用户名: 密码: 验证码:
分子筛膜和金属有机框架膜的合成及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们知道实际中的气体液体分离需要膜具有良好的成膜性,热稳定性,化学稳定性,耐酸、碱、微生物侵蚀和耐氧化性能。为满足实际需求气体液体分离条件,我必须制备大面积有序的无机膜,在各种无机材料中,分子筛膜是被研究最多的,近几年发展起来的无机膜材料,因其具有独特的性能,如其规则排列的孔道结构,特殊性质,孔径均一、阳离子可交换、Si/Al可以调节、耐高温、抗化学溶剂、具有不同的酸性、亲憎水性和催化性能等等,是实现分子水平上分离膜催化反应的优良多孔膜材料,所以引起人们对分子筛膜合成和研究的兴趣。分子筛膜被用于分离、吸附、扩散等方面的研究已经很多报道,但是要想满足实际中气体液体分离的需求还需要进一步研究,本论文从合成入手,以MFI分子筛膜为研究对象,分别采用了原位合成、二次生长和外延生长等不同的制备方法,并考察了不同合成条件对分子筛膜的形貌影响,研究了分子筛膜的生长机理,同时对部分分子筛膜气体液体分离性能的测试。金属有机骨架材料(MOFs)作为一种新型的无机多孔材料,因金属有机骨架材料像分子筛一样拥有规则排列的孔道结构和特殊性质及孔道大小,连通性的可控性,而且孔道可以被设计或修饰来吸附或排斥某种气体,并且可以克服分子筛孔道尺寸限制的缺点,分子筛的孔道半径在4 A?到20A?之间,金属有机框架的孔道可以超越分子筛孔道的范围,所以引起人们对金属有机骨架材料膜的合成和研究的兴趣。本论文从合成入手,以HKUST-1和MOF-5材料制备成的膜为研究对象,分别采用了双铜源生长法和官能团修饰的方法制备成致密连续的金属有机框架膜,并考察了不同合成条件对膜的形貌影响,同时对部分金属有机框架膜气体分离性能的测试。
Film is the key for the technology of membrane separation, the chemistry, the constitute, and the structure of material of membrane play an important part in separation characterity of membrane,also are important contents in the technology of membrane. Ideally, membrane should be large-scale ordered and defect-free, exhibiting high thermal, chemical, and mechanical stabilities, selectivity, and permeability. The membranes conclude two kinds depends on different membrane material: inorganic membrane and polymer membrane. The materials of inorganic membrane conclude metal, metallic oxide, glass, silicate and zeolite and so on. Compare with polymer membrane, inorganic membrane have many advantages: such as high thermal, chemical, and mechanical stabilities, not easy to plasticization, easy to control the size of the pore and the distributing of pore size. Then we can further control the selectivity and permeability of the membrane.
     For satisfy the demand of separation in industry, we must synthesis the large-scale ordered and defect-free inorganic membrane, Molecular sieve membrane is one of the developing inorganic membranes in recent years. Molecular sieve membrane with unique properties, such as uniform micropores, ion exchange, tunable-Si/Al, high temperature stability, solvent resistance, hydrophilicity-hydrophobicity, catalysis, and so on, which is an excellent membrane material to achieve separation and catalysis in molecule level, have been widely used in separation, membrane reaction, catalysis, sensor, micro-electron areas. But for satify the require of separation, we still need more research. This thesis focuses on the synthesis of MFI molecular sieve film with different methods and the investigation of the influence of the synthesis conditions on the morphologies of molecular sieve films. Also, we studied the separation properties of some other molecular sieve films. The permeation in membrane separation is most important, so we try our best to improve the permeation. Another inorganic material for synthesis membrane is Metal-organic-frames, MOFs with unique properties, such as uniform micropores; construct tailored frameworks with desired properties, inorganic zeolite membranes, have been shown to be efficient for gas separation, Nevertheless difficulties to functionalize the pores and thus control their flux properties have limited their universal application. The versatility of MOFs permits may allow these limitations to be overcome and provide new routes to synthesis tunable supports for gas separation.
     This thesis focuses on the synthesis of MOFs film with different methods and the investigation of the influence of the synthesis conditions on the morphologies ofMOFs films. Also, we studied the separation properties of some other MOFs films. The stainless-steel-net-imbeded MFI zeolite membrane has been successfully synthesized by hydrothermal method. A hierarchical growth mechanism for the membrane formation can be deduced according to the XRD and SEM results. Following the encouraging characterization results, gas separation studies were carried out on the high thermal stable and large-scale ordered MFI membrane. The calcined membrane was fixed in a gas separation setup, and used for separation studies with different gas mixtures such as CO2/H2, CO2/N2, and CO2/CH4. the permeation of CO2 (around 7×10-7 mol.m-2.s-1.pa-1) is much higher than those of other gases in the single systems, we calculate the idea separation factor according the formula a = JA/JB, the idear separation factor of CO2/H2、CO2/CH4、CO2/N2 are 3.9, 8.55, 13.4 respectively. According the Knudsen diffusion formula, are 0.21, 0.6 and 0.8, obviously this diffusion is not controlled by Knudsen diffusion. We also text the separation factor of CO2/N2 in the mixture systems, (68.7) Compared with the conventional zeolite membranes supported by other substrates, the stainless steel net imbedded zeolite silicalite-1 membrane has high thermal and mechanical stabilities, large-scale ordered, and exhibited high permeation flux and excellent permeation selectivity for CO2. Such high-efficient zeolite membrane could be used to separate, recycle, and reuse CO2 exhausted from coal-fired power plants, chemical factories, and natural gas-sourced amine plants.
     A very thin, high quality, defect-free, ordered zeolite MFI film supported on a coarse glass frit has been synthesized. We chose to use coarse glass frits as the support. Funnels containing coarse glass frits with various specifications are inexpensive and are commercially available. The main advantage of using a glass frit support for a zeolite membrane is that the thermal expansion coefficients between the two are very similar as both contain SiO2. Other benefits include having a high capacity and being both acid- and alkali-resistant. The pore size of the support used here is significantly larger that that used in previously reported work. Therefore it is reasonable to expect that the frit supported zeolite membranes could resist cracking, temperature cycling and possess high mechanical stability and high performance for the desalination of seawater. The separation properties of seawater by coarse glass frit supported zeolite membranes are also reported. For improveing the flux, Details of a new method called“water-filling”used in preparing high quality zeolite membranes is given herein. The result of desalination is the salt concentration has been significantly reduced with a high flux (20 times greater than previous reports). From the Na+ concentration, it can be seen that the concentration of Na+ reduces from 3.5% to 0.0346% after filtration by zeolite MFI membrane. It was observed that the concentration of a wide variety of ions including Na+, Mg2+, K+, Ca2+ and Fe3+ can be significantly reduced with a high flux (2.09 kg/m2h). The ion concentration in the permeate solution is close to that of distilled water in the proceed of desalination. This membrane was observed to have several advantages when compared to other techniques used for water desalination: 1) the coarse glass frit support is mainly made up of SiO2, so it is not only durable and solid, but also the membrane does not crack when it is calcined to remove the organic template; 2) the membrane exhibits a high permeation flux and excellent permeation selectivity for water; 3) the setup is simple and cheap. We propose that such a multi-step coarse glass frit setup can be effective for large-scale seawater desalination. Futher more, the separation experiment betweem ethanol and water still be carried out. It is also proved the membrane has high quality.
     The copper net supported Cu3 (BTC) 2 membrane has been successfully synthesized by means of a“twin copper source”technique. By oxidizing the copper net before the hydrothermal synthesis, homogeneous nucleation sites are formed for the continuous film growth. Both the ion of Cu2+ on the copper net and in reaction solution provide metal source for crystal growth. Following the successful construction of the MOF based membrane, gas separation studies were investigated. Separation studies on gaseous mixtures (H2/CO2, H2/CH4 and H2/N2) using the membrane revealed that the membrane possesses high permeability and selectivity for H2 over CO2, N2 and CH4,The permeation flux of H2 is around 1×10-1 mol.m-2.s-1, the separation factor of H2/ CO2、H2/CH4、H2/N2 are 6.8,6 and 7 respectively. Compared with the conventional zeolite membranes, the copper net supported Cu3 (BTC) 2 membrane exhibits a higher permeation flux and excellent permeation selectivity for H2. Such characteristics of the copper net supported Cu3(BTC)2 membrane offer great potential toward applications such as separating, recycling, and reusing H2 exhausted from steam reforming of natural gas. Continuous high quality copper-net-supported MOF-5 membranes have been synthesized by vapor diffusion of an organic amine. The membrane formation mechanism is discussed which is consistent with our experimental observations. The net surface is coated via the -HS groups by immersion in the reaction solution. Crystallization occurs when the SBUs of MOF-5 nuclei selectively bind to carboxylate-terminated SAMs. This initially results in a MOF coated net but with time the net channels reduce in size as the crystals grow. Separation studies on gaseous mixtures (H2/CO2, H2/CH4 and H2/N2) using the membrane revealed that the membrane possesses high permeability and selectivity for H2 over CO2, N2 and CH4.
     The fifth serial of lanthanide metal organic carboxylate frameworks with excellent thermal stability, Ln(BTC)(H2O) (DMF) [Ln = Sm (19), Eu (20), Tb (21), Dy (22)] have been synthesizd under mild conditions. Compound 20A shows a high BET surface area, 665 m2/g, a narrow pore size distribution and could be anticipated as gas storage materials to take up hydrogen and carbon dioxide. The metal centers of compound 20A is available Lewis acid metal sites for they are coordinative unsaturation. Influences of composition of the staring reaction solution, stirring time and different solvent on the morphology of crystals were investigated and discussed. We can control the size of crystal though change the ratio of two solvents.
引文
[1] T. Sun, J. Y. Ying, Nature 1997, 389, 704-706.
    [2] W. H. Baur, Nature Materials 2003, 2, 17-18.
    [3] G. Wirnsberger, P. Yang, B. J. Scott, B. F. Chmelka, G. D. Stucky, Spectro-chim. Acta A 2001, 57, 2049.
    [4] M. E. Davis, Nature, 2002, 417, 813.
    [5] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.
    [6] F. Schuth, W. Schmidt, Adv. Mater, 2002, 14, 629-638.
    [7] J. Ying, C. Mehnert, M. Wong, Angew. Chem. Int. Ed. 1999, 38, 56.
    [8] T. Maschmeyer, F. Rey, G. Sankar, J. Thomas. Nature 1995, 378, 159.
    [9] R. Matsuda, R. Kitaura, S. Kitagawa, Y. Kubota, R. V. Belosludov, T. C. Kobayashi, H. Sakamoto, T. Chiba, M. Takata, Y. Kawazoe, Y. Mita Nature 2005, 436, 238-241.
    [10] J. S. Seo, D. Whang, H. Lee, S. I. Jun, J. Oh, Y. Jin, K. Kim, Nature 2000, 404, 982.
    [11]张雄福,王金渠沸石分子筛膜的合成与应用研究进展.石油化工,1999, 28, 266-270
    [12]孟广耀,董强,刘杏芹等.无机多孔分离膜的若干新进展.膜科学与技术,2003, 23, 261-268.
    [13] Noble R D, Falconer J L, Sol-Gel preparation of supported metal catalysts, Catal Today, 1995, 25, 209-21
    [14]张文龙一严进,蒋柏泉等.管状多孔陶瓷膜载体的研制.南昌大学学报(工科版).1998, 20, 64-68.
    [15]张延风,卢冠忠,许中强等.分子筛膜的性能和制备研究进展.化学反应工程与工艺.2000,16, 60-66
    [16]黄仲涛,曾昭槐,钟邦克等.无机膜技术及其应用.北京:中国石化出版社,l999.
    [17] HsiehH P. Inorganic membranes.AIChE Sym. Ser..New York l988,84, 1
    [18]徐南平,邢卫红,赵宜江.无机膜技术及其应用.北京北学工业出版社,2003.
    [19]张雄福,王金渠,刘长厚.ZSM-5型沸石膜的合成及应用于乙苯脱氢反应研究进展.膜科学与技术2000,21, 55-61.
    [20] AfonsoM D, Borquez R.Review of the treatment of seafood processing wasterwater and recovery proteins therein by membrane separation processes-prospects of ultrafitraction of wasterwaters from the fishmeal industry. Desalination. 2002,142, 29-45
    [21]任建新,膜分离技术及其应用北京:化学工业出版社, 2003.
    [22] Ismai1AF, DavidLIB.A review on the latest development of carbon membranes for gas separation. J.Memb.Sci.2001, 193, 1-18
    [23]徐南平,刑卫红,王沛.无机膜在工业废水处理中的应用与展望.膜科学与技术.2000,20, 23-28,
    [24] E.E.McLeary, J.C.Jansen and F. Kapleijn.Zeolite based films,membranes and membrane reactors:Progress and Prospects.Microporous andMesoporous Material. 2006, 90, 198-220
    [25] Samuel Heng King Lun Yeung, Malik Djafer,ea al. A novel membrane reactor for ozone water treatment.Journal of membrane Science.2007, 289, 67-75.
    [26] J.Coronas and J.Santamaria. the use of zeolite films in small-scale and characterization of novel composite membranes for medium-temperature fuel cells. Desalination. 2006,193, 387-397
    [27] M.I. Ahmad, S.M.J. Zaidi and S.U.Rahman.Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells. Desalination. 2006, 193, 387-397
    [28] S. T., B. M. Lok, C. A. Messina, et al., J. Am. Chem. Soc., 1982, 104,1146.
    [29] E. M. Flanigen, B. M. Lok, R. Patton, et al., New Developments in Zeolite Science and Technology Amsterdam: Elsevier, 1986. 103.
    [30] M. E. Davis, C. Saldarriaga, C. Montes, et al., Nature, 1988, 331, 698.
    [31] M. Estermann, L. B. Mecusker, Ch. Baerlocher, et al., Nature, 1991, 352, 320.
    [32] S. Q. Huo, R. Xu, S. Li, et al., Proc. of 9th Int. Zeolite Conf.,1992, 279.
    [33] C. T. Kresge, M. E. Leonowicz, W. J. Roth, et al., Nature, 1992, 359, 710.
    [34] M. E. Davis, Acc. Chem. Res., 1993, 26, 111.
    [35] (a) T. Sano, Y. Kiyozumi, F. Mizukami, H. Takaya, T. Mouri, M. Watanabe, Zeolites, 1992, 12, 131. (b) T. Sano, Y. Kiyozumi, M. Kawamura, F. Mizukami, H. Takaya, T. Mouri, W. Inaoka, Y. Toida, M. Watanabe, K. Toyoda, Zeolites, 1991, 11, 842.
    [36] T. Sano, F. Mizukami, H. Takaya, T. Mouri, M. Watanabe, Bull. Chem. Soc. Jpn., 1992, 65, 146.
    [37] M. W. Anderson, K. S. Pachis, J. Shi, S. W. Carr, J. Mater. Chem., 1992, 2, 255.
    [38] J. G. Tsikoyiannis, W. O. Haag, Zeolites, 1992, 12, 126.
    [39] G. J. Myatt, P. M. Budd, C. Price, S. W. Carr, J. Mater. Chem., 1992, 2, 1103.
    [40] T. Sano, Y. Kiyozumi, K. Maeda, M. Toba, S. Niwa, F. Mizukami, J. Mater. Chem., 1992, 2, 141.
    [41] T. Sano, Y. Kiyozumi, K. Maeda, M. Toba, S. Niwa, F. Mizukami, Proc. Int. Zeolite Conf., 9th, 1993, Meeting Date 1992; Von Ballmoos, R., Higgins, J. B., Treacy, M. M. M. J., Eds.; Butterworth-Heinemann: Boston, MA; Vol. 1, pp 239.
    [42] Y. Kiyozumi, I. Mukoyoshi, T. Sano, F. Mizukami, Nippon Kagaku Kaishi, 1992, 877-80; CA 117, 153865.
    [43] S. P. J. Smith, V. M. Linkov, R. D. Sanderson, L. F. Petrik, C. T. O’Connor, K. Keiser, Micropor. Mater., 1995, 4, 385.
    [44] S. Feng, T. Bein, Stud. Surf. Sci. Catal. , 1997, 105, 2147.
    [45] S. P. Davis, E. V. R. Borgstedt, S. L. Suib, Chem. Mater., 1990, 2, 712.
    [46] K. E. Creasy, Y. P. Deng, J. Park, E. V. R. Borgstedt, S. P. Davis, S. L. Suib, B. R. Shaw, Mater. Res. Soc. Symp. Proc., 1991, 233, 157.
    [47] Z. Shan, E. Min, H. Yan, Stud. Surf. Sci. Catal. , 1997, 105, 2155.
    [48] P. Kolsch, D. Venzke, M. Noack, E. Lieske, P. Toussaint, J. Caro, Stud. Surf. Sci. Catal., 1994, 84, 1075.
    [49] M. D. Jia, K. V. Peinemann, R. D. Behling, Proc. 5th North American Membr. Soc. '92, Lexington, KE 1992, p. E7.
    [50] E. R. Geus, M. J. Den Exter, H. Van Bekkum, J. Chem. Soc., FaradayTrans. 1992, 88, 3101.
    [51] E. R. Geus, W. J. W. Bakker, P. J. T. Verheijen, M. J. Den Exter, J. A. Moulijn, H. Van Bekkum, Proc. 9th Int. Zeolite Conf., Montreal, 1992, 547.
    [52] E. R. Geus, A. Mulder, D. J. Vishjager, J. Schoonman, H. Van Bekkum, Int. Conf. on Inorg. Membr. Montpellier, France 1991, 57.
    [53] D. Uzio, J. Peureux, A. Giroir-Fendler, J. A. Dalmon, J. D. F. Ramsay, Stud. Surf. Sci. Catal., 1994, 87, 411.
    [54] S. Mintova, J. Hedlund, V. Valtchev, B. Schoeman, J. Seterte, Chem. Commun, 1997, 15.
    [55] S. Mintova, J. Hedlund, V. Valtchev, B. Schoeman, J. Seterte, J. Mater. Chem., 1998, 10, 2217.
    [56] L. C. Boundreau, J. A. Kuck, M. Tsapatsis, Membr. Sci., 1999, 152, 41.
    [57] G. Xomenritakis, S. Nair, M. Tsapatisis, Micropro. Mesopro. Mater., 2000, 38,61.
    [58] J. Hedlund, S. Mintova, J. Sterte, Micropro. Mesopro. Mater., 1999, 128, 185.
    [59] T. Masdua, T. Asanuma et al., Chem. Eng. Sci., 2003, 58, 649.
    [60] J. Caro, M. Nanck, P. Kolsch, R. Schafer, Micropro. Mesopro. Mater., 2000, 38, 3.
    [61] Y. Hasegawa, K. Sotowa, et al., Chem. Eng. Sci., 2003, 58, 2797.
    [62] W. Xu, J. Dong, J. Li, F. Wu, J. Chem. Soc. Chem. Commun., 1990, 755.
    [63] K. J. Balkus Jr., A. S. Scott, Chem. Mater., 1999, 11,189
    [64] L. Washmon, K. J. Balkus Jr., Micropro. Mesopro. Mater., 2000, 38, 107.
    [65] T. J. Munoz, K. J. Balkus, J. Am. Chem. Soc.,1999, 121, 139.
    [66] A. S. Scott, M. E. Gimon-Kinsel et al., Micropro. Mesopro. Mater., 2000, 34, 31.
    [67] K. J. Balkus, G. Gbery, Z. Deng, Micropro. Mesopro. Mater., 2002, 52, 141.
    [68] K. J. Balkus, L. J. Ball, B. E. Gnade, J. M. Anthony, Chem. Mater., 1997, 9, 380.
    [69] D. Casanave, A. Ciroir-Fendler, J. Sanchez, et al., Catal. Today, 1995, 25, 309.
    [70] T. Ikegami, H. Yanagishita, D. Kitamoto, et al., Biotechnol. Tech., 1997, 11, 921.
    [71] J. C. Poshusta, R. D. Noble, J. L. Falconer, J. Membr. Sci., 1999, 160, 115.
    [72] G. Q. Guan, K. Kusakabe, S. Morooka, Micropro. Mesopro. Mater., 2001, 50, 109.
    [73] Y. Cui, H. Kita, K. Okamoto, Chem. Commun., 2003, 17, 2154.
    [74] T. Tomita, K. Nakayama, H. Sakai, Micropro. Mesopro. Mater., 2004, 68, 71.
    [75] M. P. Bernal, J. Coronas, M. Menendez, et al., Aiche J., 2004, 50, 127.
    [76] A. I. Skoulidas, T. C. Bowen, C. M. Doelling, et al., J. Membr. Sci., 2003, 227, 123.
    [77] Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Science, 2003, 300, 456.
    [78] I. Sasaki, H. Tsuchiya, M. Nishioka, et al., Sensors And Actuators B-Chemcal, 2002, 86, 26.
    [79] C. Plog, W. Maunz , P. Kurzweil, et a l., Sensor Actuat B, 1995, 25, 653.
    [80] R. M oos, R. Mtiller, C. Plog, et al., Sensor Actuat B, 2002, 83, 181.
    [81] M. Vilaseca, J. Coronas, A. Cirem, et al., Catal. Today, 2003, 82, 179.
    [82] N. F. Szabo, H. Du, S. A. Akbar, et al., Sensor Actuat B, 2002, 82, 142.
    [83] F. Mizukami, Stud. Sci. Catal., 1999, 125, 1.
    [84] K. T. Jung, Y. H. Chu, S. Haam, et al., J. Non-Crystalline Solids, 2002, 298, 193.
    [85] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319-330.
    [86] J. L. C. Rowsell, O. M. Yaghi, Micro. Meso. Mater. 2004, 73, 3-14.
    [87] A. F. Wells, Three Dimensional Nets and Polyhedra, New York, 1977.
    [88] A. F. Wells, Structrual Inorganic Chemistry, 5th ed., Oxford Univ. Press, 1983.
    [89] S. R. Batten. R. Robson, Angew. Chem. Int. Ed., 1998, 37, 1460-1494.
    [90]M. J. Plater, M. R. St. J. Foreman, T. Gelbrich, M. B. Hursthouse, J. Chem.Soc., Dalton Trans., 2000, 1995-2000.
    [91] J. L. C. Rowsell, O. M. Yaghi, Micro. Meso. Mater. 2004, 73, 3-14.
    [92] S. Hu, J. C. Chen, M. L. Tong, B. Wang, Y. X. Yan, S. R. Batten, Angew. Chem. Int. Ed., 2005, 44, 5471.
    [93] O. Ohmori, M. Kawano, M. Fujita, Angew. Chem. Int. Ed., 2005, 44, 1962.
    [94] S. S.-Y. Chui, S. M.-F. Lo, J. P. H. Charmant, A. G. Orpen, I. D. Williams, Science, 1999, 283, 1148-1150.
    [95]H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 1999, 402, 276-279.
    [96] G. Ferey, C. Serre, C. Mellot-Draznieks, F. Millange, S. Surble, J. Dutour, I. Margiolaki, Angew. Chem. Int. Ed. 2004, 43, 2-7.
    [1] J. D. Way, D. L. Robert, Sep. Sci. Tecb., 1992, 27, 29.
    [2] J. R. Ublborn, K. Keizer, A. J. Burggraaf, J. Membr. Sci., 1992, 66, 259
    [3] K. Keizer, A. J. Burggraaf, Z. Vroon, J. Membr. Sci., 1998, 147, 159.
    [4] A. B. Sbelekbin, A.G. Dixon, Y. Ma, AICHE J., 1995, 41, 58.
    [5] A. J. Burggraaf, J. Membr. Sci., 1999, 155, 45.
    [6] W. J. W. Bakker, F. Kapteijn, J. Poppe, et al., J. Membr. Sci., 1996, 117, 57.
    [7] C. Bai, M. Jia, J. L. Falconer, J. Membr. Sci., 1995, 105, 1379.
    [8] H. P. Hsieh, Catal. Rev. Sci. Eng., 1991, 33, 1.
    [9] M .Matsukataa,E. Kikuchi, Bull. Chem. Soc. Jpn., 1997, 20, 234.
    [10] C .D. Baertsch, H .H. Funke, J. L. Falconer, R. D. Noble, J. Phys. Chem.,1996, 100, 7676.
    [11] G. Xomeritakis, M. Tsapatsis, Chem. Mater.,1999, 11, 875.
    [12] Y. Hasegawa, K. Watanabe, K. Kusakabe, et al., Sep. Pur. Technol., 2001, 22, 319.
    [13] K. Okamoto, H. Kita, K. Horii, K. Tanaka, M. Kondo, Ind. Eng. Chem. Res. 2001, 40, 163.
    [14] M. Noack, P. Kolsch, J. Caro, M. Schneider, P. Toussaint, I. Sieber, Micropor. Mesopor. Mater. 2000, 35, 253.
    [15] J.J. Jafar, P.M. Budd, Micropor. Mater. 1997, 12, 305.
    [16] S.G. Li, V.A. Tuan, R.D. Noble, J.L. Falconer, Ind. Eng. Chem. Res. 2001, 40, 4577.
    [17] Y.F. Zhang, Z.Q. Xu, Q.L. Chen, J. Membr. Sci. 2002, 210, 361.
    [18] T. Gallego-Lizon, E. Edwards, G. Lobiundo, L.F. dos Santos, J. Membr. Sci. 2002. 197, 309.
    [19] A. Urtiaga, E.D. Gorri, C. Casado, I. Ortiz, Sep. Purif. Tech. 2003, 32, 207.
    [20] G. Li, E. Kikuchi, M. Matsukata, Micropor.Mesopor. Mater. 2003, 62, 211.
    [21] T.C. Bowen, H. Kalipcilar, J.L. Falconer, R.D. Noble, J. Membr. Sci. 2003, 215, 235.
    [22] X. Lin, H. Kita, K. Okamoto, Chem. Comm. 2000, 19, 1889.
    [23] T.C. Bowen, S. Li, R.D. Noble, J.L. Falconer, J. Membr. Sci. 2003, 225, 165.
    [24] S.G. Li, V.A. Tuan, R.D. Noble, J.L. Falconer, AIChE J.2002, 48, 269.
    [25] T. Ikegami, H. Yanagishita, D. Kitamoto, H. Negishi, K. Haraya, T. Sano, Desalination 2002, 149, 49.
    [26] H. Kita, Post Conference of ICIM5, Gifu, Japan, 1998.
    [27] N. Nishiyama, K. Ueyama, M. Matsukata, Micropor. Mater. 1996, 7, 299.
    [28] H. Kita, K. Fuchida, T. Horita, H. Asamura, K. Okamoto, Sep. Purif. Tech. 2001, 25, 261.
    [29] C.L. Flanders, V.A. Tuan, R.D. Noble, J.L. Falconer, J. Membr. Sci. 2000, 176, 43.
    [30] W. Yuan, Y.S. Lin, W. Yang, J. Am. Chem. Soc. 2004, 126, 4776.
    [31] 239. M. Jia, K. V. Peinemann, R. D. Behling, J. Membr. Sci. 1991, 57, 289.
    [32] S. A. Netke, S. B. Sawant, J. B. Joshi, V. G. Pangarkar, J. Membr. Sci., 1995, 107, 23.
    [33] C. Dotremont, B. Brabants, K. Geeroms, J. Mewis, C. Vancasteele, J. Membr. Sci. 1995, 104, 109.
    [34] I. F. J. Vankelecom, E. Merckx, M. Luts, J. B. Uytterhoeven, J. Phys. Chem. 1995, 99, 13187.
    [35] E. R. Geus, M. J. Exter, H. Bekkum, J. Chem. Soc., Faraday Trans., 1992, 88, 3101.
    [36] T. Sano, M. Hasegawa, Y. Kawakami, Y. Kiyozumi, Y. Yanagishita, D. Kitamoto, F. Mizukami, Zeolites and Related Microporous Materials: State of the Art, J. Weitkamp, H. G. Karge, H. Pfeifer, W. Holderich, eds., Elsevier Science, Amsterdam, 1994, 1175.
    [37] T. Sano, M. Hasegawa, Y. Kawakami, H. Yanagishita, J. Membr. Sci., 1995, 107, 193.
    [38] J. C. Jansen, D. Kashchiev, A. Erdem-Senatalar, Stud. Surf. Sci. Catal, 1994, 85, 215.
    [39] G. Zhu, S. Qiu, F. Gao, D. Li, Y. Li, R. Wang, B. Gao, B. Li, Y. Guo, R. Xu, Z. Liu, O.Treasaki, J. Mater. Chem., 2001, 11, 1687.
    [40] Z. B. Wamg, Y. Yan, Chem. Mater. 2001, 13, 1101
    [41] A. J. Bons, P. D. Bons, Microporous Mesoporous Mater. 2003, 62, 9.
    [42] A. Gouzinis, M. Tsapatsis, Chem. Mater. 1998, 10, 2497.
    [43] R. Xu, G. Zhu , X. Yin, X. Wan, S. Qiu , Microporous Mesoporous Mater. 2006, 90, 39.
    [44] J. Sun, G. Zhu, X. Yin, Y. Chen, Y. Cui , S. Qiu, Chem. Commun. 2005, 1070.
    [45] (a) H-K. Jeong, J. Krohn, K. Sujaoti, M. Tsapatsis, J. Am. Chem. Soc. 2002, 124, 12966; (b) T. Okubo,T. Wakihara, J. Plévert, S.Nair, M. Tsapatsis, Y. Ogawa, H. Komiyama, M. Yoshimura, M. E. Davis, Angewandte Chem. 2001, 113, 1103; Angew. Chem. Int. Ed. 2001, 40, 1069.
    [46] G. Bonilla, D. G. Vlachos, M.Tsapatsis, Microporous Mesoporous Mater.2001, 42,191.
    [47] R. F. Service, Science. 2004, 305, 962.
    [48] H. Lin, E. V. Wagner, R. Raharjo, B. D. Freeman, I. Roman, Adv. Mater. 2006, 18, 39.
    [49] W. Xu, P. Blazkiewicz, S. Fleming, Adv. Mater. 2001, 13, 1014.
    [50] L. Liu, A. Chakma, X. Feng, Ind. Eng. Chem. Res. 2005, 44, 6874.
    [51] A. S. Kovvali, H. Chen, K. K. Sirkar, J. Am. Chem. Soc. 2000, 122, 7594.
    [52] J. Caro, M. Noack, P. K?lsch, R. Sch?fer, Microporous Mesoporous Mater. 2000, 38, 3.
    [53] A. Tavolaro, E. Drioli, Adv. Mater. 1999, 11, 975.
    [54] T. C. Bowen1, R. D. Noble, J. L. Falconer, J. Membr. Sci. 2004, 245, 1.
    [55] M. C. Lovallo, A. Gouzinis, M. Tsapatsis, AIChE J. 1998, 44, 1903.
    [56] T. Tomita, K. Nakayama, H. Sakai, Microporous Mesoporous Mater. 2004, 68, 71. and reference there in.
    [57] Y. Cui, H. Kita, K. Okamoto, J. Mater. Chem., 2004, 14, 924.
    [58] (a) X. Gu, J. Dong, T. M. Nenoff, Ind. Eng. Chem. Res. 2005, 44, 937; (b) K. Kusakabe, T. Kuroda, K. Uchino, Y. Hasegawa, S. Morooka, AIChE J. 1999, 45, 1220.
    [59] (a) S. Li, J. G. Martinek, J. L. Falconer, R. D. Noble, Ind. Eng. Chem. Res. 2005, 44, 3220; (b) J. C. Poshusta, V. A. Tuan, J. L. Falconer, R. D. Noble, Ind. Eng. Chem. Res. 1998, 37, 3924.
    [60] F. Z. Zhang, M. Fuji, M. Takahashi, Chem. Mater. 2005, 17, 1167.
    [61] W. Dong, Y. Long, Chem. Commun. 2000, 1067.
    [62] J. Dong, Y. S. Lin, M. Z. C. Hu, R. A. Peascoe , E. A. Payzant, Microporous Mesoporous Mater. 2000, 34, 241.
    [1]X.S. Feng, R.Y.M. Huang, Ind. Eng. Chem. Res.1997, 36, 1048
    [2]Jonquieres A, Clement R, Lochon P, et al, J. Membr.Sci.,2002, 206, 87
    [3]Semenova S I ,O hyaH. Soontarapa K, Desalination,1997, 110, 251
    [4]Volkov V V, Separation of liquids by pervaporation through polymeric membranes, Russ.Chem.Bull.1994, 43, 187
    [5]FlemingH L ,Membrane pervaporation-separation of organic aqueous mixtures, Sep.Sci.Tech.,1990, 25, 1239
    [6]Zhang S, Drioli E, Review:pervaporation membranes,Sep.Sci.Tech.,1995,30,1
    [7]Wynn N, Pervaporation comes of age, Chem.Eng.Prog.,2001, 97, 66
    [8]van Bekkum H, GeusE R, KouwenhovenH W, Supported zeolite systems and applications, Stud. Surf. Sci. Catal., 1994, 85, 509
    [9] Breck D W, Zeolite Molecular Sieves: Structure, Chemistry, and Use, R.E. Krieger, Malabar, Fla, 1984, 593, 634-636.
    [10]Eder F, Stockenhuber M, Lercher J A, Sorption of light alkanes onH-ZSM5 and H-Mordenite, Stud. Surf. Sci. Catal, 1995, 97, 495
    [11] Bowen T C, Wyss J C, Noble R D, et al., Measurements of diffusion through a zeolite membrane by isotopic-transient pervaporation, Micropor. Mesopor. Mater. 2004, 71, 199
    [12] Li J, Talu O, Adsorption equilibrium of benzene-p-xylene vapor mixture on silicalite,Chem. Eng. Sci.1994, 49, 189
    [13] Cavalcante C L, Ruthven D M, Adsorption of branched and cyclic paraffins in silicalite.1 .Equilibrium, Ind.Eng.Chem.Res.,1995, 34, 177
    [14] Sun M S, Shah D B, Xu H H, et al, Adsorption equilibria of Cl to C4 alkanes, CO2, and SF6 on silicalite, J. Phys.Chem., 1998, 102, 1466
    [15] Sun M, Talu O, Shah D B, Adsorption equilibria of C5-C10 normal alkanes in Silicalite crystals, J. Phys.Chem., 1996, 100, 17276
    [16] Ma Y H, Tang T D, Sand L B, et al, Adsorption of hydrocarbons in(Na, K)-ZSM5, -ZSM11 and "Al-free" NaZSM5 and NaZSMI1, New Develop. Zeolite Sci. Tech.,1986, 531
    [17] Flanigen E M, Bennett J M, Grose R W, et al, Silicalite, a new hydrophobic crystalline silica molecular sieve,Nature,1978, 271, 512
    [18]GardnerT Q, Lee J B, Noble R D, et al., Adsorption and diffusion properties of Butanes in ZSM-5 zeolite membranes, Ind.Eng.Chem.Res., 2002, 41, 4094
    [19]Nomura M, Yamaguchi T, Nakao S, Transport phenomena through intercrystalline and intracrystalline pathways of silicalite zeolite membranes, J. Membr.Sci, 2001,187, 203
    [20] Krishna R, Diffusion of binary mixtures across zeolite membranes: entropy effects on permeations electivity, Int.Comm.Heat MassTransf, 28, 2001, 337
    [21] Shah D, Kissick K, Ghorpade A, et al, Pervaporation of alcohol-water and dimethylformamide-water mixtures using hydrophilic zeolite NaA membranes: mechanismsan de xperimentalre sults,J. Membr.Sc i.,2000, 179, 185
    [22] Kita H, Horii K, Ohtoshi Y, et al, Synthesisof a zeolite NaA membrane for pervaporation of water-organic liquid mixtures,J. Mater.Sci.Lett,1995, 14, 206
    [23]Nomura M, Yamaguchi T, Nakao S, Ethanol/water transport through silicalite membranes,J .Membr.Sci, 1998, 144, 161
    [24] Lin Y, Kita H, Okamoto K, A novel method for the synthesis of high performance silicalite membranes,Chem.Comm.,2000,19, 1889
    [25]Sano T ,Hasegawa M, KawakamiY, et al., Potentials of silicalite membranes for the separation of alcohol-water mixtures, Stud. Surf. Sci. Cata1.,1994, 84, 1175
    [26] Liu Q, Noble R D, Falconer J L,et al., Organics/water separation by pervaporationw itha zeolite membrane, J. Membr.Sci.,1996,117, 163
    [27]Giaya A,Thompson R W, Denkewicz R, Liquid and vapor phase adsorption ofChlorinated volatile organic compounds on hydrophobic molecularsieves, Micropor. Mesopor. Mater., 2000, 40, 205
    [28]Fajula F,Plee D, Application of molecular sieves in view of cleaner technology. Gas and liquid phase separations, Stud.Surf.Sci.Catal.,1994, 85 , 633
    [29] Szostak R, Molecular Sieves: Principles of Synthesis and Identification., Van Nostrand Reinhold, New York, 1989
    [30] Camblor M A, Corma A, Iborra S,et al, Beta zeolite as a catalyst for the Preparation of alkyl glucoside surfactants: the role of crystal size andhydrophobicity, J. Catal., 1997, 172, 76
    [31] Breck D W, Eversole W G, Milton R M, et al, Crystalline zeolites. I. The Properties of a new synthetic zeolite,T ypeA ,J. A m. Chem.Soc, 1956, 78, 5963
    [32] Li S G, Tuan V A, Falconer J L,et al., Separation of 1,3-propanediol from aqueous solutions using pervaporation through an X-type zeolite membrane,Ind. Eng. Chem. Res., 2001, 40, 1952
    [33] Kita H, Fuchida K, Horita T, Preparation of Faujasite membranes and their permeation properties,Sep.Purif.Tech.,2001, 25, 261
    [34]Li S G,Tuan V A,Noble R D,et al ., Pervaporation ofwater/THF mixtures using Zeolite membranes, Ind.Eng.Chem.Res.40, 2001, 4577
    [35] Kita H, Inoue T, Asamura H, et al., NaY zeolite membrane for the pervaporation Separation of methanol-methyl tert-butyl ether mixtures, Chem. Comm.,1997, 1, 45
    [36] Li S G, Tuan V A, Falconer J L, et al., Efects of zeolite membrane structure on the separation of 1,3-propanediol from glycerol and glucose by pervaporation, Chem. Mater., 2001, 13, 1865
    [37] Stelzer J, Paulus M, Hunger M,et al., Hydrophobic properties of all-silica beta zeolite, Micropor. Mesopor. Mater., 1998, 22, 1
    [38]Kosslick H, TuanV A, Fricke R, Synthesis and characterization of Ge-ZSM-5 zeolites, J. Phys. Chem.,1993, 97, 5678
    [39]Li S G ,TuanV A, Noble R D, et al.,A Ge-substituted ZSM-5 zeolite membrane for the separation of acetic acid from water,Ind.Eng.Chem.Res.,2001, 40, 6165
    [40]Li S, TuanV A, Falconer J L, et al .,Properties and separation performance of Ge-ZSM-5 membranes, Micropor. Mesopor. Mater., 2003, 58, 137
    [41] Dunne J A, Rao M, Sircar S, et al., Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites, Langmuir, 1996, 12, 5896
    [42] Pakseresht S, Kazemeini M, Akbamejad M M, Equilibrium isotherms for CO, CO2, CH4, and C2H4 on the 5A molecular sieve by a simple volumetric apparatus, Sep.Purif. Tech., 2002, 28, 53
    [43] Millot B, Methivier A, Jobic H, et al., Adsorption of branched alkanes in silicalite-1: a temperatureprogrammed-equilibration study, Langmuir.,1999, 15, 2534
    [44] Meininghaus C K W, Prins R, Sorption of volatile organic compounds on hydrophobic zeolites, Micropor.Mesopor.Mater.,2000, 349, 35-36.
    [45] Gardner T Q, Flores A I, Noble R D,et al., Transient measurements of adsorption and difusion in H-ZSM-5 membranes,AIChE J., 2002, 48, 1155
    [46] Qureshi N, Meagher M M, Hutkins R W, Recovery of butanol from model solutions and fermentation broth using silicalite/silicone membrane, J. Membr. Sci., 1999, 158, 115
    [47] Lin Y S, Ma Y H, Liquid difusion and adsorption of aqueous ethanol, propanols, and butanols in silicalite by HPLC,ACS Symp.Ser.,1988, 368, 452
    [48]Yamazaki S, Tsutsumi K, Adsorption characteristics of synthesized mordenit membranes, Adsorption,1997, 3, 165
    [49] Giaya A, Thompson R W, Micropor.Mesopor.Mater., 2002, 55, 265
    [50]CruzA J ,Pires J ,Carvalho A P, et al ., J. Chem. Eng. Data, 2004, 49, 725
    [51]Xomeritakis G, L ai Z P, Tsapatsis M, Ind. Eng. Chem. Res., 2001, 40, 544
    [52] Van Koningsveld H, Tuinstra F, van Bekkum H, J et al., Acta Cryst.,1989, 45, 423
    [53]Karsli H,Culfaz A, Yucel H, Zeolites, 1992, 12, 728
    [54]Guan G, Kusakabe K, Morooka S, Sep.Sci.Tech.,2001, 36, 2233
    [55] Breck D W, R.E.Krieger,Malabar, Fla.,1984, 593
    [56]Choudhary V R, Nayak V S, Mamman A S, Ind. Eng. Chem. Res., 1992, 31, 624
    [57]Bowen T C, Wyss J C, Noble R D, et al., Micropor. Mesopor. Mater., 2004, 71, 199
    [58] Kapteijn F, Moulijn J A, Krishna R, Chem.Eng. Sci., 2000, 55, 2923
    [59]BoulicautL ,BrandaniS, RuthvenD M , Micropor.Mesopor.Mater.,1998, 25, 81
    [60]FarhadpourF A ,B onoA , Chem. Eng. Proc, 1996, 35, 141
    [61] Hedlund J, Sterte J, Anthonis M, et al., Micropor.Mesopor. Mater., 2002, 52, 179
    [62] Jareman F, Hedlund J, Creaser D, et al, J .Membr.Sci., 2004, 236, 81-89
    [63] Okamoto K, Kita H, Horii K, et al.,Ind.Eng.Chem.R es.,2001, 40, 163
    [64]vande Graaf J M ,vander BijlE, Stol A ,et al., Ind.Eng.Chem.Res.,1998,37, 4071
    [65] Hydrol. Process. 2003, 17, 2997
    [66] D. R. Dykes, T. S. Bry, C. H. Kline, Environmental Science and Technology, 1967, 1, 781.
    [67] E. Gudeman J. Am. Chem. Soc. 1892, 14, 221.
    [68] Khalid Z. Al-Subaie, Desalination, 2007, 206, 29.
    [69] K.V. Reddy, N. Ghaffour, Desalination 2007, 205, 340.
    [70] W. Omar, J. Ulrich, Chem. Eng. Technol. 2006, 29, 974.
    [71] J. Romero, G. M. Rios, J. Sanchez AIChE Journal 2003, 49, 11.
    [72] Raissouni,I.; Marraha,M.; Azmani A. Desalination, 2007, 208, 62.
    [73] K. A. Duca, P.C. Jordan, J. Phys. Chem. B 1998, 102, 9127.
    [74] T. C. Bowen, L. M. Vane, Langmuir. 2006, 22, 3721.
    [75] D. J. O’Brien, L. H. Roth, A. J. McAloon, J. Membr. Sci. 2000, 166, 105.
    [76] Carton, A.; Gonzalez Benito, G.; Rey, J. A.; de la Fuente, M. Bioresour.Technol. 1998, 66, 75.
    [77] L. Liang, E. Ruckenstein, J. Membr. Sci. 1996, 114, 227.
    [78] X. Feng, R.Y.M. Huang, Ind. Eng. Chem. Res. 1997, 36, 1048.
    [79] Y.-C. Long, X. Chen, Z. Ping, S.-K. Fu, Y.-J. Sun, Stud. Surf. Sci. Catal. 1994, 84, 1083.
    [80] Z. Huang, H. Guan, W. Tan, X. Y. Qiao, S. Kulprathipanja, J. Membr. Sci, 2006, 276, 260.
    [1]Sudik, A. C.; Millward, A. R.; Ockwig, N. W.; Cote, A. P.; Kim, J.; Yaghi, O. M. J. Am. Chem. Soc. 2005, 127, 7110-7118
    [2]Bourrelly, S.; Liewellyn, P. L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. J. Am. Chem. Soc. 2005, 127, 13519-13521.
    [3](a)Kitagawa, S.; Kitaura, K.; Noro, S. Angew. Chem. Int. Ed. 1995, 34, 2127-2129. (b)Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982-986.
    [4](a)Subramanian, S.; Zaworotko, J. M. Angew. Chem. Int. Ed. 2007, 46, 6643-6645. (b)Dinc?, M.; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16976-16883.
    [5](a) Skoulidas, A. I. J. Am. Chem. Soc. 2004, 126, 1356-1357. (b) Yang, Q.; Xue, C.; Zhong C.; Chen, J. F. AIChE J. 2007, 53, 2832-2840
    [6](a) Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.; Hawthorne, M. F.; Mirkin, C. A.; Hupp, J. T. J. Am. Chem. Soc. 2007, 129, 12680-12681. (b) Bae, Y. S.; Farha, O. K.; Spokoyny, A. M.; Mirkin, C. A.; Hupp, J. T.; Snurr, R. Q. Chem. Commun., 2008, 4135-4137
    [7]Ma, S.; Zhou, H. C.; J. Am. Chem. Soc. 2006, 128, 11734-11735
    [8]McKinlay, A. C.; Xiao, B.; Wragg, D. S.; Wheatley, P. S.; Megson, I. L.; Morris, R. E. J. Am. Chem. Soc. 2008, 130, 10440-10444
    [9](a) Krungleviciute, V.; Lask, K.; Migone, A. D.; Lee, J. Y.; Li, AIChE J. 2008, 54, 918-923. (b) Keskin, S.; Liu, J.; Johnson, J. K.; Sholl D. S. Langmuir 2008, 24, 8254-8261
    [10](a) Caro, J.; Noack, M.; KJlsch, P.; SchKfer, R. Micro. Meso. Mater. 2000, 38, 3-24. (b) Wang, Z.; Yan, Y. Chem. Mater. 2001, 13, 1101. (c) Lai, Z.; Tsapatsis, M.; Nicolich, J. P. AdV. Funct. Mater. 2004, 14, 716
    [11](a) Biemmi, E.; Scherb, C.; Bein, T. J. Am. Chem. Soc. 2007, 129, 8054-8055. (b) Hermes, S.; Schroder, F.; Chelmowski, R.; Woll, C.; Fischer, R. A. J. Am. Chem.Soc. 2005, 127, 13744-13745
    [12](a) Gascon, J.; Aguado, S.; Kapteijn, F. Micro. Meso. Mater. 2008, 113, 132-138. (b) Chui, S. S. Y.; Lo, S. M. F.; Charmant, J. P. H.; Orpen, A. G.; Williams, I. D. Science 1999, 283, 1148-1150
    [13](a)Guo, H.; Zhu, G.; Li, H.; Zou, X.; Yin, X.; Yang, W.; Qiu, S.; Xu, R. Angew. Chem. Int. Ed. 2006, 45, 7053-7056. (b)Yin, X.; Zhu, G.; Yang, W.; Li, Y.; Zhu, G.; Xu, R.; Sun, J.; Qiu, S.; Xu, R. Adv. Mater.2005, 17, 2006. (c)Yin, X.; Zhu, G.; Wang, Z.; Yue, N.; Qiu, S. Micro. Meso. Mater. 2007, 105, 156-162. (d)Vos, R. M.; Verweij, H. Science 1998, 279, 1710-1711. (e)Poshusta, J. C.; Tuan, V. A.; Falconer, J. L.; Noble, R. D. Ind. Eng. Chem. Res. 1998, 37, 3924-3929. (f) Nam, S. E.; Lee, K. H. Ind. Eng. Chem. Res. 2005, 44, 100-105. (g)Guzmán-Gutiérrez, M. T.; Zolotukhin, M.G.; Fritsch, D.; Ruiz-Trevino, F.A.; Cedillo, G.; Fregoso-Israel E.; Ortiz-Estrada, C.; Chavez, J.; Kudla, C. Journal of Membrane Science, 2008, 323, 379–385.(h) Xu, X.; Yang, W.; Liu, J.; Lin, L. Meso. Mater. 2001, 43, 299-311.
    [14]Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705.
    [15]Ockwig, N.W.; Delgado-Friedrichs, O.; O'Keeffe, M.; Yaghi, O. M. Acc.Chem. Res. 2005, 38, 176.
    [16]Férey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surblé, S.; Margiolaki, I. Science 2005, 309, 2040.
    [17]Dinc?, M’; Dailly, A.; Liu, Y.; Brown, C. M.; Neumann, D. A.; Long, J. R. J. Am. Chem. Soc. 2006, 128, 16976.
    [18]Wu, C.; Lin, W. Angew. Chem. Int. Ed. 2007, 46, 1075.
    [19]Fang, Q.; Zhu, G.; Xue, M.; Sun, J.; Wei, Y.; Qiu, S.; Xu, R. Angew. Chem. Int. Ed. 2005, 44, 3845.
    [20]Shi, X.; Zhu, G.; Qiu, S.; Huang, K.; Yu, J.; Xu, R. Angew. Chem. Int. Ed. 2004, 43, 6482.
    [21]Haneda, T.; Kawano, M.; Kojima, T.; Fujita, M. Angew. Chem. Int. Ed. 2007, 46, 6643.
    [22] S. Hermes, F. Schr?der, R. Chelmowski, C. W?ll, R. A. Fischer, J. Am. Chem. Soc. 2005, 127, 13744.
    [23] E. Biemmi, C. Scherb, T. Bein, J. Am. Chem. Soc. 2007, 129, 80544.
    [24] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, G. M. Whitesides, Chem. Rev. 2005, 105, 1103.
    [25] R. Arnold, W. Azzam, A. Terfort, C. W?ll, Langmuir 2002, 18, 3980.
    [26] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. Tao, A. N. Parikh, R. G. Nuzzo, J. Am. Chem. Soc. 1991, 113, 7152.
    [27] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402, 276.
    [28] F. Z. Zhang, M. Fuji, M. Takahashi, Chem. Mater. 2005, 17, 1167.
    [29] W. Dong, Y. Long, Chem. Commun. 2000, 1067.
    [30] J. Dong, Y. S. Lin, M. Z. C. Hu, R. A. Peascoe , E. A. Payzant, Microporous Mesoporous Mater. 2000, 34, 241.
    [31] W. Zhu, P. Hrabanek, L. Gora, F. Kapteijn, J. A. Moulijn, Ind. Eng. Chem. Res. 2006, 45, 767.
    [1] Zhongyue Li, Guangshan Zhu, Xiaodan Guo, Xiaojun Zhao, Zhao Jin, Shilun Qiu. Inorganic. Chemistry. 2007, 46, 5174-5178
    [2] Xiaodan Guo, Guangshan Zhu, Zhongyue Li, Yan Chen, Xiaotian Li, Shilun Qiu. Inorganic. Chemistry. 2006, 45, 4065-4070
    [3] Xiaodan Guo, Guangshan Zhu, Fuxing Sun, Zhongyue Li, Xiaojun Zhao, Xiaotian Li, Hanchang Wang, Shilun Qiu. Inorganic. Chemistry. 2006, 45, 2581-2587
    [4] Xiaodan Guo, Guangshan Zhu, Qianrong Fang, Ming Xue, Jinyu Sun, Xiaotian Li, Shilun Qiu. Inorganic. Chemistry. 2005, 44, 3850-3855
    [5] Xiaodan Guo, Guangshan Zhu, Zhongyue Li, Fuxing Sun, Zhenghong Yang, Shilun Qiu. Chem. Comm 2006, 3172-3174
    [6] T.M. Reineke,M. Eddaoudi, M. O’Keefe and O. M. Yaghi, Angew. Chem., Int. Ed., 1999, 38, 2590;
    [7] T. M. Reineke, M. Eddaoudi, M. Fehr, D. Kelley and O. M. Yaghi, J. Am. Chem.Soc., 1999, 121, 1651;
    [8] L. Pan, X. Huang, J. Li,Y.Wu andN. Zheng, Angew. Chem., Int. Ed., 2000, 39, 527.
    [9] D. Long, A. J. Blake, N. R. Champness, C. Wilson and M. Schroder, J. Am. Chem. Soc., 2001, 123, 3401.
    [10] N.L.Rosi, J. Kim,M. Eddaoudi,B.Chen, M. O’Keeffe andM.Yaghi, J. Am. Chem. Soc., 2005, 127, 1504.
    [11] (a) X. Chen, B. Zhao, W. Shi, J. Xia, P. Cheng, D. Liao, S. Yan and Z. Jiang, Chem. Mater., 2005, 17, 2866; (b) V. Kiritsis, A. Michaelides, S. Skoulika, S. Golhen, S. Golhen and L. Ouahab, Inorg. Chem., 1998, 37, 3407; (c) A. Dimos, D. Tsaousis, A. Michaelides, S. Skoulida, S. Golhen, L. Ouahab, C. Didierjean and A. Aubry, Chem. Mater., 2002, 14, 2616; (d) F. A. Almeida Pazand and J. Klinowski, Chem. Commun., 2003, 1484; (e) F. Serpaggi, T. Luxbacher, A. K. Cheetham and G. Ferey, J. Solid State Chem., 1999, 145, 580.
    [12] P. D. C. Dietzel, Y. Morita, R. Blom and H. Fjellva°g, Angew. Chem., Int. Ed., 2005, 44, 6354–6358;
    [13]P. D. C. Dietzel, B. Panella, M. Hirscher, R. Blom and H. Fjellv?g, Chem. Commun., 2006, 959–961.
    [14]V. Kiritsis, A. Michaelides, S. Skoulika, S. Golhen, S. Golhen, L. Ouahab Inorg. Chem. 1998, 37, 3407.
    [15]A. Dimos, D. Tsaousis, A. Michaelides, S. Skoulida, S. Golhen, L. Ouahab, C. Didierjean, A. Aubry, Chem. Mater. 2002, 14, 2616.
    [16]F. A. Almeida Paz, J. Klinowski Chem. Commun. 2003, 1484.
    [17]F. Serpaggi, T. Luxbacher, A. K. Cheetham, G. Ferey, J. Solid State Chem.1999, 145, 580.
    [18]P. D. C. Dietzel, B. Panella, M. Hirscher, R. Bloma, H. Fjellvag, Chem. Commun. 2006, 959–961

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700