用户名: 密码: 验证码:
复合式半导体光催化材料的制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Preparation and Investigation of Photocatalytic Semiconductor Composited Materials
  • 作者:吴同舜
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2010
  • 导师:陈接胜
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2010-06-01
摘要
本论文主要针对宽能隙半导体进行复合或是修饰来提高光催化效率这一目的开展了研究工作。首先,从纳米粒子丰富的表面态能级所带来的子能隙吸收这个侧面进行光催化的研究,通过表面金属阳离子的修饰将这种子能隙吸收扩大,并能够有效的促进电子空穴对分离。其次,制备了二氧化钛包裹银纳米粒子同时负载于蒙脱土表面的复合光催化材料。并与其他材料在光降解细菌方面进行比较,本复合材料效果更佳,使用寿命更长。我们进一步研究了金属银与二氧化钛的复合,制备了由银和二氧化钛纳米粒子共同组成的亚微米空心球。主要探索了此复合体系在紫外光照射下二氧化钛激发的电子扩散到银纳米粒子中并被储存的性能。最后,制备了TiO2/Ag2S的核壳纳米粒子,通过红外光激发光催化氧化乙醛溶液来证明这样一个假设:只要能够完成光激发电子被吸附在半导体表面的氧气分子俘获并形成超氧离子这个过程,就可以实现光催化氧化反应,不论被激发的半导体能级如何分布。
Since the end of 1960s,Fujishima and Honda discovered the photoinduced decomposition of water on TiO2 electrode, semiconductor photocatalysts have attracted much interest. However,to date,there is no one kind of semiconductor can avoid all the drawback in photocatalytic application, even the widely used TiO2. Energy band is too wide to absorb photon in visible light; poor separation of the photoinduced electrons and holes result in the low photocatalytic efficiency; photo-corrosion limits the use of photocatalyst; the conduction band or the valence band of semiconductor does not match the energy level that a specific photocatalytic reaction needs. Therefore, the composite semiconductor photocatalyst are synthesized to solve these problems. That is enhancement of performance by the so-called semiconductor modification, in order to it more suitable for the photocatalytic reaction.
     In this paper, the research focuses on the wide-bandgap semiconductor for compositing or modification to improve the photocatalytic efficiency. First, we synthesized metal cations modified cubic zirconia nanoparticles through one-step solvothermal method at low temperature. The photocatalytic studies was processed on the field of rich sub-bandgap absorption which caused by the surface state energy levels of nanoparticles, and the sub-bandgap absorption was expanded through surface modification of metal cations, furthermore, the electron hole pairs were separated more effectively by modification. The surface photovoltage and surface photocurrent measurements were used to test the influence of surface cations modification on sub-bandgap absorption and transitions, and the cationic modification on reducing the grain boundary resistance was investigated too. Moreover, the effect of different metal cations has also been investigated. At the same time came the introduction of theoretical calculations, in order to better explore the mechanisms involved.
     Second, the montmorillonite (MMT) supported TiO2 coated Ag nanoparticles composite photocatalytic materials were prepared by solvothermal method. For this composite material, the plasmon effects of Ag nanoparticles can generate electron hole pairs under visible light, smaller nanoparticles of TiO2 can be more effective for the catalytic reaction after excitation, TiO2 coat structure on Ag can reduce the loss of silver, the MMT is conducive to recovery of catalyst. Comparison with other materials, in photo-degradation of bacteria, the effect of this composite material is better and longer.
     The Ag and TiO2 composite was further studied, sub-micron hollow spheres composed of Ag and TiO2 nanoparticles were prepared by solvothermal method. In such a composite system, the excited electrons of TiO2 under UV irradiation would diffuse to the silver nanoparticles, and can be stored for a long time. In visible light irradiation, the electron of surface plasmon excitation of silver will be injected into the conduction band of TiO2 to enhance separation of electron hole pair, and increase carrier lifetime, improving photocatalysis. Above all the phenomenon can be observed by surface photovoltage. Degradation of acetaldehyde was carried out in dark to apply the stored energy under UV.
     Finally, through research and summarize previous literature, we made a assumption that, as long as the photo excited electrons are trapped by oxygen molecules adsorbed on the semiconductor surface, and forming superoxide ions, the photocatalytic oxidation can be achieved, regardless of the energy level distribution of the photo-excited semiconductor. To prove this hypothesis, we prepared core-shell TiO2/Ag2S nanoparticles, and test its photocatalytic oxidation properties on acetaldehyde solution under infrared light. The core-shell structure is in purpose of preventing photocorrosion of Ag2S and the effective separation of carrier.
引文
[1] Fujishima, A, Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. [J] Nature 1972, 238: 37-38.
    [2] Bard, A. J. Design of semiconductor photoelectrochemical systems for solar energy conversion. [J] Science 1980,207: 139.
    [3] Gratzel, M., Ed. Energy Resources Through Photochemistry and Catalysis; Academic Press: New York, [M] 1983.
    [4] Kalyanasundaram, K.; Gratzel, M.; Pelizzetti, E. Coord. Chem.Reu. 1986, 69, 57.
    [5] Parmon, V. N.; Zamareav, K. I. In Photocatalysis -Fundamentalsand Applications; Serpone, N., Pelizzetti, E., Eds.; Wiley Interscience: New York, [M] 1989; p 565.
    [6] Pelizzetti, E., Schiavello, M., Eds. Photochemical Conversion and Storage of Solar Energy. Kluwer Academic Publishers: Dordrecht, [M] 1991.
    [7] Schiavello, M., Ed. Photocatalysis and Enuironment; KluwerAcademic Publishers: Dordrecht, [M] 1988.
    [8] Ollis, D. F., Al-Ekabi, H., Eds. Photocatalytic Purification and Treatment of Water and Air; Elsevier: Amsterdam, [M] 1993.
    [9] Photocatalytic Purification and Treatment of Water and Air; Ollis, D. F., Al-Ekabi, H., Ed.; Elsevier: Amsterdam, [M] 1993.
    [10] Blake, D. M. Bibliography of Work on the Photocatalytic Removal of Hazardous Compounds from Water and Air. National Renewal Energy Laboratory, 1994.
    [11] Kamat, P. V. Photochemistry on Nonreacn've and Reactive (Semiconductor) Surfaces. [J] Chem. Rev. 1993,93, 267-300. 417-425.
    [12] Fox, M. A.; Dulay, M. T. Heterogeneous Photocatalysis. [J]Chem. Rev. 1993, 93, 341-357.
    [13] Bahnemann, D. W. Ultrasmall metal oxides: preparation, photophysical characterization and photocatalytic properties. [J] Isr. J. Chem. 1993,33, 115-136.
    [14] Pichat. P. Catal. Partial or complete heterogeneous photocatalytic oxidation of organic compounds in liquid organic or aqueous phases. Today. 1994. 19. 313-333.
    [15] Ireland, J. C.; Klostermann, P.; Rice, E. W.; Clark, R. M. Inactivation ofEscherichia coli by titanium dioxide photocata- lytic oxidation. Appl.Environ. Microbiol. [J] 1993, 59, 1668-1670.
    [16] Sjogren, J. C.; Sierka, R. A. Appl.Environ. Microbiol. [J] 1994,60,344-347.
    [17] Cai R, Kubota Y, Shuin T, Sakai H, Hashimoto K, Fujishima A. Induction of cytotoxicity by photoexcited TiO2 particles. [J] Cancer Res 1992; 52: 2346-2348
    [18] Cai, R.; Hashimoto, K.; Kubota, Y.; Fujishima, A. Increment of photocatalytic killing of cancer cells using TiO2 with the aid of superoxide dismutase. [J] Chem. Lett.1992,427-430.
    [19] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972;238:37–8.
    [20] Kida T, Guan GQ, Yamada N, Ma T, Kimura K, Yoshida A. Hydrogen production from sewage sludge solubilized in hot-compressed water using photocatalyst under light irradiation. [J] Int J Hydrogen Energy 2004;29:269–74.
    [21] Wu NL, Lee MS. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution [J] 2004;29:1601–5.
    [22] Nada AA, Barakat MH, Hamed HA, Mohamed NR, Veziroglu TN. Studies on the photocatalytic hydrogen production using suspended modified TiO2 photocatalysts. [J] Int J Hydrogen Energy 2005;30: 687–691.
    [23] Gratzel, M. Heterogeneous Photochemical Electron Transfer; CRC Press: [M] Boca Raton, FL, 1989.
    [24] Memming, R. In Topics in Current Chemistry; Steckham, E., Ed.; Springer-Verlag: Berlin, 1988; Vol. 143, 79-113.
    [25] Gerischer, H. In: Ollis, D. F., Al-Ekabi, H., Eds. Photocatalytic Purification and Treatment of Water and Air. , Elsevier: Amsterdam, 1993. p. 1
    [26] Linsebigler A. L., Lu G. Q, Yates J T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results [J].Chem. Rev. 1995, 95, 735-758
    [27] Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. [J] J. Am. Chem.SOC.1987,109: 5 649.
    [28] Rothenberger, G.; Moser, J.; Gratzel, M.; Serpone, N.; Sharma, D. K. Charge carrier trapping and recombination dynamics in small semiconductor particles. [J] J.Am. Chem. SOC. 1985,107: 8054.
    [29] Howe, R. F.; Gratzel, M. EPR Study of Hydrated Anatase under UV Irradiation. [J] J. Phys. Chem. 1987,91: 3906.
    [30] Henglein, A. Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. [J] Chem. Reu. 1989, 89, 1861.
    [31] Henglein, A. Mechanism of reactions on colloidal microelectrodes and size quantization. [J] Top. Curr. Chem. 1988,143, 113.
    [32] Kubo, R.; Kawabata, A,; Kobayashi, S. Annu. Reu. [J] Mater. Sci.1984,14,49.
    [33] Wang, Y. In Photochemical Conversion and Storage of Solar Energy; Pelizzetti, E., Schiavello. M... Ed s., Kluwar Acad. Pub.: DordGicht, 1991; p 295.
    [34] Nozik. A. In Photocatalvtic Purification and Treatment of Water and Air; Ollis, D. F., Ai-Ekabi, H., Eds.; Elsevier Scienc'e Pub.: New York, 1993; p 39.
    [35] Brus, L. E. A Simple Model for the Ionization Potential, Electron Affinity, and Aqueous Redox Potentials of Small Semiconductor Crystallites. [J] J. Chem. Phys. 1983, 79, 5566.
    [36] Brus, L. E. Electron-electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. [J] J. Chem. Phys. 1984, 80, 4403.
    [37] Koch, U.; Foitik, A.; Weller, H.; Henglein, A. [J] Chem. Phys. Lett.1985,122, 507.
    [38] Wang, Y.; Suna, A.; Mahler, W.; Kasawski, R. [J] J. Chem. Phys. 1987.87. 7315.
    [39] Gratzel, M. Heterogeneous Photochemical Electron Transfer; CRC Press: Boca Raton, 1989.
    [40] Rhoderick, E. H.; Williams, R. H. Metal-Semiconductor Contacts, 2nd ed.; Oxford University Press: New York, 1988; p 11.
    [41] Wolfe CM, Holonyak N, Stillman GE. Physical Properties of Semiconductors. Prentice Hall: New Jersey, 1989.
    [42] Leeor Kronik , Yoram Shapira , Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering [J]. Surf. Interface Anal. 2001; 31: 954–965
    [43]. Kronik L, Shapira Y. Photovoltage phenomena: theory, experiment and applications. [J] Surf. Sci. Rep. 1999; 37: 1.
    [44]. Gatos HC, Lagowski J. Surface Photovoltage Spectroscopy—A New Approach to the Study of High-Gap Semiconductor Surfaces. [J] J. Vac. Sci. Technol. 1973; 10: 130
    [45] Ramamurthy, V. Photochemistry in Organized and Constrained Media; VCH New York, 1991.
    [46] Gust, D.; Moore, T. A. Mimicking photosynthesis. [J] Science 1989, 244, 35.
    [47] Zhou, X.-L.; Zhu, X.-Y.; White, J. M. photochemistry at adsorbate/metal interface . [J] Surf. Sci. Rep. 1991, 13, 73.
    [48] Rosenwaks, Y.; Thacker, B. R.; Nozik, A. J.; Ellingson, R. J.; Burr, K. C.; Tang, C. L. Ultrafast Photoinduced Electron Transfer across Semiconductor-Liquid Interfaces in the Presence of Electric Fields. [J] J. Phys. Chem. 1994, 98, 2739.
    [49] Ford, W. E.; Rodgers, A. J. Interfacial electron transfer in colloidal SnO2 hydrosols photosensitized by electrostatically and covalently attached ruthenium(II) polypyridine complexes [J] J. Phys. Chem. 1994, 98, 3822.
    [50] Zhang, J. Z.; O'Neil, R. H.; Roberti, T. W. Femtosecond studies of photoinduced electron dynamics at the liquid-solid interface of aqueous CdS Colloids. [J] J. Phys. Chem. 1994, 98, 3859.
    [51] Bedja, I.; Hotchandani, S.; Kamat, P. V. Preparation and Photoelectrochemical Characterization of Thin SnO2 Nanocrystalline Semiconductor Films and Their Sensitization with Bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)ruthenium(II) Complex [J].J. Phys. Chem. 1994, 98, 4133.
    [52] Kamat, P. V.; Dimitrijevic, N. M.; Fessenden, R. W. Photoelectrochemistry in particulate systems. 7. Electron-transfer reactions of indium sulfide semiconductor colloids. [J] J. Phys. Chem. 1988,92, 2324.
    [53] Rossetti, R.; Brus, L. E. Picosecond resonance Raman scattering study of methylviologen reduction on the surface of photoexcited colloidal cadmium sulfide crystallites. [J] J. Phys. Chem. 1986,90,558.
    [54] Henglein, A. Photochemistry of colloidal cadmium sulfide. 2. Effects of adsorbedmethyl viologen and of colloidal platinum. [J] J. Phys. Chem. 1982,86,2291.
    [55] Wu NL, Lee MS. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution [J] 2004;29:1601–5.
    [56] Bamwenda GR, Tsubota S, Nakamura T, Haruta M. Photoassisted hydrogen production from a waterethanol solution: a comparison of activities of Au-TiO2 and Pt-TiO2. [J] J Photochem Photobiol A: Chem 1995;89:177–89.
    [57] Sakthivel S, Shankar MV, Palanichamy M, Arabindoo B, Bahnemann DW, Murugesan V. Enhancement of photocatalytic activity by metal deposition: characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. [J] Water Res 2004;38:3001–8.
    [58] Li FB, Li XZ. The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. [J] Chemosphere 2002;48:1103–11.
    [59] Kim S, Choi W. Dual photocatalytic pathways of trichloroacetate degradation on TiO2: effects of nanosized platinum deposition on kinetics and mechanism. [J] J Phys Chem B 2002;106:13311–7.
    [60] Jin S, Shiraishi F. Photocatalytic activities enhanced for decompositions of organic compounds over metalphotodepositing titanium dioxide. [J] Chem Eng J 2004;97:203–11.
    [61] Subramanian V, Wolf E , Kamat P. Catalysis with TiO2/gold nanocomposites: effect of metal particle size on the fermi level equilibration. [J] J Am Chem Soc 2004;126:4943–50.
    [62] Subramanian V, Wolf E, Kamat P. Semiconductor-metal composite nanostructures, to what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films [J] J Phys Chem B 2001;105:11439–46.
    [63] Subramanian V, Wolf E, Kamat P. Green emission to probe photoinduced charge events in ZnO-Au nanoparticles, charge distribution and fermi-level equilibration. [J] J Phys Chem B 2003;107:7479–85.
    [64] Jakob M, Levanon H, Kamat PV. Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the fermi level. [J] Nano Lett 2003;3:353–8.
    [65] Bardos ES, Czili H, Horvath A. Photocatalytic oxidation of oxalic acid enhanced by silver deposition on a TiO2 surface. [J] J Photochem Photobiol A: Chem 2003;154:195–201.
    [66] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation. [J] J Catal 2003; 216:505–16.
    [67] Jafiezic-Renault, N.; Pichat, P.; Foissy, A,; Mercier, R. Effect of deposited Pt paticles on the surface charge of TiO2 aqueous suspensions by potentiometry, electrophoresis, and labeled ion adsorption. [J] J. Phys. Chem. 1986, 90, 2733.
    [65] Kreibig, U.; Gartz, M.; Hilger, A. Ber. Bunsen.-Ges. [J] 1997, 101, 1593-1604.
    [69] Kreibig, U.; Gartz, M.; Hilger, A.; Hovel, H. In Cluster Materials; Duncan,M. A., Ed.; Advances in Metal and Semiconductor Clusters 4; JAI Press Inc.: Stamford, CT, 1998; pp 345-393.
    [70] Awazu, K.; Fujimaki, M.; Rockstuhl, C,et al.A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide [J] J. Am. Chem. Soc., 2008, 120, 1676-1680.
    [71] Mulvaney, P. Spectroscopy of metal colloids. Some comparisons with semiconductor colloids. In Semiconductor Nanoclusters-Physical, Chemical and Catalytic Aspects; Kamat, P. V., Meisel, D., Eds.; Elsevier Science: Amsterdam, 1997; p 99.
    [72] PengWang, Baibiao Huang, Xiaoyan Qin,et al.Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light [J] Angew. Chem. Int. Ed. 2008, 47, 7931–7933
    [73] Tian, Y.; Tasuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. [J] J. Am. Chem. Soc., 2005, 127, 7632-7637.
    [74] Kelly, K. L.; Yamashita, K. Nanostructure of silver metal produced photocatalytically in TiO2 films and the mechanism of the resulting photochromic behavior. [J] J. Phys. Chem.B 2006, 110, 7743–7749.
    [75] Du L, Furube A, Yamamoto K,et al.Plasmon-Induced Charge Separation andRecombination Dynamics in Gold-TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size. [J].J. Phys. Chem. C 2009, 113, 6454–6462
    [76] Choi WY, Termin A, Hoffmann MR. The role of metal ion dopants in quantum-sized TiO2: correlationbetween photoreactivity and charge carrier recombination dynamics. [J] J Phys Chem 1994;84: 13669–79.
    [77] Litter MI. Heterogeneous photocatalysis transition metal ions in photocatalytic systems. [J] Appl Catal B:Environ 1999;23:89–114.
    [78] Xu AW, Gao Y, Liu HQ. The preparation characterization and their photocatalytic activities of rareearthdoped TiO2 nanoparticles. [J] J Catal 2002; 207:151–7.
    [79] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. [J] Science 2001;293:269–71.
    [80] Torres GR, Lindgren T, Lu J, Granqvist CG, Lindquist SE. Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation. [J] J Phys Chem B 2004;108:5995–6003.
    [81] Lindgren T, Mwabora JM, Avendano E, Jonsson J, Hoel A, Granqvist CG, et al. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering. [J] J Phys Chem B 2003;107:5709–16.
    [82] Chen XB, Burda C. Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. [J] J Phys Chem B 2004;108:15446–9.
    [83] Gurunathan K, Maruthamuthu P, Sastri VC. Photocatalytic hydrogen production by dye-sensitized Pt/SnO2 and Pt/SnO2/RuO2 in aqueous methyl viologen solution. [J] Int J Hydrogen Energy 1997;22(1):57–62.
    [84] Argazzi R, Iha NYM, Zabri H, Odobel F, Bignozzi CA. Design of molecular dyes for application in photoelectrochemical and electrochromic devices based on nanocrystalline metal oxide semiconductors. [J] Coord Chem Rev 2004; 248:1299–316.
    [85] Polo AS, Itokazu MK, Iha NYM. Metal complex sensitizers in dye-sensitized solar cells. [J] Coord Chem Rev 2004;248:1343–61.
    [86] Bi ZC, Tien HT. Photoproduction of hydrogen by dye-sensitized systems. Int JHydrogen Energy [J] 1984;9(8):717–22.
    [87] Abe R, Sayama K, Arakawa H. Efficient hydrogen evolution from aqueous mixture of I- and acetonitrile using a merocyanine dye-sensitized Pt/TiO2 photocatalyst under visible light irradiation. [J] Chem Phys Lett 2002;362:441–4.
    [88] Gurunathan K. Photobiocatalytic production of hydrogen using sensitized TiO2-MV2+ system coupled Rhodopseudomonas Capsulata. [J] J Mol Catal A: Chem 2000;156:59–67.
    [89] Yan SG, Hupp JT. Semiconductor-based interfacial electron-transfer reactivity: decoupling kinetics from pH-dependent band energetics in a dye-sensitized titanium dioxide/aqueous solution system. [J] J Phys Chem 1996;100:6867–70.
    [90] Hannappel T, Burfeindt B, Storck W. Measurement of ultrafast photoinduced electron transfer from chemically anchored Ru-dye molecules into empty electronic states in a colloidal anatase TiO2 film. [J] J Phys Chem B 1997;101:6799–802.
    [91] Martini I, Hodak JH, Hartland GV. Effect of water on the electron transfer dynamics of 9-anthracenecarboxylic acid bound to TiO2 nanoparticles: demonstration of the Marcus inverted region. [J] J Phys Chem B 1998;102:607–14
    [92] Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR. Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. [J] J Phys Chem B 2004;108:17269–73.
    [93] Doong RA, Chen CH, Maithreepala RA, Chang SM. The influence of pH and cadmium sulfide on the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions. Water Res 2001;35(12): 2873–80.
    [94] Kang MG, Han HE, Kim KJ. Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2. [J] J Photochem Photobiol A: Chem 1999;125:119–25.
    [95] Keller V, Garin F. Photocatalytic behavior of a new composite ternary system: WO3-SiC-TiO2. effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase. [J] Catal Commun 2003;4:377–83.
    [96] Li D, Haneda H, Ohashi N, et al. Synthesis of nanosized nitrogen-containing MOx-ZnO (M = W, V, Fe) composite powders by spray pyrolysis and theirvisible-light-driven photocatalysis in gas-phase acetaldehyde decomposition. [J] Catal Today 2004;93–95:895–901.
    [97] Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, et al. Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted thin TiO2 thin film photocatalyst. [J] Catal Lett 2000;67:135–7.
    [98] Takeuchi M, Yamashita H, Matsuoka M, Anpo M, Hirao T, Itoh N, et al. Photocatalytic decomposition of NO on titanium oxide thin film photocatalysts prepared by an ionized cluster beam technique. [J] Catal Lett 2000;66:185–7.
    [99] Yamashita H, Harada M, Misaka J, Takeuchi M, Ichihashi Y, Goto F, et al. Application of ion beam techniques for preparation of metal ion-implanted TiO2 thin film photocatalyst available under visible irradiation: metal ion-implantation and ionized cluster beam method. [J] J Synchrotron Radiat 2001;8: 569–71.
    [1] Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Coaxial silicon nanowires as solar cells and nanoelectronic power sources [J] Nature 2007, 449, 885–890.
    [2] Fernández-García, M.; Martínez-Arias, A.; Hanson, J. C.; Rodriguez, J. A. Nanostructured Oxides in Chemistry: Characterization and Properties [J] Chem. Rev. 2004, 104, 4063–4104.
    [3] Rothschild, A.; Levakov, A.; Shapira, Y.;Ashkenasy, Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation [J] Surf. Sci. 2003, 456–460.
    [4] Liu, D.P.; Li, G. D.; Su, Y.; Chen, J. S. Highly luminescent ZnO nanocrystals stabilized by ionic-liquid components [J] Angew. Chem., Int. Ed. 2006, 45, 7370–7373.
    [5] Liu, D.P.; Li, G. D.; Li, J. X.; Li, X. H.; Chen, J. S. Spontaneous superlattice formation of ZnO nanocrystals capped with ionic liquid molecules [J] Chem. Commun. 2007, 4131–4133.
    [6] Li, X. H.; Zhang, D. H.; Chen, J. S. Synthesis of Amphiphilic Superparamagnetic Ferrite/Block Copolymer Hollow Submicrospheres [J] J. Am. Chem. Soc. 2006, 128, 8382–8383.
    [7] Dijken, A. V.; Meulenkamp, E. A.; Vanmaekelbergh, D.;.The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation [J] J. Phys. Chem. B. 2000, 104, 1715–1723.
    [8] Dijken, A. V.; Meulenkamp, E. A.; Vanmaekelbergh, D.; Meijerink, Influence of Adsorbed Oxygen on the Emission Properties of Nanocrystalline ZnO Particles [J] A. J. Phys. Chem. B. 2000, 104, 4355–4360..
    [9] Lenzmann, F.; Krueger, J.; Burnside, S.; Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States [J] J. Phys. Chem. B 2001, 105, 6347–6352.
    [10] Harima, Y.; Kawabuchi, K.; Kajihara, S.; Ishii, A.; Ooyama, Y.; Takeda, K. Appl. Phys. Lett. 2007, 90, 103517.
    [11]Garvie, R. C.; Hannink, R. H.; Pascoe, R. T. Ceramic steel [J] Nature 1975, 258, 703–704.
    [12] Haw, J. F.; Zhang, J.; Shimizu, K.; Venkatraman, T. N.; Luigi, D.-P.; Song, W.; Barich, D. H.; Nicholas, J. B. NMR and Theoretical Study of Acidity Probes on Sulfated Zirconia Catalysts [J] J. Am. Chem. Soc. 2000, 122, 12561–12570.
    [13] Adler, S. B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews [J] Chem. Rev. 2004, 104, 4791–4843.
    [14] Mamak, M.; Coombs, N.; Ozin, G. Self-assembling solid oxide fuel cell materials: Mesoporous yttria-zirconia and metal-yttriazirconia solid solutions [J] J. Am. Chem. Soc. 2000, 122, 8932–8939.
    [15] Virkar, A. V.; Chen, J.; Tanner, C. W.; Kim, J. W. The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells [J] Solid State Ionics 2000, 131, 189-198.
    [16] Kohno, Y., Tanaka, T.; Funabiki, T.; Yoshida, S. Identification and reactivity of a surface intermediate in the photoreduction of CO2 with H2 over ZrO2 [J] J. Chem. Soc., Faraday Trans. 1998, 94,1875-1880.
    [17] Bae, J. W.; Park, J. Y.; Hwang, S. W.; Yeom, G. Y.; Kim, K. D.; Cho, Y. A.; Jeon, J. S.; Choi, D. Characterization of Yttria-Stabilized Zirconia Thin Film Prepared by Radio Frequency Magnetron Sputtering for a Combustion Control Oxygen Sensor [J] J. Electrochem. Soc. 2000, 147, 2380-2384.
    [18] Wang, S. J.; Ong, C. K.; Xu, S. Y.; Chen, P.; Tjiu, W. C.; Chai, J. W.; Huan, A. C. H.; Yoo, W. J.; Lim, J. S.; Feng, W.; Choi, W. K. Appl. Phys. Lett. 2001, 78, 1604–1606.
    [19] Houssa, M.; Afanas'ev, V. V.; Stesmans, A.; Heyns, M. M. Appl. Phys. Lett. 2000, 77, 1885–1887.
    [20] Garcia, J. C.; Scolfaro, L. M. R.; Lino, A. T.; Freire, V. N.; Farias, G. A.; Silva, C. C.; Alves, H. W. L.; Rodrigues, S. C. P.; da Silva, J. E. F. Structural, electronic,and optical properties of ZrO2 from ab initio calculations [J] J. Appl. Phys. 2006, 100, 104103–104109.
    [21] Wang, X.; Zhuang, J.; Peng, Q.; Li, Y.A general strategy for nanocrystal synthesis [J] Nature 2005, 437, 121–124.
    [22]Lin, Y.; Wang, D.; Zhao, Q.; Yang, M.; Zhang, Q. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy [J] J. Phys. Chem. B 2004, 108, 3202–3206.
    [23] Lamas, D. G.; Rosso, A. M.; Suarez Anzorena, M.; Fernández, A.; Bellino, M. G.; Cabezas, M. D.; Crystal structure of pure ZrO2 nanopowders [J] Scripta. Mater. 2006, 55, 553–556.
    [24] Tsunekawa, S.; Ito, S.; Kawazoe, Y.; Wang, J.-T. Critical size of the phase transition from cubic to tetragonal in pure zirconia nanoparticles [J] Nano Lett. 2003, 3, 871-875.
    [25] Li, P.; Chen, W. I. J. Am. Ceram. Soc. 1994, 77, 118–128.
    [26] Li, P.; Chen, W. I. J. Am. Ceram. Soc. 1994, 77, 1281–1288.
    [27] Kronik, L.; Shapira, Y.Surface photovoltage spectroscopy of semiconductor structures: at the crossroads of physics, chemistry and electrical engineering [J] Surf. Interface Anal. 2001, 31, 954–965.
    [28] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications [J] Surf. Sci.Rep. 1999, 37, 1–206.
    [29] Schneemeyer, L. F.; Wrighton, M. S. Flat-band potential of n-type semiconducting molybdenum disulfide by cyclic voltammetry of two-electron reductants: interface energetics and the sustained photooxidation of chloride [J] J. Am. Chem. Soc. 1979,101, 6496-6500.
    [30] Chen, W.; Yuan, H. M.; Wang, J. Y.; Synthesis, Structure, and Photoelectronic Effects of a Uranium?Zinc?Organic Coordination Polymer Containing Infinite Metal Oxide Sheets [J] J. Am. Chem. Soc. 2003, 125, 9266-9267.
    (1) Fujishima, A.; Honda, K.; Kikuchi, S. Kogyo Kagaku Zasshi 1969, 72, 108-113.
    (2) Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J].Nature 1972, 238, 37-38.
    (3) Fujishima, A.; Rao, T. N.; Tryk, D. N. Simple Protocol for Generating TiO2 Nanofibers in Organic Media [J] J. Photochem. Photobiol., C 2000, 1, 1-21.
    (4) Wang, R.; Hashimoto, K.; Fujishima, A.; Chikumi, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Photoinduced Amphiphilic Property of InNbO4 Thin Film [J] Nature 1997, 388, 431-432.
    (5) Wang, P.; Huang, B.; Qin, X.; et al. Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light [J] Angew. Chem. Int. Ed. 2008, 47, 7931–7933.
    (6) Fang, X.; Bando,Y.; Liao, M.; Gautam, U. K.; Zhi, C.; Dierre, B.; Liu, B.; Zhai, T.; Sekiguchi, T.; Koide, Y.; Golberg, D. Adv. Mater. 2009, 21, 2034-2039.
    (7) Akhavan, O. J. Colloid Interface Sci. 2009, 336, 117-124.
    (8) Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fuhishima, Copper-aided photosterilization of microbial cells on TiO2 film under irradiation from a white light fluorescent lamp [J] A. Environ. Sci.Technol. 1998, 32, 726-728.
    (9) Yu, J. C.; Ho, W. K.; Yu, J. G.; Yip, H.; Wong, P. K.; Zhao, J. C. Electrochemically assisted photocatalytic inactivation of Escherichia coli under visible light using a ZnIn2S4 film electrode [J] Environ. Sci.Technol. 2005, 39, 1175-1179.
    (10) Chen, W. J.; Tsai, P. J.; Chen, Y. C. Functional Fe3O4/TiO2 Core/Shell Magnetic Nanoparticles as Photokilling Agents for Pathogenic Bacteria [J] Small 2008, 4, 485-491.
    (11) Hu, C.; Lan, Y.; Qu, J.; Hu, X.; Wang, A. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria [J].J. Phys. Chem. B 2006, 110, 4066–4072.
    (12) Elahifard, M. R.; Rahimnejad, S.; Haghighi, S.; Gholami, M. R. Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles [J] J. Am. Chem. Soc. 2007, 129, 9552–9553.
    (13) Matsunaga, T.; Tomoda, R., Nakajima, T.; Wake, H. Antimicrobial activities of hydrophilic polyurethane/titanium dioxide complex film under visible light irradiation [J] FEMS Microbiol. Lett., 1985, 29, 211-214.
    (14) Mills, A.; LeHunte, S. An Optical Fiber Monolith Reactor for Photocatalytic Wastewater Treatment [J] J. Photochem. Photobiol. A Chem. 1997, 108, 1–35.
    (15) Keleher, J.; Bashant, J.; Heldt, N.; Johnson, L.; Li, Y. World J. Microbio. Biotech., 2002, 18, 133-139.
    (16) Page, K.; Palgrave, R. G.; Parkin, I. P.; Wilson, M.; Savin, S.L. P.; Chadwick, A. V. J. Mater. Chem., 2007, 17, 95–104.
    (17) Guin, D.; Manorama, S. V.; Latha, J. N. L.; Singh, S. Photoreduction of Silver on Bare and Colloidal TiO2 Nanoparticles/Nanotubes: Synthesis, Characterization, and Tested for Antibacterial Outcome [J] J. Phys. Chem. C 2007, 111, 13393–13397.
    (18) Liu, Y.; Wang, X.; Yang, F.; Yang, X. Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films [J] Micropor. Mesopor. Mater.2008, 114, 431–439.
    (19) Henglein, A. J. Phys. Chem. 1979, 83, 2209–2216.
    (20) Herrmann, J.-M. in: Baker, R.T.K.; Tauster, S.J.; Dumesic, J.A. (Eds.), Strong Metal–Support Interactions, ACS Symposium. Series, vol. 298, 1986, pp. 200–211.
    (21) Herrmann, J.-M.; Disdier, J.; Pichat, P. Photoassisted platinum deposition on TiO2 powder using various platinum complexes [J] J. Phys. Chem. 1986, 90, 6028–6034.
    (22) Zhang, H.; Wang, G.; Chen, D.; Lv, X.; Li, J. Tuning Photoelectrochemical Performances of Ag?TiO2 Nanocomposites via Reduction/Oxidation of Ag [J] Chem. Mater. 2008, 20, 6543–6549.
    (23) Sung-Suh, H. M.; Choi, J. R.; Hah, H. J.; Koo, S. M.; Bae, Y. C.; Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2 [J] J. Photochem. Photobiol. A Chem. 2004, 163, 37–44.
    [24] Vamathevan, V.; Amal, R.; Beydoun, D.; Low, G.; McEvoy, S. J. Photochem.Photobiol. A Chem. 2002, 148, 233-245.
    [25] Tian, Y.; Tasuma, T. Mechanisms and Applications of Plasmon-Induced ChargeSeparation at TiO2 Films Loaded with Gold Nanoparticles. [J] J. Am. Chem. Soc.,2005, 127, 7632-7637.
    [26] Kelly, K. L.; Yamashita, K. Nanostructure of Silver Metal ProducedPhotocatalytically in TiO2 Films and the Mechanism of the Resulting PhotochromicBehavior [J] J. Phys. Chem.B 2006, 110, 7743–7749.
    [27] Awazu, K.; Fujimaki, M.; Rockstuhl, C, et al.A Plasmonic PhotocatalystConsisting of Silver Nanoparticles Embedded in Titanium Dioxide [J] J. Am. Chem.Soc., 2008, 120, 1676-1680.
    [28] Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity ofAg@TiO2 Core-Shell Composite Clusters under UV-Irradiation [J] J. Am. Chem. Soc.2005, 127, 3928-3934.
    (29) Cozzoli, P. D.; Comparelli, R.; Fanizza, E.; Curri, M. L.; Agostiano, A.; Laub, D.Photocatalytic Synthesis of Silver Nanoparticles Stabilized by TiO2 Nanorods: ASemiconductor/Metal Nanocomposite in Homogeneous Nonpolar Solution [J] J. Am.Chem. Soc., 2004, 126, 3868-3879.
    (30) Subramanian, V.; Wolf, E.; Kamat, P. V. Semiconductor?Metal CompositeNanostructures. To What Extent Do Metal Nanoparticles Improve the PhotocatalyticActivity of TiO2 Films? [J] J. Phys. Chem. B 2001, 105,11439-11446.
    (31) Subramanian, V.; Wolf, E. E.; Kamat, P. V. Influence of metal/metal ionconcentration on the photocatalytic activity of TiO2-Au composite nanoparticles [J]Langmuir 2003, 19, 469-474.
    (32) Chuang, H. Y.; Chen, D. H Fabrication and photocatalytic activities in visibleand UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.[J] Nanotechnology.2009, 20,105704.
    (33) Sclafani, A.; Palmisano, L.; Schiavello, M. Influence of the preparation methodsof titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion[J] J. Phys. Chem. 1990, 94, 829-832.
    (34) Henglein, A. Physicochemical properties of small metal particles in solution: "microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition [J] J. Phys. Chem. 1993, 97, 5457-5471.
    (35) Alivisatos, A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals [J] J. Phys. Chem. 1996, 100, 13226-13239.
    (36) Fu, G.; Vary, P. S.; Lin, C. T. Anatase TiO2 nanocomposites for antimicrobial coatings [J] J. Phys. Chem. B 2005, 109, 8889-8898.
    (37) Murakami, Y.; Matsumoto, J.; Takasu, Y. Salt Catalysts Containing Basic Anions and Acidic Cations for the Sol?Gel Process of Titanium Alkoxide: Controlling the Kinetics and Dimensionality of the Resultant Titanium Oxide [J] J. Phys. Chem. B 1999, 103, 1836-1840.
    (38) El-Sayed, M. A. Some Interesting Properties of Metals Confined in Time and Nanometer Spce of Different Shapes [J] Acc. Chem. Res. 2001, 34, 257-264.
    (39) Link, S.; El-Sayed, M. A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods [J] J. Phys. Chem. B 1999, 103, 8410-8426.
    (40) Mulvaney, P. Surface Plasmon Spectroscopy of Nanosized Metal Particles [J] Langmuir 1996, 12, 788-800.
    (41) Haynes, C. L.; Van Duyne, R. P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics [J] J. Phys. Chem. B 2001, 105, 5599-5611.
    (42) Rengaraj, S.; Li, X. Z. J. Mol. Catal. A: Chem. 2006, 243, 60–67.
    (43) Sunada, K.; Kikuchi, Y.; Hashimoto, K.; Fuhishima, A. Environ. Sci.Technol. 1998, 32, 726-732.
    (44) Lu, Z.; Zhou, L.; Zhang, Z.; Cell Damage Induced by Photocatalysis of TiO2 Thin Films [J] Langmuir 2003, 19, 8765-8768.
    (45) Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Nanotechnology, 2005, 16, 2346–2353.
    (46) Sondi, I.; Salopek-Sondi, B. J. Colloid Interface Sci. 2004, 275, 177–82.
    [1] Henglein, A. Reactions of organic free radicals at colloidal silver in aqueous solution. Electron pool effect and water decomposition [J] J. Phys. Chem. 1979, 83, 2209–2216.
    [2] Herrmann, J.-M. in: Baker, R.T.K.; Tauster, S.J.; Dumesic, J.A. (Eds.), Strong Metal–Support Interactions, ACS Symposium. Series, vol. 298, 1986, pp. 200–211.
    [3] Herrmann, J.-M.; Disdier, J.; Pichat, P. Photoassisted platinum deposition on TiO2 powder using various platinum complexes [J] J. Phys. Chem. 1986, 90, 6028–6034.
    [4] Page, K.; Palgrave, R. G.; Parkin, I. P.; Wilson, M.; Savin, S.L. P.; Chadwick, A. V. J. Mater. Chem., 2007, 17, 95–104.
    [5] Hu, C.; Lan, Y.; Qu, J.; Hu, X.; Wang, A. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria [J].J. Phys. Chem. B 2006, 110, 4066–4072.
    [6] Elahifard, M. R.; Rahimnejad, S.; Haghighi, S.; Gholami, M. R. Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles [J] J. Am. Chem. Soc. 2007, 129, 9552–9553.
    [7] Sung-Suh, H. M.; Choi, J. R.; Hah, H. J.; Koo, S. M.; Bae, Y. C.; Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2 [J] J. Photochem. Photobiol. A Chem. 2004, 163, 37–44.
    [8] Vamathevan, V.; Amal, R.; Beydoun, D.; Low, G.; McEvoy, S. J. Photochem. Photobiol. A Chem. 2002, 148, 233-245.
    [9] Tian, Y.; Tasuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. [J] J. Am. Chem. Soc., 2005, 127, 7632-7637.
    [10] Kelly, K. L.; Yamashita, K. Nanostructure of Silver Metal Produced Photocatalytically in TiO2 Films and the Mechanism of the Resulting Photochromic Behavior [J] J. Phys. Chem.B 2006, 110, 7743–7749.
    [11] Awazu, K.; Fujimaki, M.; Rockstuhl, C, et al.A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide [J] J. Am. Chem. Soc., 2008, 120, 1676-1680.
    [12] Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation [J] J. Am. Chem. Soc. 2005, 127, 3928-3934.
    [13] Du L, Furube A, Yamamoto K, et al. Tachiya Plasmon-Induced Charge Separation and Recombination Dynamics in Gold-TiO2 Nanoparticle Systems: Dependence on TiO2 Particle Size [J] J. Phys. Chem. C., 2009, 113, 6454–6462
    [14] Prashant V. Kamat Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion [J] J. Phys. Chem. C 2007, 111, 2834-2860.
    [15] Hirakawa, T.; Kamat, P. V. Photoinduced Electron Storage and Surface Plasmon Modulation in Ag@TiO2 Clusters Langmuir 2004, 20, 5645-5647.
    [16] Cozzoli P. D, Currib M. L,Agostiano A Efficient charge storage in photoexcited TiO2 nanorod-noble metal nanoparticle composite systems [J] Chem. Commun., 2005, 3186–3188
    [17] Kronik, L.; Shapira, Y. Surface photovoltage phenomena: Theory, experiment, and applications [J] Surf. Sci.Rep. 1999, 37, 1–206.
    [18] Lin, Y.; Wang, D.; Zhao, Q.; Yang, M.; Zhang, Q. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy [J] J. Phys. Chem. B 2004, 108, 3202–3206.
    [19] Q. L. Zhang, D. J.Wang, X.Wei, Q. D. Zhao, Y. H. Lin and M. Yang,Thin Solid Films, 2005, 491, 242.
    [20] S. Pang, T. Xie, Y. Zhang, X. Wei, M. Yang, D. Wang Z. Du, Research on the Effect of Different Sizes of ZnO Nanorods on the Efficiency of TiO2-Based Dye-Sensitized Solar Cells [J] J. Phys. Chem. C, 2007, 111: 18417.
    [21] M. Ivan, D. Thomas, G. B. Germa B. Juan, J. Appl. Phys., 2006,100, 103705.
    [22] C. G. Shuttle, B. O’Regan, A. M. Ballantyne, J. Nelson, D. D. C.Bradley, J. Mello and J.R. Durrant, Appl. Phys. Lett., 2008, 92, 093311.
    [1] Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode [J].Nature 1972, 238, 37-38.
    [2] Sakthivel M, Kisch H,Daylight Photocatalysis by Carbon-Modified Titanium Dioxide [J]. Angew. Chem. Int. Ed. 2003, 42, 4908–4911.
    [3] Zhao W, Ma W, Chen C, et al. Efficient Degradation of Toxic Organic Pollutants with Ni2O3/TiO2-xBx under Visible Irradiation [J]. J. Am. Chem. Soc. 2004, 126, 4782-4783.
    [4] Zhang L, Djerdj I, Cao M, et al, Nonaqueous Sol–Gel Synthesis of a Nanocrystalline InNbO4 Visible-Light Photocatalyst [J].Adv. Mater. 2007, 19, 2083–2086.
    [5] Subramanian V, Wolf E E., Kamat P. V. Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration [J]. J. Am. Chem. Soc., 2004, 126,4943–4950
    [6] Renzhi Ma, Takayoshi Sasaki, Yoshio Bando Layer-by-Layer Assembled Multilayer Films of Titanate Nanotubes, Ag- or Au-Loaded Nanotubes, and anotubes/Nanosheets with Polycations [J]. J. Am. Chem. Soc., 2004, 126, 10382–10388.
    [7] Gong X. Q, Selloni A, Dulub O, et al. Small Au and Pt Clusters at the Anatase TiO2(101) Surface: Behavior at Terraces, Steps, and Surface Oxygen Vacancies [J].J. Am. Chem. Soc., 2008, 130, 370–381.
    [8] Rodriguez J. A., Liu G., Jirsak T.,et al Activation of Gold on Titania: Adsorption and Reaction of SO2 on Au/TiO2(110) [J]. J. Am. Chem. Soc., 2002, 124, 5242–5250.
    [9] Jaeger, C. D.; Bard, A. Hydrated electron production by reaction of hydrogen atoms with hydroxide ions: A first-principles molecular dynamics study [J] J. J. Phys. Chem. 1979, 83, 3146.
    [10] Jimmy C. Yu, Jun Lin, D. Lo, S. K. Lam Influence of Thermal Treatment on the Adsorption of Oxygen and Photocatalytic Activity of TiO2 [J].Langmuir 2000, 16, 7304-7308
    [11] Hirakawa T, Kominami H, Ohtani B, et al. Mechanism of Photocatalytic Production of Active Oxygens on Highly Crystalline TiO2 Particles by Means of Chemiluminescent Probing and ESR Spectroscopy. [J].J. Phys. Chem. B 2001, 105, 6993-6999
    [12] Hu, C.; Lan, Y.; Qu, J.; Hu, X.; Wang, A. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria [J].J. Phys. Chem. B 2006, 110, 4066–4072.
    [13] Tian, Y.; Tasuma, T. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles. [J] J. Am. Chem. Soc., 2005, 127, 7632-7637.
    [14] Kelly, K. L.; Yamashita, K. Nanostructure of Silver Metal Produced Photocatalytically in TiO2 Films and the Mechanism of the Resulting Photochromic Behavior [J] J. Phys. Chem.B 2006, 110, 7743–7749.
    [15] Awazu, K.; Fujimaki, M.; Rockstuhl, C, et al.A Plasmonic Photocatalyst Consisting of Silver Nanoparticles Embedded in Titanium Dioxide [J] J. Am. Chem. Soc., 2008, 120, 1676-1680.
    [16] Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO2 Core-Shell Composite Clusters under UV-Irradiation [J] J. Am. Chem. Soc. 2005, 127, 3928-3934.
    [17] Wang, P.; Huang, B.; Qin, X.; et al. Ag@AgCl: A Highly Efficient and Stable Photocatalyst Active under Visible Light [J] Angew. Chem. Int. Ed. 2008, 47, 7931–7933.
    [18] Wang D, Xie T, Peng Q, Li Y. Ag, Ag2S, and Ag2Se Nanocrystals: Synthesis, Assembly, and Construction of Mesoporous Structures [J]. J. Am. Chem. Soc. 2008, 130, 4016-4022.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700