌酸锂的宽带通道可调全光波长转换的研究[D].[S.l.]:上海交通大学,2011.
    [9] KOVACEVIC M, ACAMPORA A. Benefits of wavelength translation all-opticalclear-channel networks[J]. IEEE Journal on Selected Areas in Communication,1996,14(5):868–880.
    [10] LEE K C, LI V O. A wavelength-convertible optical network[J]. Journal ofLightwave Technology,1993,11(5):962–970.
    [11] LEE K C, LI V O. Wavelength conversion technologies for WDM networkapplications[J]. Journal of Lightwave Technology,1996,14(6):955–966.
    [12] RAMAMURTHY B, MUKHERJEE B. Wavelength conversion in WDM network-ing[J]. IEEE Journal on Selected Areas in Communication,1998,16(7):1061–1073.
    [13] YATES J M, RUMSEWICZ M P. Wavelength converters in dynamically recon-figurable WDM networks[J]. IEEE Communications Surveys,1999,2(2):2–15.
    [14] CAMPI D, CORIASSO C. Wavelength converter technology[J]. Photonic Net-work Communications,1999,2(1):85–95.
    [15]余建军等.色散位移光纤中的四波混频现象的实验研究[J].光学学报,1999,19(2):196200.
    [16]邵潇杰等.基于光子晶体光纤四波混频效应的波长转换研究[J].光子学报,2009,38(3):652655.
    [17] XU C Q, OKAYAMA H, KAWAHARA M.1.5μm band efficient broadbandwavelength conversion by difference frequency generation in a periodicallydomain-inverted LiNbO3channel waveguide[J]. Applied Physics Letters,1993,63(26):3559–3561.
    [18] CHOU M H, HAUDEN J, ARBORE M A, et al.1.5-μm-band wavelength con-version based on difference-frequency generation in LiNbO3waveguides withintegrated coupling structures[J]. Optics Letters,1998,23(13):1004–1006.
    [19] HOFMANN D, SCHREIBER G, HAASE C, et al. Quasi-phase-matcheddifference-frequency generation in periodically poled Ti:LiNbO3channelwaveguides[J]. Optics Letters,1999,24(13):896–898.
    [20] SCHREIBER G, SUCHE H, LEE Y, et al. Efficient cascaded difference frequen-cy conversion in periodically poled Ti:LiNbO3waveguides using pulsed andcw pumping[J]. Applied Physics B,2001,73(5):501–504.
    [21] GORBOUNOVA O, DING Y J, KHURGIN J B, et al. Optical frequency shiftersbased on cascaded second-order nonlinear processes[J]. Optics Letters,1996,21(8):558–560.
    [22] BANFI G P, DATTA P K, DEGIORGIO V, et al. Frequency shifting throughcascaded second-order processes in a N-(4-nitrophenyl)-L-prolinol crystal[J].Optics Letters,1998,23(6):439–441.
    [23] CHOU M H, BRENER I, FEJER M M, et al.1.5-μm-band wavelength conver-sion based on cascaded second-order nonlinearity in LiNbO3Waveguides[J].IEEE Photonics Technology Letters,1999,11(6):653–655.
    [24] GALLO K, ASSANTO G. Analysis of lithium niobate all-optical wavelengthshifters for the third spectral window[J]. Journal of the Optical Society of Amer-ica B,1999,16(5):741–753.
    [25] ARMSTRONG J, BLOEMBERGEN N, DUCUING J, et al. Interactions betweenlight waves in a nonlinear dielectric[J]. Physical Review,1962,127(6):1918–1939.
    [26] MYERS L, MILLER G, ECKARDT R, et al. Quasi-phase-matched1.064-mm-pumped optical parametric oscillator in bulk periodically poled LiNbO3[J]. Op-tics Letters,1995,20(1):52–54.
    [27]陆闻杰.基于周期性畴反转铁电晶体的慢光研究及应用探索[D].[S.l.]:上海交通大学,2011.
    [28]钟维烈.铁电体物理学[J].1996:279–281.
    [29] BLOCH N V, SHEMER K, SHAPIRA A, et al. Twisting Light by NonlinearPhotonic Crystals[J]. PHYSICAL REVIEW LETTERS,2012,108:233902(1–5).
    [30] BAHABAD A, ARIE A. Generation of Optical Vortex Beams byNonlinearWaveMixing[J]. Opt. Express,2007,15(26):17619–17624.
    [31] TIAN L, YE F, CHEN X. Optical vortex converter with helica l-periodicallypoled ferroelectric crystal[J]. Optics Express,2011,19(12):11591–11596.
    [32] WEIS R, GAYLORD T. Lithium niobate: summary of physical properties andcrystal structure[J]. Applied Physics A: Materials Science&Processing,1985,37(4):191–203.
    [33] YAMADA M, SAITOH M. Fabrication of a periodically poled laminar domainstructure with a pitch of a few micrometers by applying an external electricfield[J]. Journal of Applied Physics,2009,84(4):2199–2206.
    [34] LIM E, FEJER M, BYER R, et al. Blue light generation by frequency doublingin periodically poled lithium niobate channel waveguide[J]. Electronics Letters,1989,25(11):731–732.
    [35] ISHIGAME Y, SUHARA T, NISHIHARA H. LiNbO3waveguide second-harmonic-generation device phase matched with a fan-out domain-invertedgrating[J]. Optics Letters,1991,16(6):375–377.
    [36] WEBJORN J, LAURELL F, ARVIDSSON G. Blue light generated by frequencydoubling of laser diode light in a lithium niobate channel waveguide[J]. IEEEPhotonics Technology Letters,1989,1(10):316–318.
    [37] WEBJORN J, LAURELL F, ARVIDSSON G. Fabrication of periodically domain-inverted channel waveguides in lithium niobate for second harmonic genera-tion[J]. Journal of Lightwave Technology,1989,7(10):1597–1600.
    [38] ZHU Y, ZHU S, HONG J, et al. Domain inversion in LiNbO3by proton ex-change and quick heat treatment[J]. Applied Physics Letters,2009,65(5):558–560.
    [39] RESTOIN C, DARRAUD-TAUPIAC C, DECOSSAS J, et al. Electron-Beam Pol-ing on Ti: LiNbO3[J]. Applied Optics,2001,40(33):6056–6061.
    [40] GLICKMAN Y, WINEBRAND E, ARIE A, et al. Electron-beam-induced domainpoling in LiNbO3for two-dimensional nonlinear frequency conversion [J]. Ap-plied Physics Letters,2006,88:011103.
    [41] ZENG X L, CHEN X F, CHEN Y P, et al. Observation of all-optical wave-length conversion based on cascaded effect in periodically poled lithium niobatewaveguide[J]. Optics&Laser Technology,2003,35(3):187–190.
    [42] LANGROCK C, KUMAR S, MCGEEHAN J E, et al. All-optical signal process-ing using χ(2) nonlinearities in guided-wave devices[J]. J. Lightwave Technol.,2006,24(7):2579–2592.
    [43] YU N E, RO J H, CHA M, et al. Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3at the commu-nications band[J]. Opt. Lett.,2002,27(12):1046–1048.
    [44] XU C Q, CHEN B. Cascaded wavelength conversions based on sum-frequencygeneration and difference-frequency generation[J]. Opt. Lett.,2004,3:292–294.
    [45] CHEN B, XU C Q. Analysis of novel cascaded χ(2)(SFG+DFG) wavelengthconversions in quasi-phase-matched waveguides[J]. IEEE J. Quantum. Elec-tron.,2004,40(3):256–261.
    [46] LEE Y L, YU B A, JUNG C, et al. All-optical wavelength conversion and tuningby the cascaded sum-and difference frequency generation (cSFG/DFG) in atemperature gradient controlled Ti:PPLN channel waveguide[J]. Opt. Express,2005,13:2988–2993.
    [47] WANG Y, XU C Q. Analysis of picosecond-pulse wavelength conversion basedon cascaded sum-frequency generation and difference-frequency generation inquasi-phase-matched LiNbO3waveguides[J]. Opt. Eng.,2007,46:055003.
    [48] FURUKAWA H, NIRMALATHAS A, WADA N, et al. Tunable all-optical wave-length conversion of160-Gb/s RZ optical signals by cascaded SFG-DFG gener-ation in PPLN waveguide[J]. IEEE Photonics Technol. Lett.,2007,19:384–386.
    [49] CHOU M H, BRENER I, FEJER M M, et al.1.55-um-band wavelength conver-sion based on cascaded second-order nonlinearity in LiNbO3waveguides[J].IEEE Photonics Technol. Lett.,1999,11:653–655.
    [50] TADANAGA O, ASOBE M, MIYAZAWA H, et al. Efficient1.55μm-band quasi-phase-matched ZnO-doped LiNbO3wavelength converter with high damageresistance[J]. Electon. Lett.,2003,39:1525–1527.
    [51] FONSECA-CAMPOS J, WANG Y, CHEN B, et al.40-GHz picosecond-pulsesecond-harmonic generation in an MgO-doped PPLN waveguide[J]. J. Lightw.Technol.,2006,24:3698–3708.
    [52] WANG Y, FONSECA-CAMPOS J, XU C, et al. Picosecond-pulse wavelengthconversion based on cascaded second-harmonic generation-difference frequen-cy generation in a periodically poled lithium niobate waveguide[J]. Appl. Opt.,2006,45:5391.
    [53] JUNDT D H. Temperature-dependent Sellmeier equation for the index of refrac-tion, ne, in congruent lithium niobate[J]. Optics Letters,1997,22(20):1553–1555.
    [54] ZELMON D E, SMALL D L, JUNDT D. Infrared corrected Sellmeier coeffi-cients for congruently grown lithium niobate and5mol.%magnesium oxide-doped lithium niobate[J]. Journal of the Optical Society of America B,1997,14(12):3319–3322.
    [55] GONG M, CHEN Y, LU F, et al. All optical wavelength broadcast based onsimultaneous Type I QPM broadband SFG and SHG in MgO:PPLN[J]. OpticsLetters,2010,35(16):2672–2674.
    [56] ZHANG J, CHEN Y, LU F, et al. Flexible wavelength conversion via cascad-ed second order nonlinearity using broadband SHG in MgO-doped PPLN[J].Optics Express,2008,16(10):6957–6962.
    [57] BOYD R. Nonlinear Optics[M].[S.l.]: Academic Pr,2003.
    [58] ZHANG Y X, CHEN Y P, CHEN X F. Polarization-based all-optical log-ic controlled-NOT, XOR, and XNOR gates employing electro-optic effec-t in periodically poled lithium niobate[J]. Applied Physics Letters,2011,99(16):161117.
    [59] ZHU S, ZHU Y Y, MING N B. Quasi-phase-matched third-harmonic generationin a quasi-periodic optical superlattice[J]. Science,1997,278:843–846.
    [60] SUHARA T, NISHIHARA H. Theoretical Analysis of Waveguide Second-Harmonic Generation Phase Matched with Uniform and Chirped Gratings[J].IEEE Journal of Quantum Electronics,1990,26(7):1265–1276.
    [61] GAO S M, YANG C X, JIN G F. Wavelength Converter Based on LinearlyChirped Gratings in Lithium Niobate Through Cascaded Second-Order Pro-cesses[J]. CHIN. PHYS. LETT.,2003,20(8)‘:1272–1274.
    [62] GAO S, YANG C, JIN G. Flat broad-band wavelength conversion based onsinusoidally chirped optical superlattices in lithium niobate[J]. IEEE PhotonicsTechnol. Lett.,2004,16(2):557–559.
    [63] LIN S C, SUN N H, CHIANG J S. Enhanced Cascaded SHG+DFG Process ofFemtosecond Pulses Using Chirp Quasi-Phase Matching Waveguide[J]. IEEEJ. Lightwave Technology,2008,2617:3090–3097.
    [64] LU G W, SHINADA S, FURUKAWA H, et al.160-Gb/s All-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadbandlinear-chirped PPLN waveguide[J]. Optics Express,2010,18:6064–6070.
    [65] ZHAO J S, SUN L, YU X Q, et al. Broadband continuous-variable entangle-ment source using a chirped poling nonlinear crystal[J]. Phys. Rev. A,2010,81:013832.
    [66] GAO S, YANG C, XIAO X, et al. Broadband and multiple-channel visiblelaser generation by use of segmented quasi-phase-matching gratings[J]. OpticsCommunications,2004,233(1-3):205–209.
    [67] TEHRANCHI A. Broadband quasi-phase-matched wavelength converter-s[D].[S.l.]: University of Montreal,2010.
    [68] UMEKI T, ASOBE M, NISHIDA Y, et al. Widely tunable3.4um band differencefrequency generation using apodized χ(2) grating[J]. Opt. Lett.,2007,32:1129–1131.
    [69] UMEKI T, ASOBE M, YANAGAWA T, et al. Broadband wavelength conversionbased on apodized χ(2) grating[J]. J. Opt. Soc. Amer. B,2009,26:2315–2322.
    [70] TEHRANCHI A, KASHYAP R. Design of novel unapodized and apodizedstep-chirped quasi-phase matched gratings for broadband frequency convert-ers based on second harmonic generation[J]. IEEE J. Lightwave Technology,2008,26(3):343–349.
    [71] TEHRANCHI A, KASHYAP R. Engineered gratings for flat broadening ofsecond-harmonic phase-matching bandwidth in MgO-doped lithium niobatewaveguides[J]. Optics Express,2008,16(23):18970–18975.
    [72] TEHRANCHI A, KASHYAP R. Flattop Efficient Cascaded χ(2)(SFG+DFG)-Based Wideband Wavelength Converters Using Step-Chirped Gratings[J]. IEEEJOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2011,0:1–9.
    [73] GLICKMAN Y, WINEBRAND E, ARIE A, et al. Electron-beam-induced domainpoling in LiNbO3for two-dimensional nonlinear frequency conversion[J]. Ap-plied Physics Letters,2006,88:011103.
    [74] RESTOIN C, DARRAUD-TAUPIAC C, DECOSSAS J L, et al. Electron-beampoling on Ti: LiNbO3[J]. Applied Optics,2001,40:6056–6061.
    [75] VALDIVIA C E, SONES C L, SCOTT J G, et al. Nanoscale surface domainformation on the+z face of lithium niobate by pulsed ultraviolet laser illumina-tion[J]. Applied Physics Letters,2005,86:022906.
    [76] WELLINGTON I T, VALDIVIA C E, SONO T J, et al. Ordered nano-scale do-mains in lithium niobate single crystals via phase-mask assisted all-optical pol-ing[J]. Appl. Surf. Sci.,2007,253:4215–4219.
    [77] KIRKPATRICK S, GELATT JR C D, VECCHI M P. Optimization by simulatedannealing[J]. Science,1983,220:671–680.
    [78] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N. Equation of statecalculations by fast computing machines[J]. The journal of chemical physics,1953,21(6):1087.
    [79]曾祥龙.基于铌酸锂光学超晶格的非线性光学效应及其应用研究[D].[S.l.]:上海交通大学,2004.
    [80] HAN Y G, KIM C S, KANG J U. Multiwavelength Raman fiber-ring laserbased on tunable cascaded long-period fiber gratings[J]. IEEE Photonics Tech-nology Letters,2003,15(3):383–385.
    [81] LIU X M, CHUNG Y, LIN A. Tunable and switchable multi-wavelengtherbium-doped fiber laser with highly nonlinear photonic crystal fiber and polar-ization controllers[J]. Laser Physics Letters,2008,5(12):501–504.
    [82] ZHANG A, LIU H, DEMOKAN M. Stable and broad bandwidth multiwave-length fiber ring laser incorporating a highly nonlinear photonic crystal fiber[J].IEEE Photonics Technology Letters,2005,17(12):2535–2537.
    [83] SHENG Y, KOYNOV K, DOU J, et al. Collinear second harmonic generationsin a nonlinear photonic quasicrystal[J]. Appl. Phys. Lett.,2008,92:201113.
    [84] WANG T, MA B, SHENG Y, et al. Large angle acceptance of quasi-phase-matched second harmonic generation in a homo centrically poled LiNbO3[J].Opt. Commun.,2005,252:397–401.
    [85] SHENG Y, DOU J, CHENG B, et al. Effective generation of red–green–bluelaser in a two-dimensional decagonal photonic superlattice[J]. Appl. Phys. B,2007,87:603–606.
    [86] BRATFALEAN R T, PEACOCK A C, BRODERICK N G R, et al. Harmonicgeneration in a two-dimensional nonlinear quasi-crystal[J]. Opt. Lett.,2005,30:424–426.
    [87] SHENG Y, MA D, REN M, et al. Broadband second harmonic generation inone-dimensional randomized nonlinear photonic crystal[J]. Appl. Phys. Lett.,2011,99:031108.
    [88] PENG L H, HSU C C, SHIH Y C. Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice struc-ture[J]. Appl. Phys. Lett.,2003,83:3447–3449.
    [89] MA B, SHENG Y, DOU J, et al. Higher order quasi-phase matched harmonics intwo-dimensional quasiperiodic superlattice[J]. Opt. Commun.,2004,274:429–432.
    [90] SHENG Y, DOU J, MA B, et al. Broadband efficient second harmonic generatioin media with a short-range order[J]. Appl. Phys. Lett.,2007,91:011101.
    [91] GALLO K, LEVENIUS M, LAURELL F, et al. Twin-beam optical paramet-ric generation in χ(2) nonlinear photonic crystal[J]. Appl. Phys.Lett.,2011,98:161113.
    [92] BORN M, WOLF E. Principles of Optics[M].[S.l.]: Cambridge: CambridgeUniversity Press,1999.
    [93] FREUND I. Nonlinear diffraction[J]. Phys. Rev. Lett.,1968,21:1404–1406.
    [94] SHENG Y, WANG W, SHILOH R, et al. Third-harmonic generation via nonlin-ear Raman–Nath diffraction in nonlinear photonic crystal[J]. Opt. Lett.,2011,36:3266–3268.
    [95] SALTIEL S M, NESHEV D N, KROLIKOWSKI W, et al. Multiorder nonlineardiffraction in frequency doubling process[J]. Opt. Lett.,2009,34:848–850.
    [96] SALTIEL S M, NESHEV D N, FISCHER R, et al. Generation of second-harmoinc conical waves via nonlinear Bragg diffraction[J]. Phys. Rev. Lett.,2008,100:103902.
    [97] ARIE A, HABSHOOSH N, BAHABAD A. Quasi phase matching in two-dimensional nonlinear photonic crystals[J]. Opt. Quantum Electron.,2007,39:361–375.
    [98] SHENG Y, DOU J, MA B, et al. Temperature and angle tuning of second har-monic generation in media with a short-range order[J]. Appl. Phys. Lett.,2007,91:101109.
    [99] SHENG Y, SALTIEL S M, KOYNOV K. Cascaded third-harmonic generationin a single short-range ordered nonlinear photonic crystal[J]. Opt. Lett.,2009,34:656–658.
    [100] SALTIEL S M, NESHEV D N, KROLIKOWSKI W, et al. Nonlinear diffractionfrom a virtual beam[J]. Phys. Rev. Lett.,2010,104:083902.
    [101] SHAPIRA A, ARIE A. Phase-matched nonlinear diffraction[J]. Opt. Lett.,2011,36:1933–1935.
    [102] LU M, CHEN X, CHEN Y, et al. A new algorithm to design aperiodic opti-cal superlattice for multiple quasi-phase matching[J]. Applied Optics,2007,46(19):4138–4143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700