用户名: 密码: 验证码:
CuO/γ-Al_2O_3及其改性催化剂脱硫脱硝性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气中的SO_2和NOx所引起的酸雨问题是现今世界普遍关注的三大环境保护课题之一,而燃煤电站是SO_2和NO_x排放的主要来源。研究和实际运行经验表明:烟气净化技术能最大程度上经济有效控制SO_2和NO_x排放。可再生干法烟气同时脱硫脱硝技术是燃煤污染物排放控制发展的重要方向。在目前已开发的干法同时脱硫脱硝剂中,CuO/γ-Al_2O_3催化剂既可催化氧化吸附烟气中的SO_2形成硫酸盐,又可在喷入氨气条件下将烟气中的NOx选择性催化还原为N_2,且吸附SO_2饱和的催化剂可于还原性气氛中还原再生,故而得到广泛关注,但因催化剂在耐磨性和硫容等方面存在的问题,至今未实现工业化。基于此,本论文工作从增强催化剂结构特征,提高催化剂脱硫脱硝性能的要求出发,通过催化剂制备工艺的改进与添加助催化剂,开发出一种高效稳定且可实现再生循环利用的干法同时脱硫脱硝技术。结合脱硝机理的研究,系统分析了SO_2和助催化剂对催化剂SCR活性的作用本质。论文主要从以下几个方面开展了研究:
     采用溶胶凝胶法制备CuO/γ-Al_2O_3颗粒,研究催化剂制备工艺中的各种影响因素,并对制备工艺进行了改进。简化后的制备工艺不仅缩短催化剂制备周期,也降低催化剂制备成本;溶胶凝胶法制备催化剂拥有较大的比表面积和孔容积,较高的活性组分负载量,从而有望拥有较高的脱硝反应活性和较大的脱硫硫容。
     以溶胶凝胶法制备CuO/γ-Al_2O_3催化剂,在固定床上开展烟气脱硝性能实验研究。溶胶凝胶法与浸渍法制备的CuO/γ-Al_2O_3催化剂相比,拥有较高的脱硝活性和较宽的温度适用窗口,在250-400℃内脱硝效率维持在85%以上;研究了NH_3/NO摩尔比、O_2浓度和不同活性组分负载量对脱硝性能的影响;分析了水蒸汽对催化剂脱硝性能的毒化作用;研究发现NH_3在高温区(400-500℃)过度氧化生成N_2、NO和N_2O,是脱硝效率下降的主要原因。
     选用不同类别的助催化剂,对CuO/γ-Al_2O_3催化剂进行改性。催化剂中添加不同助催化剂,脱硝反应温度窗口呈现明显差别。催化剂表面氧化性越强,催化剂在低温区(200-300℃)脱硝活性越高,但在高温区(400-500℃)脱硝活性却越低。制备的CuO-CeO_2-MnOx/γ-Al_2O_3催化剂在100-200℃内呈现了65%以上的脱硝活性,是一种有潜力的低温类型催化剂。
     随着温度变化SO_2对催化剂脱硝性能有双重影响。对比新鲜催化剂和硫化后催化剂,SO_2降低了硫化后催化剂低温区脱硝活性,但增强了在高温区脱硝活性。SO_2对催化剂脱硝性能的影响归功于NH_3在催化剂表面的吸附量和催化剂对NH_3氧化性能;硫化后催化剂表面氧化性能较低是其在低温区脱硝活性较差的主要原因。高的NH_3吸附量保证了催化剂在高温区拥有较高脱硝效率。CuO/γ-Al_2O_3再生后脱硫脱硝性能得到了恢复,但是其硫容有所降低。改性后催化剂的硫容得到一定程度提高,CuO-V_2O_5/γ-Al_2O_3催化剂可再生性能最好,在三个循环过程中硫容降低程度较小。
     采用在线原位红外漫反射技术,并应用程序升温和暂态响应等方法对NH_3和NO在CuO/γ-Al_2O_3催化剂表面的吸附性能、吸附态NH_3和NO的反应性以及SCR反应机理作了系统研究。CuO/γ-Al_2O_3催化剂上的SCR反应遵循Eley-Rideat机理,即SCR反应发生于吸附态NH_3与气相或弱吸附态的NO之间;CuO/γ-Al_2O_3催化剂的Lewis酸性位具有SCR活性;Brφnsted酸性位的NH_4~+不参与SCR反应;吸附态NO及其氧化生成的亚硝基物种参与SCR反应,而硝酸盐物种很难参与SCR反应。
     采用密度泛函法研究NH_3、NO_2和NO分子在CuO/γ-Al_2O_3催化剂表面的吸附行为。这几种分子在CuAl_2O_4(100)表面Cu~(2+)位上吸附作用的发生都比较容易进行,其中NO和吸附位的结合力最强,那里被吸附物和CuAl_2O_4(100)表面之间的电荷转移最强。催化剂和被吸附物种之间发生了电荷的转移,并且电荷的转移在吸附过程中起着非常重要的作用。吸附过程中相应几何和电子特性的变化也与被吸附物种NH_3、NO_2和NO的吸附能力相关。对此研究有助于我们了解脱硝过程机理,同时为进一步改善设计脱硝催化剂提供依据。
Sulfur dioxide (SO_2) and nitrogen oxides (NOx) are mainly produced during thecombustion of fuels from Coal-fired power plant, such combustion results in serious airpollution by the formation of acid rain, photochemical smog, and green house effect. It hasbeen reported that flue gas cleaning techniques provided one of the most effective ways toremove SO_2 and NOx. Numerous research works on simultaneous removal of SO_2 and NOxhave been carried out to find cost effective catalysts. In simultaneous removal of SO_2 andNO_X, the CuO/γ-Al_2O_3 catalysts have distinct advantages to remove SO_2 and NO_Xbecause of the high desulfurization and denitrification efficiency at the same temperaturerange (300-400℃) and easy regeneration under the reductant gas atmosphere. However, thelow sulfur capacity and poor mechanical strength of the catalyst available at the timepresent a major problem for the practical application. Therefore, the attentions of this workare focused on increasing mechanical properties, improving desulfurization anddenitrification activity. The modified sol gel method was used and the promoters wereadded into the CuO/γ-Al_2O_3 catalysts. The effect of SO_2 and promoters on selectivecatalytic reduction (SCR) activity and the SCR reaction mechanism were also studiedsystematically; the main and important results are described as follows:
     Granular CuO/γ-Al_2O_3 catalysts were synthesized by the sol gel method. Variousparameters affecting the granulation process were studied, and several improvements weredone to the synthesis procedure for sol gel derived copper doped Al_2O_3 granules. Theseimprovements simplify the catalysts synthesis process and reduce the preparationtime and catalysts cost. The sol gel derived CuO/γ-Al_2O_3 granules have a large surfacearea, large pore volume, uniform pore size distribution, high CuO content. It can be inferredthat CuO/γ-Al_2O_3 catalyst may have high desulfurization and denitrification activity.
     Performance of the CuO/γ-Al_2O_3 catalysts synthesized by sol gel method was studiedin a fixed bed system. The CuO/γ-Al_2O_3 catalysts prepared by sol gel method had higherdenitrification activity and wider temperature widows than that prepared by wetimpregnation method. The optimum temperature range for NO reduction over the CuO /γ-Al_2O_3 catalyst was 200-450℃. In this temperature window, the catalysts maintained atmore than 85% NO conversion efficiency. Comprehensive tests including NH_3/NO ratio,O_2 concentration and CuO content were carried out to study the SCR activity over thecatalyst, and the poisonous effect of water vapor on SCR activity was also analyzed. It wasfound that the over-oxidation of NH_3 to N_2, NO and N_2O at high temperature range was themain reason causing the decrease of NO conversion.
     Several promoters such as Mn, Ce, Na, V and Ni were added into the CuO/γ-Al_2O_3catalyst, and the modified Catalysts were tested in fixed bed system. It was found that thecatalysts with different promoters had various temperature windows. The strongeroxidation of NH_3 the catalysts had, the higher denitrification efficiency at low temperaturerange (200-300℃) the catalysts got, but correspondingly they had worse activity at hightemperature range (400-500℃). The CuO-CeO_2-MnOx/γ-Al_2O_3 catalysts maintained atmore than 65% NO conversion efficiency at 100-200℃. It could be inferred thatCuO-CeO_2-MnOx/γ-Al_2O_3 catalysts had a potential ability to remove NO at lowtemperature.
     SO_2 showed dual effect on SCR activity of CuO/γ-Al_2O_3 catalysts according thetemperature. Compared with the fresh and sulfated CuO/γ-Al_2O_3 catalysts, SO_2 haddeactivating effect on NO conversion efficiency at 200-300℃, but they had promotingeffect at 400-500℃. It was found that the effects of SO_2 on SCR activity of CuO/γ-Al_2O_3catalyst are contributed to changes in NH_3 adsorption capacity and NH_3 oxidation property.The sulfated catalysts had worse oxidation degree of NH_3, so the activity was lower. Thehigh adsorption amount of NH_3 ensured that sulfated catalysts had higher activity than freshcatalyst. SO_2 showed no deactivating effect on NO conversion efficiency at 300-400℃. Thesulfated catalysts could be effectively regenerated at 450℃in NH_3/N_2, but the sulfurcapacity decreased. Compared with the CuO/γ-Al_2O_3 catalysts, the sulfur capacity ofmodified catalysts was improved. CuO-V_2O_5/γ-Al_2O_3 catalysts showed the bestregenerated property among the modified catalysts.
     NH_3/O_2 and NO/O_2 adsorption processes on the catalyst and the transient response ofNH_3 and NO were investigated by in situ diffuse reflectance infrared transformspectroscopy (DRIFTS) to study the SCR mechanism. It was found that the SCR reaction on the CuO/γ-Al_2O_3 catalysts occured between adsorbed NH_3 on Lewis acid site and gasousNO, accorded the Eley-Rideal mechanism. The NH_4~+ adsorbed on Brφnsted acid site didnot take part in the SCR reaction. NO could be adsorbed on the fresh and sulfatedCuO/γ-Al_2O_3 catalysts. The adsorbed NO was oxidized to nitrate and nitrite species, and thenitrate was difficult to participate in the SCR response.
     Adsorption properties of NH_3, NO_2 and NO molecules on CuO/γ-Al_2O_3 catalystssurface had been investigated by using a density functional approach. The results showedthat the adsorptions of all the molecules on the Cu~(2+) site of CuAl_2O_4(100)were energeticallyfavourable, whereas NO was the most strongly bound with the adsorption site, where thecharge transfer between the adsorbates and the CuAl_2O_4 (100) surface always took placeand played an important role during the adsorption processes. The change in the geometricand electronic properties induced by the adsorption of NH_3, NO_2 and NO were correlatedwell with the adsorption ability. This study might be of help to understand the de-NOxmechanism and further to design de-NOx catalysts with excellent performance.
引文
[1] 国家统计局,国家环境保护总局,2007中国环境统计年鉴.北京:中国统计出版社,2007.
    [2] 王鑫,傅德黔,努丽亚.NOx排放统计方法综述.中国环境监测,2008,24(4):57-60.
    [3] 张强.燃煤电站SCR烟气脱硝技术及工程应用.北京:化学工业出版社,2007.
    [4] 曾庭华,杨华,马斌等.湿法烟气脱硫系统的安全性及优化.北京:中国电力出版社,2004.
    [5] 黄军左,顾立军,刘宝生.脱除工业烟道气中SOx和NOx的技术.现代化工,2001,21(12):4-47.
    [6] 张朝晖,赵毅,马双忱.燃煤电厂烟气联合脱硫脱氮技术发展现状.电力情报,2001,1:4-8.
    [7] 韩建多.SO_2废气的治理和利用.辽宁化工,1991,3:49-53.
    [8] 叶代启.烟气中氮氧化物污染的治理.环境保护科学,1999,25(4):1-4.
    [9] 彭定一,林少宁.大气污染及其控制.北京:中国环境科学出版社,1991.
    [10] 周至祥,段建中,薛建明.火电厂湿法烟气脱硫技术手册.北京:中国电力出版社,2006.
    [11] Ellison W. Limiting of SO_2 and NOx emission in wordwide coal-power production. Radiat Phys chem, 1995, 45(6): 1003-1011.
    [12] GB13223-2003,火电厂大气污染物排放标准.
    [13] 陈鹏.中国高硫煤及其排放SO_2污染控制.煤炭转化,1998,21(3):1-6.
    [14] 曹征彦.中国洁净煤技术.北京:中国物质出版社,1997.
    [15] 张永照.燃煤锅炉脱硫技术综述.工业锅炉,2003,3:1-11.
    [16] 王亚芬,张显奎.循环流化床锅炉的脱硫脱氮.应用能源技术,2001,2:17-19.
    [17] 刘妮.型煤燃烧及固硫技术的研究环境科学动态,1998,3:24-26.
    [18] 李彩亭,曾光明.我国中小型燃煤锅炉脱硫技术现状.能源工程,1998,2:9-12.
    [19] 孙金栋,朱养华.火电厂脱硫技术应用现状及发展.北京建筑工程学院学报,2002,18(1):13-18.
    [20] 钱海燕,孔庆刚.燃煤电厂烟气脱硫技术发展现状.环境导报,1999,6:11-14.
    [21] 董学德,彭斯干,唐崇武.烟气海水脱硫技术及其应用.中国电力,1996,29(10):52-57.
    [22] 徐维正.用尿素净化烟道气的新工艺.化工科技动态,1997,3-4:43-47.
    [23] 冯玲,杨景玲,蔡树中.烟气脱硫技术的发展及应用现状.环境工程,1997,15(2):19-24.
    [24] 吕太,罗伟民,王雷等.国内燃煤电厂烟气脱硫现状与展望.东北电力学院学报,2000,20(2):68-74.
    [25] 顾念祖.燃煤电厂脱硫的现状分析和防治对策.热能动力工程,2000,15(2):91-92.
    [26] 张慧明,林小研.二氧化硫污染控制工程讲座.环境保护科学,1994,20(3):68-75.
    [27] 郝吉明,王小明,王玉肖.燃煤二氧化硫污染控制手册:化学工业出版社,2001.
    [28] 国家环境保护科技标准司,清华大学环境科学工程系.燃煤二氧化硫污染控制技术现状及综合评价(二).环境保护,1998,5:3-5,9.
    [29] Qingya Liu, Ju Shang Guan, Jiangang Li, et al. SO_2 removal from flue gas by activated semi-cokes: 2. Effects of physical structures and chemical properties on SO2 removal activity, Carbon, 2003, 41 (12):2250-2230.
    [30] 刘守军,新型炭载氧化铜低温烟气脱硫剂及硫资源化的研究:[博士学位论文].青岛:中国科学院生物研究所,2000.
    [31] 邰国荣,韩宾兵.成都电子束烟气脱硫示范工程.中国电力,1998,11:42-47.
    [32] 谢国勇,刘振宇,刘有智等.CuO/γ-Al_2O_3脱除烟气中SO_2的研究.燃料化学学报,2003,31(5):385-388.
    [33] Jianrong Ma, Zhenyu Liu, Shoujun Liu, et al. A regenerable Fe/AC desulfurizer for SO2 adsorption at low temperatures, Appl Catal B, 2003, 45(4):301-309.
    [34] Guoyong Xie, Zhenyu Liu, Zhenping Zhu, et al. Reductive regeneration of sulfated CuO/γ-Al_2O_3 catalyst-sorbent in ammonia. Appl Catal B, 2003, 45(3):213-221.
    [35] Qingya Liu, Chunhu Li, Yanxu Li. SO_2 removal from flue gas by activated semi-cokes: 1. The preparation of catalysts and determination of operating conditions carbon, 2003, 41 (12):2217-2223
    [36] Bosch H, Janssen F. Catalytic reduction of nitrogen oxides: a review on the fundamentals and technology. Calalysis Today, 1988, 2(5):369-531.
    [37] 马双忱,赵毅,李守信等.联合脱除SO_2和NOx的烟气治理技术.华北电力大学学报,2000,27(3):87-92.
    [38] 邱广明,张慧娟,阎志勇等.燃煤锅炉低NOx燃烧技术研究.环境保护,2000,4:10-12.
    [39] Zhang X K, Waiters A B, Vannice M A. NO adsorption,decomposition,and reduction by methane over rare earth oxides. J Catal, 1995, 155(2):290-302.
    [40] Amimazm A, Senson J E, Bondart M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum. J Catal, 1973, 30(1):55-65.
    [41] Hamada H, Kintaichi Y, Sasaki M, et al. Siliver-promoted cobalt oxide catalysts for directd ecomposition of nitrogen monoxide. Chem Let, 1990, 19(7): 1069-1070.
    [42] Tabata K. Decomposition of NO by Ba_2YCu_3O_7-δ. J Mster Sci Lett, 1988, 7(2): 147-148.
    [43] Iwamoto M, Yahiro H. Novel catalytic decomposition and reduction of NO. Catalysis today, 1994, 22(1):5-18.
    [44] Yeh J T, Ma W T, Pennline H W, et al. Integrated testing of the NOx/SO_2 process:simultaneous removal of SO_2 and NOx from flue gas. Chem Eng Comm, 1992, 114:65-88.
    [45] Forzatti P. Present status and perspectives in de-NOx SCR catalysis. Appl Catal A, 2001,222(1-2):221-236.
    [46] 张强,许世森,王志强.选择性催化还原烟气脱硝技术进展及工程应用.热力发电,2004,33(4):1-6.
    [47] 黄张根,朱珍平,刘振宇.水对V_2O_5/AC催化剂低温还原NO的影响.催化学报,2001,22(6):532-536.
    [48] Zhenping Zhu, Zhenyu Liu, Shoujun Liu, et al. NO reduction with NH3 over an activated carbon-supported copper oxide catalysts at low temperatures. Appl Catal B, 2000, 26(1):25-35.
    [49] Zhanggen Huang, Zhenping Zhu, Zhenyu Liu, et al. Combined effect of H_2O and SO_2 on V_2O_5/AC catalysts for NO reduction with ammonia at lower temperatures. Appl Catal B, 2002, 39(4):361-368.
    [50] Teresa Vald(?)s-Sol(?)s, Gregorio Marb(?)n, Antonio B. Fuertes. Low-temperature SCR of NOx with NH_3 over carbon-ceramic cellular monolith-supported manganese oxides. Catal Today, 2001, 69(1-4):259-264.
    [51] Kaczur J J. Oxidation of chemistry of chloric acid in NOx/SOx and air toxic metal removal from gas streams. Environ Prog, 1995, 15(4):245-253.
    [52] Chu H, Chien T W, Twu B W, et al. Simultaneous absorption of SO2 and NO in a stirred tank reactor with NaClO_2/NaOH solutions. Water Air & Soil Pollution, 2003, 143(1-4):337-350.
    [53] Mendelsohn M H, Livengood C D.Stability studies of waste produced in pilot-plant testing using ferrous-EDTA and magnesium-enhanced lime for combined sulfur-dioxide/Nitrogen oxides removal. Water, Air, and Soil Pollution, 1998, 101(1-4):105-121.
    [54] 岳松,串亚权,江志远.半胱氨酸合铁(Ⅱ)溶液同时脱除烟气中SO_2和NOx的研究.重庆环境科学,1998,20(6):32-35.
    [55] Onda K, Kasuga Y, Kato K, et al. Electric discharge removal of SO_2 and NOx from combustion flue gas by pulsed corona discharge. Energy Conversion and Management, 1997, 38(10-13):1377-1387.
    [56] Dinelli G. Industrial experiments on pulse corona simultaneous removal of NOx and SO2 from flue gas. IEEE Trans Ind Appl 1990, 26(3):535-541.
    [57] Chang J S, Masuda S. Mechanism of pulse corona induced plasma chemical process for removal of NO and SO_2 from combustion gases, in Conf Rec 23rd IEEE-IAS Annu Meeting. 1988, 1628-1635.
    [58] 曾葆青,王荣毅,李学初.高压脉冲放电脱除NOx的反应机理实验研究.科学通报,1996,41(16):1476-1480.
    [59] 杨睿赣,吴彦,毛本将.电子束辐照烟气脱硫脱硝机理研究现状.环境科学动态, 2003,4:43-45.
    [60] 高翔,骆仲映,周劲松等.新型多功能烟气净化装置的开发.环境科学学报,1999,19(4):362-367.
    [61]毛本将,王保健,姜一鸣等.电子束辐照烟气脱硫脱硝工业化试验装置.环境保护,2000,8:13-14.
    [62] 赵君科,王保健,任先文等.脉冲电晕等离子体烟气脱硫脱硝中试装置.环境工程,2001,19(6):43-45.
    [63] 胡国新,骆仲泱.洁净煤技术的烟气净化系统最新概况及其工艺选择.热能动力工程,1997,12(4):245-249.
    [64] Noyes R. Handbook of pollution control processes. New Jersey:USA Published by Noyes publications, 1991
    [65] Izquierdo M T, Rubioa B, Mayoralb C, et al. Low cost coal-based carbons for combined S02 and NO removal from exhaust gas. Fuel, 2003, 82(2): 147-151.
    [66] Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers. Carbon, 2000, 38(2):227-239.
    [67] David GO, Tsuji K, Shiraishi I. The reduction of gas phase air toxics from combust ion and incineration sources using the MET-Mitsui-BF activated coke process. Fuel Proc Technol, 2000, 65-66:393-405.
    [68] 刘守军,刘振宇,朱珍平等.CuO/AC低温脱除烟气中SOx和NOx的研究.燃料化学学报1999,27(增刊):192-198
    [69] 刘守军,刘振宇.CuO/AC脱除烟气中SO_2机理的初步研究.煤炭转化,2000,23(2):67-71.
    [70] 刘守军,刘振宇,朱珍平等.高活性炭载金属脱硫剂的制备与筛选.煤炭转化,2000,23(2):53-58.
    [71] 刘守军,刘振宇,牛宏贤等.金属氧化物助剂对Cu/AC脱硫活性的影响.煤炭转化,2000,23(4):55-58.
    [72] Wang Z M, Lin Y S. Sol-gel derived alumina supported copper oxide sorbent for flue gas desulfurization. Ind Eng Chem Res, 1998, 37(12):4675-4681.
    [73] Deng S G, Lin Y S. Synthesis, Stability, and Sulfation Properties of Sol-Gel-Derived Regenerativ Sorbents for Flue Gas Desulphurization. Ind Eng Chem Res, 1996,35(4): 1429-1437.
    [74] Amores J M G, Escribano V S, Ramis G, et al. An FT-IRStudy of Ammonia Adsorption and Oxidation over Anatase-Supported Metal Oxides. Appl Catat B, 1997,13(l):45-48.
    [75] Jeong S M, Jung S H, Yoo K S. Selective Catalytic Reduction of NO by NH_3 over a Bulk Sulfated CuO/γ-Al_2O_3 Catalyst Ind Eng Chem Res, 1999, 38(6):2210-2215.
    [76] Centi G,Passarini N, Perathoner S, Combined deSOx/deNOx reactions on a copper on alumina sorbent-catalyst. 1. Mechanism of SO_2 oxidation-adsorption. Ind Eng Chem Res,1992,31(8):1947-1995.
    [77] Centi G,Passarini N, Perathoner S. Combined deSOx/deNOx reactions on a copper on alumina sorbent-catalyst. 2. Kinetics of the deSOx reaction Ind Eng Chem Res,1992,31(8):1956-1963.
    [78] Deng S G,Lin Y S. Sulfur Dioxide Sorption Properties and Thermal Stability of Hydrophobic Zeolites. Ind Eng Chem Res, 1995, 34(11):4063-4070.
    [79] Centi G,Riva A, Passarini N. Simultaneous removal of SO_2/NO_x from flue gas sorbent-catalyst design and performance. Chem Eng Sci, 1990,45:2679-2686.
    [80] McCrea DH, Forney AJ, Myers JG, et al. Recovery of sulfur from flue gases using a copper oxide absorbent. Journal of the Air Pollution Control Association, 1970,20(12):819-824.
    [81] Brandin J G M, Andersson L A H, Odenbrand C U I. Catalytic reduction of nitrogen oxides on mordenite. Some aspects of the mechanism. Catalysis Today, 1989,4(2): 187-203.
    [82] Yeh J T, Drummond C J, Joubert J I, et al. Process simulation of the fluidized-bed copper oxide process sulfation reaction. Environmental Progress, 1987, 6(2):44-50.
    [83] Ramis G, Yi L, Busca G, et al. Adsorption, activation and Oxidation of Ammonia over SCR Catalysts. J Catal, 1995, 157(2):523-535.
    [84] Ramis G, Larrubia M A. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe_2O_3/Al_2O_3 catalyst Journal of Molecular catalysis A:chemical, 2004, 215(1-2):161-167.
    [85] 刘清雅.蜂窝状荃青石基CuO/Al_2O_3催化剂的制备及其烟气脱硫脱硝的研究:[博士学位论文].太原:中国科学院山西煤炭化学研究所,2004
    [86] 刘清雅,刘振宇,李成岳等.NH_3在选择性催化还原NO过程中的吸附与活化.催化学报,2006,27(7):626-646.
    [87] Waqif M, Saur O, Centi G; et al.Nature and mechanism of formation of sulfate specles on copper/alumina sorbent -catalysts for SO_2 removal, J Phys Chem, 1991, 95(10):4051-4058.
    [88] Centi G; Perathoner S. Nature of active species in copper-based catalysts and their chemistry of transformation of nitrogen oxides. Applied Catalysis A: General, 1995, 132(2): 179-259.
    [89] Centi G, Perathoner S, Biglino D, et al. Adsorption and Reactivity of No on Copper-on-Alumina Catalysts: I. Formation of Nitrate Species and Their Influence on Reactivity in NO and NH_3 Conversion. J Catal, 1995, 152(1):75-92.
    [90] Strakey J P, Bauer E R Jr, Haynes W P. Removal of SO_2 and NOx from flue gas in fluidized bed copper oxide process. Proc 6th National Conference on Energy&Environ, Pittsburgh: 1979.
    [91] Demski R J, Gasior S J, Bauer E R, et al. Simultaneous Removal of SO_2 and NOxfrom Flue Gas Employing a Fluidized-Bed Copper Oxide Process. Presented at the 1982 Summer National Meeting of the AIChE, Cleverland: 1982.
    [92] Sang Mun Jeong, Sang Done Kim. Removal of NOX and SO_2 by CuO/γ-Al_2O_3 Sorbent/Catalyst in a Fluidized-Bed Reactor. Ind Eng Chem Res, 2000, 39(6):1911-1916.
    [93] Yeh J T, Demski R J, Strakey J P. Combined SO_2/NOx removal from flue gas. detail discussion of a new regenerative fluidized-bed process developed by the Pittsburgh Energy Technology Center. Environ Prog, 1985, 4(4):223-228.
    [94] Breault R W, Litka T.Update on performance tests from the COBRA process, a combined SO_2 and NOx removal system. Proc. 24th International Conference on Coal Utilization&Fuel Systems, Florida, 1999:669-680.
    [95] Cengiz P, Abbasian J. Slimane R B, et al. Regenerabl copper -based sorbents for high temperature flue gas desulfurization. Proc.25th International Conference on Coal Utilization&Fuel Systems, Florida: 2000:605-606.
    [96] Abbasian J, Slimane R B, Carty R H, et al. Development of improved sorbents for the moving-bed copper oxide procss. Proc.25th International Conference on Coal Utilization&Fuel Systems, Florida: 1999:681-692.
    [97] Sang Mun Jeong, Sang Done Kim. Enhancement of the SO2 Sorption Capacity of CuO/γ-Al_2O_3 Sorbent by an Alkali-Salt Promoter. Ind Eng Chem Res, 1997, 36(12):5425-5431.
    [98] Deng S. G, Y. S Lin. Granulation of Sol-Gel Derived Nano-scale Alumina. AIChE J, 1997, 43(2):505-514.
    [99] Wang Z W, Lin Y S. Sol-Gel Synthesis of Pure and Copper Oxide Coated Mesoporous Alumina Granular Particles. J Catal, 1998, 174(1):43-51.
    [100] Buelnal G, Lin Y S.Characteristics and desulfurization-regeneration properties of sol- gel-derived copper oxide on alumina sorbents. Separation and Purification Technology, 39(3): 167-179.
    [101] Buelna G, Lin Y S, L. X. Liu L X, et al. Structural and Mechanical Properties of Nanostructured Granular Alumina Catalysts. Ind Eng Chem Res, 2003, 42(3):442-447.
    [102] 沈德树,赵欣,甘海明等.烟气中SO_2/NOx同时吸收催化脱除的研究.环境科学,1994,15(4):40-42.
    [103] 杨国华,郑琼姣.流化床CuO烟气脱硫试验研究.环境工程,1995,13(5):19-23.
    [104] 阮桂色,冯先进,宫为民.负载型金属氧化物烟气脱硫剂的研究.矿冶,2000,9(1):99-102.
    [105] 谢国勇,刘振宇,刘有智.用CuO/γ-Al_2O_3催化剂同时脱除烟气中的SO_2和NO.催化学报,2004,25(1):33-38.
    [106] Guoyong Xie, Zhenyu Liu, Zhenping Zhu, et al.Reductive regeneration of sulfated CuO/Al_2O_3 catalyst-sorbent in ammonia. Applied Catalysis B: Environmental, 2003, 45(3):213-221.
    [107] Qingya Liu, Zhenyu Liu, Zhenping Zhu, et al.γ-Al_2O_3-coated honeycomb cordierite supported CuO for simultaneous SO_2 and NO removal from flue gas:efect of Na_2O additive. Ind Eng Chem Res, 2004, 43(15):4031-4036.
    [108] Wang Yan, Zhang Chao, Zheng Ying, et al. Study on the reaction activity of CuO/γ-Al_2O_3 for dry flue gas desulfurization. Journal of Coal Science & Engineering (China), 2004, 10(2):80-84.
    [109] 王雁.CuO/γ-Al_2O_3干法烟气脱硫研究:[博士学位论文].武汉:华中科技大学,2005.
    [110] 王雁,张超,郑楚光.助剂对CuO/γ-Al_2O_3烟气脱硫活性影响的初步研究.热能动力工程,2004,19(6):572-578.
    [111] 毛金波.溶胶-凝胶法制备的CuO/γ-Al_2O_3催化吸附剂及其脱硫脱硝研究:[硕士学位论文].武汉:华中科技大学,2006.
    [112] Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing San Diego: Academic Press, 1990
    [113] Yoldas B E. A Transparent Porous Alumina. Am Ceram Soc Bull, 1975, 54(3):286-288
    [114] Leenaars A F M, Keizer K, Burggraaf A J. The Preparation and Characterization of Alumina Membranes with Ultra-Fine Pores. Part1.Microstructural Investigations on Non-supported Membranes. J Mater Sci, 1984, 19(5):1077-1088.
    [115] Chang C H, Gopalan R, Lin Y S. A Comparative Study on Thermal and Hydrothermal Stability of Alumina, Titania and Zirconia Membranes. J Membr Sci, 1994, 91(1-2):27-45.
    [116] Centi G, Passarini N, Perathoner S. Combined DeSOx DeNOx reactions on a copper on alumina sorbent catalyst.3.DeNOx behavior as a function of the surface coverage with sulfate species. Ind Eng Chem Res, 1992, 31(8):1963-1970.
    [117] Mitchell M B, Sheinker V N. White M G, et al. Adsorption and Reaction of Sulfur Dioxide on Alumina and Sodium-Impregnated Alumina. J Phys Chem B, 1996, 100(18):7550-7557.
    [118] 姚允斌,裘祖楠,胶体与表面化学导论.天津:南开大学出版社,1988.
    [119] 沈钟,王果庭,胶体与表面化学.北京:化学工业出版社,1997.
    [120] 袁文辉,叶振华.氧化铝无机膜的制备华南理工大学学报(自然科学版)1997,25(10):73-77.
    [121] 王文涛,钟邦克.以多孔钛片为载体的氧化铝膜的制备和表征 物理化学学报1996 12(1):85-90.
    [122] 周健儿,王艳香,马光华等.溶胶-凝胶法制备超滤Al_2O_3膜的研究:Ⅰ、勃姆石溶胶的制备.陶瓷学报,1999,20(2):87-91.
    [123] Youchang Xie, YouqiTang. Spontaneous monolayer dispersion of oxides and salts onto surfaces of supports: application to heterogeneous catalysis. Adv Catal, 1990, 37(17): 1-43.
    [124] 张玉芬,谢有畅,张阳.氧化物在载体上的存在状态及其还原性能研究-NiO/γ-Al_2O_3和CuO/γ-Al_2O_3体系.中国科学B辑,1986,16(8):805-813.
    [125] 谢国勇.CuO/Al_2O_3同时脱除烟气中SO_2和NO的研究:[博士学位论文].太原:中国科学院山西煤炭化学研究所,2004.
    [126] Centi G, Hodnett B K, Jaeger P, et al. Development of Copper-on-Alumina Catalytic Materials for the Cleanup of Flue Gas and the Disposal of Diluted Ammonium Sulfate Solutions. J Mater Res, 1995, 10(3):553-561.
    [127] Silvia Su(?)rez, Seong Moon Jung, Pedro Avila, et al. Influence of NH_3 and NO oxidation on the SCR reaction mechanism on copper/nickel and vanadium oxide catalysts supported on alumina and titania. Catalysis Today, 2002, 75(1-4):331-338.
    [128] Kiel JHA, Edelaar ACS, Prins W, et al. Performance of silica-supported copper oxide sorbents for SOx/NOx-removal from flue gas. Ⅱ. Selective catalytic reduction of nitric oxide by ammonia. Applied Catalysis B: Environmental, 1992, 1(1):41-60.
    [129] Lietti Luca, Nova Isabella, Ramis Gianguido, et al. Characterization and Reactivity of V_2O_5-MoO_3/TiO_2 De-NOx SCR Catalysts. Journal of Catalysis, 1999, 187(2):419-435.
    [130] Qi Gongshin, Yang R T. Low-temperature selective catalytic reduction of NO with NH_3 over iron and manganese oxides supported on titania. Applied Catalysis B: Environmental, 2003, 44(3):217-225.
    [131] Yan H C, Yao Y F. Ceria in automotive exhaust catalysts Ⅰ. oxygen storage. J Catal 1984, 86(2):254-265.
    [132] Metcalfe I S, Sundaresan S., Oxygen Storage in automobile exhaust catalyst Chem Eng Sci, 1986, 41(4):1109-1112.
    [133] Qi Gongshin, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH_3 over MnOx-CeO_2 catalyst. Journal of Catalysis, 2003, 217(2): 434-441
    [134] 唐晓龙,郝吉明,徐文国等.新型MnOx催化剂用于低温NH_3选择性催化还原Nox.催化学报,2006,27(10):843-848.
    [135] Forzatti P, Lietti L. Recent advances in de-NOxing catalysis for stationary applications. Heterogeneous Chem Rev, 1996, 3(1):33-51.
    [136] Koebel M, Elsener M, Madia G. Reaction Pathways in the Selective Catalytic Reduction Process with NO and NO_2 at Low Temperatures. Ind Eng Chem Res, 2001, 40(1):52-59.
    [137] 朱海洋,沈明敏,刘田东等.氧化铜与CeO_2-γ-Al_2O_3混合氧化物载体之间的表面相互作用.催化学报,2002,23(4):325-328.
    [138] 王春明,赵璧英,谢有畅.盐类和氧化物在载体上自发单层分散研究新进展.催化学报,2003,24(6):475-482.
    [139] 谢有畅,唐有祺.氧化物和盐类在载体表面的自发单层分散及其应用.自然科学进展,1994,4(6):642-653.
    [140] Avinash R S, Joann S L. Kinetics of the Selective Catalytic Reduction of NO with NH_3 over CuO/γ-Al_2O_3. Ind Eng Chem Res, 2000, 39(6):1781-1787.
    [141] Yoo K S, Kim S D, Park S B, et al. Sulfation of Al_2O_3 in flue gas desulfurization by CuO/γ-Al_2O_3 Sorbent Ind Eng Chem Res, 1994, 33(7): 1786-1791.
    [142] Arata K. Solid catalyst treated with anion: ⅩⅧ. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina. Appl Catal, 1990, 59(1): 197-204.
    [143] 董新法,陈兵,简弃飞.甲醇水蒸汽重整制氢Cu/Zn/Ce/Al催化剂的XPS研究.分子催化,2002,16(5):335-338.
    [144] 王仁国,童冬梅,张国民等.铁、钒助剂对催化剂CuO/Al_2O_3上CO_2+H_2合成甲醇影响的XPS研究.四川大学学报(自然科学版),2001,38(3):397-401.
    [145] Busca G, Lietti L, Ramis G, et al. Chemical and Mechanistic Aspects of the Selective Catalytic Reduction of NOx by A mmonia over Oxide Catalysts:a Review. Appl CatalB, 1998,18(1-2):1-36.
    [146] Topsoe N Y. Mechanism of the Selective Catalytic Reduction of Nitric Oxide by Ammonia Elucidated by in Situ on-Line Fourier Transform Infrared Spectroscopy. Science, 1994, 265(5176):1217-1219.
    [147] Wachs I E, Deo G, Weckhuysen B M, et al. Selective Catalytic Reduction of NO with NH_3 over Supported Vanadia Catalysts. J Catal, 1996, 161(1):211-221.
    [148] Kantcheva M, Bushev V, Klissurski D. Study of the NO_2-NH_3 Interaction on Titania(anatase) Supported Vanadia Catalyst J Catal, 1994,145(l):96-106.
    [149] Centi G,Perathoner S. Adsorption and Reactivity of No on Copper-on-Alumina Catalysts :Ⅱ. Adsorbed Species and Competitive Path ways in the Reaction of No with NH_3 and O_2.J Catal,1995,152(1):93-102.
    [150] Zhang Ping, Wang Lefu, Li Xuehui.Characteristic of hydroxyls in molecular sieve by high temperature difuse reflectance infrared spectrum with molecular probes.Chinese Journal of Analytical Chemis, 2002,30(9): 1096-1098.
    [151] Larrubia M A, Ramis G. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe_2O_3-TiO_2 SCR catalysts. Applied Catalysis B:Environmental, 2001, 30(1-2):101-110.
    [152] Zhongbiao Wu, Boqiong Jiang, Yue Liu. DRIFT Study of manganese/ Titania-based catalysts for low-temperature selective catalytic reduction of NO with NH_3.Environ Sci Technol, 2007,41(16):5812-5817.
    [153] Tsyganenko A A, Pozdnyakov D V, Filimonv V N. Infrared study of surface species arising from ammonia adsorption on oxide surfaces. J Mol Struct, 1975,29(2):299-318.
    [154] Waqif M, Saur O, Lavalley J C, et al. Nature and Mechanism of Formation of Sulfate Species on Copper/AlumlnaSorbent-Catalysts for SO_2 Removal. J Phys Chem B,1991,95(10):4051-4058.
    [155] Chi Yawu, Steven S C. Infrared study of NO adsorption and reduction with C_3H_6 in the presence of O_2 over CuO/Al_2O_3.J Catal, 2000, 190(1):75-91.
    [156] Friedman R M, Freeman J J, Lytle F W. Characterization of Cu/Al_2O_3 catalysts. Journal of Catalysis, 1978, 55(1): 10-28.
    [157] Ken-ichi Shimizu, Hajime Maeshima, Atsushi Satsuma, et al.. Transition metal-aluminate catalysts for NO reduction by C_3H_6.Applied Catalysis B: Environmental, 1998, 18(3-4): 163-170.
    [158] Tae-Won Kim, Min-Woo Song, Hyoung-Lim Koh, et al. Surface properties and reactivity of Cu/γ-Al_2O_3 catalysts for NO reduction by C_3H_6: Influences of calcination temperatures and additives. Applied Catalysis A: General, 2001, 210(1-2):35-44.
    [159] Severino F, Brito J L, Laine J, et al. Nature of Copper Active Sites in the Carbon Monoxide Oxidation on CuAl_2O_4 and CuCr_2O_4 Spinel Type Catalysts. J Catal, 1998, 177(1):82-95.
    [160] Lu Gang, Grondelle J, Anderson B G, et al. Selective Low Temperature NH_3 Oxidation to N_2 on Copper-Based Catalysts. J Catal, 1999, 186(1):100-109.
    [161] Ken-ichi S, Hisaya K, Hajime M, et al. Intermediates in the Selective Reduction of NO by Propene over Cu-Al_2O_3 Catalysts: Transient in-Situ FTIR Study. J Phys Chem B, 2000, 104(13):2885-2893.
    [162] Foresman J B, Frisch A E. Exploring Chemistry with Electronic Structure Methods (Second Edition) Pittsburgh PA Gaussian Inc, 1996
    [163] 俞庆森,朱龙观.分子设计导论.北京:高等教育出版社,2000.
    [164] 黄仲涛,工业催化.北京:化学工业出版社,1994.
    [165] Yin X, Han H, Endou A, et al. Reactivity of Lattice Oxygens Present in V_2O_5(010): A Periodic First-Principles Investigation. J Phys Chem B, 1999, 103 (8): 1263-1269.
    [166] Yin X, Fahmi A, Han H, et al. Adsorption of H_2O on the V_2O_5(010) Surface Studied by Periodic Density Functional Calculations. J Phys Chem B, 1999, 103(16): 3218-3224.
    [167] Yin X, Han H, Gunji I, et al. NH_3 Adsorption on the Br(o丨¨)nsted and Lewis Acid Sites of V2O5(010): A Periodic Density Functional Study. J Phys Chem B, 1999, 103(22):4701-4706.
    [168] 张瑞勤,步宇翔,李述汤等.一种选择从头算基函数的有效方法.中国科学 B, 2000,30(5):419-427.
    [169] Xilin Yin, Huanmei Han, Momoji Kubo, et al. Adsorption of NH_3, NO_2 and NO on copper-aluminate catalyst: an ab initio density functional study Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), 2000, 109(4): 190-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700