用户名: 密码: 验证码:
熔盐电解共沉积Mg-Li-M(M=Pb,Mn,Yb)合金及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金作为最轻的结构材料,在工业领域有着广泛的应用前景。Pb、Mn和Yb都是镁锂合金合金化元素,在一定程度上可以细化合金晶粒,改善合金性能。目前都是采用对掺法来制备合金,但该方法存在工艺复杂,成本高等缺点。而由于熔盐电解具有工艺简单,制备温度低,能耗少等优点,在制备镁锂合金方面是目前备受关注的取代传统对掺法的途径之一。因此本文采用循环伏安法和计时电位法等电化学方法研究了Pb(Ⅱ)、Mn(Ⅱ)和Yb(Ⅲ)离子在熔盐中的电化学行为及其金属合金的共电沉积机理,并用XRD、SEM、ICP等技术对恒电流电解制备的Mg–Li–M(Pb、Mn、Yb)合金样品进行了表征,这对熔盐电解制备合金有一定的指导意义。
     本文主要研究了在873K时,以钼电极做研究电极,Pb(Ⅱ)离子在LiCl–KCl和LiCl–KCl–MgCl_2–PbCl_2两个熔盐体系中的电化学行为。Pb(Ⅱ)离子在熔盐中一步得到2个电子被还原为金属Pb,且Pb(Ⅱ)离子在低扫速时的还原和氧化过程是可逆过程,Pb(Ⅱ)离子在熔盐中的扩散系数为1.92×10~(-5)cm~2·s~(-1)。另外,在LiCl–KCl–MgCl_2–PbCl_2熔盐体系中考察了镁锂合金的共电沉积机理。当阴极电流密度达到或负于–0.776A·cm~(-2),阴极电位为–1.93V(vs.Ag/AgCl)或更负时,可以实现金属Pb、Mg和Li共电沉积。最后用恒电流电解制备了Mg–Li–Pb合金合金中含有Mg2Pb、Li7Pb2等多个合金相,且合金中Pb和Li含量与熔盐中MgCl_2和PbCl_2的浓度有关,Pb元素弥散均匀分布在合金中。
     另外,还研究了LiCl–KCl–MgCl_2–MnCl_2和LiCl–KCl–MgCl_2–MnO_2(纳米)两个熔盐体系中金属Mg、Mn、Li的共电沉积机理。933K时,在LiCl–KCl–MgCl_2–MnCl_2熔盐体系中,Mn(Ⅱ)离子在熔盐中一步得到2个电子被还原为金属Mn,Mn(Ⅱ)离子在该熔盐体系中的扩散系数为1.23×10~(-5)cm~2·s~(-1)。考察了金属Mn、Mg和Li的共电沉积条件。当阴极电流密度达到或负于-0.781A·cm~(-2)或阴极电位比–2.28V(vs. Ag/AgCl)更负时,Mn(Ⅱ)、Mg(Ⅱ)和Li(I)离子一起被还原,在该条件下可共电沉积制备Mg–Li–Mn合金
     在钼电极上,采用循环伏安法、方波伏安法、计时电流法等电化学研究方法研究了锰离子在LiCl–KCl–MgCl_2–MnO_2(纳米)熔盐体系中的电化学行为。在研究中用于提供Mn元素的纳米MnO_2是通过液相氧化还原法用KMnO_4和MnSO_4制得的。研究结果表明LiCl–KCl–MgCl_2–MnO_2(纳米)熔盐熔融后,MnO_2(纳米)被氯化,Mn以K_4MnCl_6的形式存在。793K时,Mn(Ⅱ)离子在该熔盐体系中是一步得到2个电子被还原为金属Mn。当阴极电流密度负于-0.087A·cm~(-2)或阴极电位比–2.20V(vs. Ag/AgCl)更负时,可以实现金属Mn、Mg和Li共电沉积。
     采用恒电流电解法分别在两个熔盐体系中制备了Mg–Li–Mn合金合金中含有Mg–Mn固溶体、βLi和αMn三个相,且合金中Li和Mn的含量与熔盐中MgCl_2和MnCl_2、MnO_2的浓度有关,Mn元素呈弥散相均匀分布在合金中。
     本文最后以LiCl–KCl–MgCl_2–Yb_2O_3熔盐体系为电解质共电沉积制备Mg–Li–Yb合金。933K时,通过实验与理论相结合的方法研究了MgCl_2对Yb_2O_3的氯化作用。在氯化过程中,有少量的YbCl_3生成,使在LiCl–KCl–MgCl_2–Yb_2O_3熔盐体系中共电沉积制备镁锂镱合金具备了可行性。而循环伏安法和计时电位研究结果证明,当阴极电流密度负于–0.466A·cm~(-2)或阴极电位控制在负于–2.15V时,可以实现镁锂镱合金的共沉积。另外,研究了Mg、Li、Yb三元共沉积的电解工艺。对合金的微观测试结果显示,合金中主要存在αMg、βLi和Mg2Yb相;Yb元素在Mg–Li–Yb合金中呈网状分布,主要分布在晶界处。随着Yb在合金中含量的增多,合金晶粒变小,Yb起到细化合金晶粒的作用。
Mg-Li based alloys, as the lightest structural materials, have widely applied prospect inthe fields of industry. The main alloying elements of Mg-Li based alloys are Pb, Mn and Yb,which can refine the grain and improve the properties. The frequently-used way, which iscomplicated and costly, to prepare Mg-Li based alloys are directly mixing and fusing themetallic elements. This is why the co-electrodeposition of molten salts is getting more andmore attention in recent years. The electrochemical behavior of Pb(Ⅱ), Mn(Ⅱ) and Yb(Ⅲ)ions were researched by the transient electrochemical techniques, which were cyclicvoltammetry, chronopotentiometry and chronoamperometry, in LiCl-KCl-MgCl_2molten saltsin this thesis. Moreover, the co-electrodeposition mechanism of Mg-Li-M(Pb, Mn, Yb) alloyswere also investigated. The alloys obtained by galvanostatic electrolysis were characterizedby X-ray diffraction (XRD), inductively coupled plasma atomic emission spectrometer (ICP),scan electron micrograph (SEM) and energy dispersive spectrometry (EDS).
     The electrochemical behavior of Pb(Ⅱ) ions was investigated in the LiCl-KCl-PbCl_2andLiCl-KCl-MgCl_2-PbCl_2melts on Mo electrode at873K in the first part of this thesis. Theresults show that Pb (Ⅱ) is reduced in a one-step process exchanging two electrons. Then aseries of typical cyclic voltammograms with different scan rates in LiCl-KCl-PbCl_2meltsshow that the cathodic/anodic reaction of Pb(Ⅱ) ions is diffusion controlled and reversible atlower scan rate. Then the diffusion coefficient of Pb(Ⅱ) ions is calculated as1.23×10~(-5)cm~2·s~(-1).The co-electrodeposition mechanism of Mg, Li and Pb was investigated on a Mo electrode inLiCl-KCl-MgCl_2-PbCl_2melts by cyclic voltammetry and chronopotentiometry at873K,which indicate that the Mg-Li-Pb alloys will co-electrodeposited when the current densitieslower than–0.776A·cm~(-2)or the applied potential is more negative than–1.93V(vs. Ag/AgCl).The XRD results confirme that Mg2Pb and Li7Pb2phases are exist in the Mg-Li-Pb alloysobtained by galvanostatic electrolysis. The variation of Mg-Li-Pb alloys phases can becontrolled by changing the concentrations of MgCl_2and PbCl_2in the melts. The SEM andEDS results suggested that the distribution of Pb elements in Mg-Li-Pb alloys are evenlydispersed.
     The second part of this thesis mainly researched the co-electrodeposition mechanism ofMg-Li-Mn alloys in the LiCl-KCl-MgCl_2melts which contained MnCl_2or nano-MnO_2. Theelectrochemical behavior of Mn(Ⅱ) ions was investigated in the LiCl-KCl-MgCl_2-MnCl_2melts on Mo electrode at933K. The results show that Mn(Ⅱ) is reduced in a one-step processexchanging two electrons. Then a series of typical cyclic voltammograms with different scanrates show that the cathodic/anodic reaction of Mn(Ⅱ) ions is diffusion controlled andreversible at lower scan rate. The diffusion coefficient of Mn(Ⅱ) ions at different temperatures in the molten salts are also calculated. The co-electrodeposition mechanism of Mg-Li-Mnalloys was investigated on a Mo electrode by cyclic voltammetry and chronopotentiometry,which indicate that the Mg-Li-Mn alloys will co-electrodeposit when the current densitieslower than–0.781A·cm~(-2)or the applied potential is more negative than–2.28V(vs.Ag/AgCl).
     The chemical dissolution occurred in the nano-MnO_2-LiCl-KCl-MgCl_2melts. The XRDresults suggest that nano-MnO_2prepared by liquid oxidation-reduction method with KMnO_4and MnSO_4became K_4MnCl_6in the molten salts. The electrochemical behavior of Mn (Ⅱ)ions provided by K_4MnCl_6was investigated on Mo electrode at793K. The typical cyclicvoltammogram and square wave voltammogram show that the Mn(Ⅱ) is reduced in a one-stepprocess exchanging two electrons and controlled by diffusion. The reaction is reversible atlower scan rate. The co-electrodeposition mechanism of Mg, Li and Mn alloys wasinvestigated on a Mo electrode by cyclic voltammetry, chronopotentiometry andchronoamperometry, which indicate that the electrochemical codeposition of Mg, Li and Mnmetal occur when the current densities lower than–0.087A·cm~(-2)or the applied potential ismore negative than–2.20V(vs. Ag/AgCl).
     Mg-Li-Mn alloys obtained by galvanostatic electrolysis were characterized by XRD,SEM and ICP. The XRD results confirm that Mg-Mn sosoloid, βLi and αMn phases all existin the Mg-Li-Mn alloys. The variation of Mg-Li-Mn alloys phases can be controlled bychanging the concentrations of MgCl_2and MnCl_2in the melts. The SEM and EDS resultssuggest that the distribution of Mn elements is uniform and dispersed in Mg-Li-Mn alloys.
     The preparation of Mg-Li-Yb alloys by electrochemical codeposition on Mo electrode inLiCl-KCl-MgCl_2-Yb_2O_3melts at the last part of this thesis. The MgCl_2has a certain effect ofchlorination on Yb_2O_3. YbCl_3which was generated in the chlorination process made themethod of preparing Mg-Li-Yb alloys by electrocodeposition in LiCl-KCl-MgCl_2-Yb_2O_3melts feasible. The results of cyclic voltammetry and chronopotentiometry show that thecodeposition of Mg, Li and Yb occurred when the current densities lower than–0.466A·cm~(-2)or the applied potential is more negative than–2.15V(vs. Ag/AgCl). Then the relationship ofelectrolytic parameters such as time, temperature and current densities with current efficiencywere also researched. The microscopic test results of Mg-Li-Yb alloys show that Mg2Ybphase are exist in the alloys, the elements of Yb are mainly distribute at grain boundaries andthe grain size decline with the content of Yb increased.
引文
[1]孟祥瑞,巫瑞智,张密林.超轻Mg–Li合金细晶强化与复合强化的研究现状[J].铸造技术,2009,30(01):116–119页
    [2]乔振,赵中魁,孙清洲等. Li含量对Al–Si–Mg–Li合金组织与性能的影响[J].铸造技术,2010,31(08):1040–1043页
    [3]清水光春,竹内宏昌,毛小六. Mg–Li合金的铸造组织及性能[J].宇航材料工艺,1989,19(02):36–38页
    [4]乐启炽,崔建忠,李红斌等. Mg–Li合金研究最新进展及其应用[J].材料导报,2003,17(12):1–4页
    [5]朱绒霞.镁合金表面保护膜的研究[J].宇航材料工艺,2005,5:22–24页
    [6]杨程,杜红星,刘晓平.镁合金在3C产品中应用现状及前景展望[J].铸造设备研究,2005(6):46–49页
    [7]谢刚.熔盐电解理论与应用[M].北京:冶金工业出版社,1998:148–151页
    [8]陈念贻.熔盐结构和熔盐量子化学[M].北京:冶金工业出版社,1990:362–370页
    [9]杨绮琴.熔盐技术的应用[J].大学化学,1994,9(03):1–5页
    [10]杨绮琴,段淑贞.熔盐电化学的新进展[J].电化学,2001,7(01):10–17页
    [11]沈向阳,丁静,彭强等.高温熔盐在太阳能热发电中的应用[J].广东化工,2007,34(11):49–52页
    [12]李乃朝,衣宝廉,孔莲英等.熔融碳酸盐燃料电池研究[J].电化学,1996,2(01):89–95页
    [13]杜森林,卢洪德,路连清.熔融碳酸盐燃料电池的研究和发展[J].化工进展,1994,(01):29–32页
    [14]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993:325–329页
    [15] Piersma B J, Ryan D M, Schumacher E R, et al. Electrodeposition and stripping oflithium and sodium on inert electrodes in room temperature chloroaluminate moltensalts[J]. Journal of the Electrochemical Society,1996,143(3):908–913P
    [16] Martínez A M, B resen B, Haarberg G M, et al. Electrodeposition of magnesiumfrom CaCl2-NaCl-KCl-MgCl2melts[J]. Journal of the Electrochemical Society,2004,151: C508–513P
    [17] Martínez A M, B resen B, Haarberg G M, et al. Electrodeposition of magnesiumfrom the eutectic LiCl–KCl melt[J]. Journal of Applied Electrochemistry,2004,34:1271–1278P
    [18] Castrillejo Y, Martínez A M, Pardo R, et al. Electrochemical behaviour ofmagnesium ions in the equimolar CaCl2-NaCl mixture at550℃[J]. ElectrochemicaActa,1997,42:1869–1876P
    [19] B rresen B, Haarberg G M, Tunold R. Electrodeposition of magnesium from halidemelts-charge transfer and diffusion kinetics[J]. Electrochemica Acta,1997,42:1613–1622P
    [20]王化章,刘业翔.铝电解生产技术的发展趋势及战略[J].轻金属,1992,6:20–26页
    [21] degard R, Bj rgum A, Sterten, et al. Kinetics of aluminium deposition fromaluminium chloride-alkali chloride melts[J]. Electrochemica Acta,1982,27(11):1595–1598P
    [22] Chen G Z, Fray D J, Farthing T W. Direct electrochemical reduction of titaniumdioxide to titanium in molten calcium chloride[J]. Nature,2000,407:361–364P
    [23] Jafarian M, Mahjani M G, Gobal F, et al. Electrodeposition of aluminum frommolten AlCl3–NaCl–KCl mixture[J]. Journal of Applied Electrochemistry,2006,36:1169–1173P
    [24]程红伟,鲁雄刚,李谦等.固体透氧膜法制备金属钽[J].金属学报,2006,42:500–504页
    [25]李颖君,王淑兰,钟和香等.电化学还原TiO2反应机理及电极电势的研究[J].有色金属,2003,55(4):68–70页
    [26]杜继红,奚正平,李晴宇等.电化学还原TiO2制备金属钛及反应过程的研究[J].稀有金属材料过程,2006,35(3):1045–1049页
    [27]陆庆桃,叶云蔚,李国勋.氯化钕熔盐电解的阴极过程[J].中国稀土学报,1991,9(1):17–19页
    [28]陆庆桃,余仲兴,颜晓勇.氧化钕电解的阴极过程及钕的溶解行为[J].上海金属(有色分册),1991,12(4):1–7页
    [29]赵立忠,段淑贞,顾学范等.钇离子在氯化物熔盐中的电化学还原[J].中国稀土学报,1992,10(4):326–330页
    [30]赵立忠,段淑贞,魏寿昆.钇离子在氟化物熔盐体系中的电化学还原[J].中国稀土学报,1993,11(3):271–273页
    [31]杨绮琴,丘开容,刘冠昆等.氯化物熔体中钇的电还原和合金化[J].中国稀土学报,1994,12(2):116–119页
    [32]刘冠昆,童叶翔,洪惠婵等.氯化物熔体中钇离子在铁电极上的电还原[J].物理化学学报,1998,14(5):463–466页
    [33]梁行方,马宏军,段淑贞等.在氟盐体系中钕离子阴极过程的研究[J].稀土,1999,20(4):21–23页
    [34]祁雪,焦树强,朱鸿民. NaCl-CsCl熔盐中Ce(Ⅲ)离子的阴极过程研究[J].中国稀土学报,2004,22:319–322页
    [35]李宝善,苏连永. SmCl3在LiCl-KCl熔盐中的电化学反应[J].甘肃联合大学学报,2006,20(3):55–56页
    [36] Ghosh S, Vandarkuzhali S, Venkatesh P, et al. Redoc behaviour of ceriumoxychloride in molten MgCl2-NaCl-KCl eutectic[J]. Electrochimica Acta,2006,52(3):1206–1212P
    [37]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中镨钴合金形成的电化学研究[J].中山大学学报,1997,36(2):118–121页
    [38]童叶翔,杨绮琴,刘冠昆等.熔盐电解制取镧铜中间合金的研究[J].中国稀土学报,1991,9(4):311–314页
    [39]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中电解研制镨镍合金[J].稀有金属,1994,18(6):433–435页
    [40]刘冠昆,洪惠婵,杨绮琴等.电解制备铒钴中间合金的电化学研究[J].中国稀土学报,1994,12(4):309–312页
    [41]杜森林,刘应明,路连清等.直流脉冲电解Al–La合金的研究[J].稀土,1993,14(3):66–69页
    [42]杜森林,苏明忠.氯化物熔盐中Nd3+在液体Ga电极上还原的电化学行为[J].金属学报,1991,27(3): B171–175页.
    [43]苏明忠,彭建军,宋丕莹等.熔盐电解制备Ga–Nd合金的研究[J].中国稀土学报,1992,10(2):173–174页
    [44]苏明忠,宋丕莹,邹天楚等.熔盐电解制取Al–Dy合金[J].稀土,1995,16(5):61–63页
    [45]赵敏寿,冯力,唐定骧.浅谈铝电解槽制备铝–稀土合金方法[J].稀土,1986,3:48–52页
    [46]陈必清,王建朝,刘青等.低温熔盐中Yb-Ni合金膜的电沉积研究[J].武汉理工大学学报,2006,28(8):5–8页
    [47]王宇,何凤荣,刘冠昆等.二甲基甲酰胺中电沉积制备钐钴合金[J].应用化学,2002,19(1):88–90页
    [48]徐秦英,王建朝,郭承育.乙酰胺-尿素-NaBr熔体中Dy–Co合金的电化学制备[J].华中师范大学学报,2006,40(2):217–221页
    [49]林振汉.有色金属提取手册–锆铪[M].北京:冶金工业出版社,2002:3–13页,11–128页
    [50]熊炳昆等.锆铪及其化合物应用[M].北京:冶金工业出版社,2002:1–24页,170–239页,250–269页
    [51] Baboian R, Hill D L, Bailey R A. Electrochemical studies on zirconium and hafniumin molten LiCl–KCl eutectic[J]. Journal of the Electrochemical Society,1965,112(12):1221–1224P
    [52] Kipouros G J, Flengas S N. Electrorefining of zirconium metal in alkali chloride andalkali fluoride fused electrolyte[J]. Journal of the Electrochemical Society,1985,132(5):1087–1098P
    [53] Sakamura Y. Zirconium behaviour in molten LiCl–KCl eutectic[J]. Journal of theElectrochemical Society,2004,151(3): C187–193P
    [54] Kawase M, Ito Y. The electroformation of Zr metal, Zr–Al alloy and carbon films onceramic[J]. Jounal of Applied Electrochemistry,2003,33:785–793P
    [55] Basile F, Chassaing E, Lorthioir G. Electrochemical reduction of ZrCl4in moltenNaCl, CsCl and KCl–LiCl and chemical reaductions coupled to the electrodepositionof zirconium[J]. Journal of Applied Electrochemicstry,1981,11:645–651P
    [56] Serrano K, Taxil P. Electrochemical reduction of trivalent uranium ions in moltenchlorides[J]. Journal of Applied Electrochemistry,1999,29:497–503P
    [57] Masset P, Bottomley D, Konings R, et al. Electrochemistry of uranium in moltenLiCl–KCl eutectic[J]. Journal of the Electrochemical Society,2005,152(6):A1109–1115P
    [58] Prabhakara Reddy B, Vandarkuzhali S, Subramanian T, et al. Electrochemical studieson the redox mechanism of uranium chloride in molten LiCl–KCl eutectic[J].Electrochemica Acta,2004,49:2471–2478P
    [59] Shirai O, Uozumi K, Iwai T, et al. Electrode reaction of the Np3+/Np couple at liquidand Bi electrodes in LiCl–KCl eutectic melts[J]. Journal of Applied Electrochemistry,2004,34:323–330P
    [60] Nakajima H, Nohira T, Hagiwara R. Electrodeposition of metallic molybdenum filmsin ZnCl2–NaCl–KCl–MoCl3systems at250℃[J]. Ecletrochimica Acta,2006,51:3776–3780P
    [61] Mohamedi M, Bouteillon J, Poignet J C, et al. Electrochimical impedancespectroscopy study of indium couples in LiCl–KCl eutectic at450℃[J].Electrochimica Acta,1996,41(9):1495–1504P
    [62] Cotata A, Bouteillon J, Poignet J C. Electrochemistry of molten LiCl–KCl–CrCl3andLiCl–KCl–CrCl2mixtures. Journal of Applied Electrochemistry,1997,27:651–658P
    [63] Shirai O, Iwai T, Suzuki Y, et al. Electrochemical behaviour of actinide ions inLiCl–KCl eutectic melts[J]. Journal of Alloys and Compounds,1998,271–273:685–688P
    [64] Serp J, Konings R J M, Malmbeck R, et al. Electrochemical behaviour of plutoniumion in LiCl–KCl eutectic melts[J]. Journal of Electroanalytical Chemistry,2004,561:143–148P
    [65]王旭,翟玉春,谢宏伟等.熔盐电解制备硼及金属硼化物的开发前景[J].材料导报,2008,22(6):58–60页
    [66]宋明志,安慧.熔盐电解法制备元素硼粉[J].辽宁化工,2004,33(8):469–470页
    [67]刘仪柯,马文会,戴永年等.融盐电解法直接制备太阳能级硅新工艺的探讨[J].有色金属:冶炼部分,2008,2:31–33页
    [68] Yasuda K, Nohira T, Hagiwara R, et a1. Direct electrolyric reduction of solid SiO2inmolten CaCl2for the production of solar grade silicon[J]. Electrochemica Acta,2007,53(1):106–110P
    [69] Nohira T, Yasuda K, Ito Y. Pinpoint and bulk electrochemica1reduction ofinsulating silicon dioxide to silicon[J]. Nature Materials,2003,2:397–401P
    [70]段淑珍,乔芝郁.熔盐化学原理和应用[M].北京:冶金工业出版社,1990:337–393页
    [71] Iida T, Nohira T, Ito Y. Electrochemical formation of Yb–Ni alloy films by Licodeposition method in a molten LiCl–KCl–YbCl3system[J]. Electrochemica Acta,2003,48:1531–1536P
    [72] Konishi H, Nohira T, Ito Y. Formation and phase control of Dy alloy films byelectrochemical implantation and displantation[J]. Jounal of the ElectrochemicalSociety,2001,148(7): C506–511P
    [73] Iida T, Nohira T, Ito Y. Electrochemical formation of Sm–Ni alloy films in a moltenLiCl–KCl–SmCl3system[J]. Electrochemica Acta,2001,46:2537–2544P
    [74] Nohira T, Kambara H, Amezawa K, et al. Electrochemical formation and phasecontrol of Pr–Ni alloys in a molten LiCl–KCl–PrCl3system[J]. Jounal of theElectrochemical Society,2005,152(4): C183–189P
    [75] Gibilaro M, Massot L, Chamelot P, et al. Electrochemical extraction of europiumfrom molten fluoride media[J]. Electrochimica Acta,2009,55:281–287P
    [76] Chamelot P, Massot L, Cassayre L, et al. Electrochemical behaviour of thorium(IV)in molten LiF–CaF2medium on inert and reactive electrodes[J]. Electrochimica Acta,2010,55:4758–4764P
    [77] Gibilaro M, Massot L, Chamelot P, et al. Electrochemical preparation ofaluminium–nickel alloys by under-potential deposition in molten fluorides[J].Journal of Alloys and Compounds,2009,471:412–420P
    [78] Han Q, Chen J S, Liu K R, et al. Preparation and electrochemical properties ofcomposite LaNix/Ni–S–Co alloy film[J]. Iinternational Journal of Hydrogen Energy,2008,33:4495–4500P
    [79] Chen Z, Zhang M L, Han W, et al. Electrodeposition of Li and electrochemicalformation of Mg–Li alloys from the eutectic LiCl–KCl[J]. Journal of Alloys andCompounds,2008,464:174–178P
    [80] Castrillejo Y, Bermejo M R, Díaz Arocas P, et al. Electrochemical behaviour ofpraseodymium (III) in molten chlorides[J]. Journal of Electroanalytical Chemistry,2005,575:61–74P
    [81] Castrillejo Y, Bermejo M R, Barrado A I, et al. Electrochemical behaviour ofdysprosium in the eutectic LiCl–KCl at W and Al electrodes[J]. Electrochemica Acta,2005,50(10):2047–2057P
    [82] Castrillejo Y, Bermejo M R, Barrado E, et al. Electrochemical behaviour of erbium inthe eutectic LiCl–KCl at W and Al electrodes[J]. Electrochemica Acta,2006,51(10):1941–1951P
    [83] Bermejo M R, Gómez J, Medina J, et al. The electrochemistry of gadolinium in theeutectic LiCl–KCl on W and Al electrodes[J]. Journal of Electroanalytical Chemistry,2006,588(2):253–266P
    [84] Bermejo M R, Rosa F D L, Barrado E, et al. Cathodic behaviour of europium (III) onglassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in theeutectic LiCl–KCl[J]. Journal of Electroanalytical Chemistry,2007,603:81–95P
    [85] Castrillejo Y, Bermejo M R, Barrado E, et al. Electrodeposition of Ho andElectrochemical Formation of Ho–Al Alloys from the Eutectic LiCl–KCl[J]. Jounalof the Electrochemical Society,2006,153(10): C713–721P
    [86] Bermejo M R, Barrado E, Martínez A M, et al. Electrodeposition of Lu on W and Alelectrodes: Electrochemical formation of Lu–Al alloys and oxoacidity reactions ofLu(III) in the eutectic LiCl–KCl[J]. Journal of Electroanalytical Chemistry,2008,617:85–100P
    [87] Castrillejo Y, Fernández P, Bermejo M R, et al. Electrochemistry of thulium on inertelectrodes and electrochemical formation of a Tm–Al alloy from molten chlorides[J].Electrochimica Acta,2009,54:6212–6222P
    [88] Wei S Q, Zhang M L, Han W, et al. Electrochemical behavior of antimony andelectrodeposition of Mg–Li–Sb alloys from chloride melts[J]. Electrochimica Acta,2011,56:4159–4166P
    [89] Castrillejo Y, Bermejo M R, Díaz Arocas P, et al. The electrochemical behaviour ofthe Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutecticLiCl–KCl[J]. Journal of Electroanalytical Chemistry,2005,579:343–358P
    [90]李义根.液态阴极熔盐电解法制备锌–稀土中间合金的研究[J].有色矿冶,1992,5:24–29页
    [91]苏明忠,宋丕莹,邹天楚等.熔盐电解制取Al–Dy合金[J].稀土,1995,16(5):61–63页
    [92] Konishi H, Nohira T, Ito Y. Formation of Dy–Fe alloy films by molten saltelectrochemical process[J]. Electrochimica Acta,2002,47:3533–3539P
    [93] Gibilaro M, Massot L, Chamelot P, et al. Co–reduction of aluminium and lanthanideions in molten fluorides: Application to cerium and samarium extraction fromnuclear wastes[J]. Electrochimica Acta,2009,54:5300–5306P
    [94] Polyakova L P, Taxil P, Polyakov E G. Electrochemical behaviour and codepositionof titanium and niobium in chloride–fluoride melts[J]. Journal of Alloys andCompounds,2003,359:244–255P
    [95] Ueda M, Kigawa H, Ohtsuka T. Co-deposition of Al–Cr–Ni alloys using constantpotential and potential pulse techniques in AlCl3–NaCl–KCl molten salt[J].Electrochimica Acta,2007,52:2515–2519P
    [96] Ghallali H E, Groult H, Barhoun A, et al. Electrochemical synthesis of Ni–Sn alloysin molten LiCl–KCl[J]. Electrochimica Acta,2009,54:3152–3160P
    [97] Zhang M L, Cao P, Han W, et al. Preparation of Mg–Li–La alloys by electrolysis inmolten salt[J]. Transactions of Nonferrous Metals Society of China,2012,22:16–22P
    [98] Zhang M L, Chen L J, Han W, et al. Electrochemical behavior of Pb(ΙΙ) inLiCl KCl MgCl2PbCl2melts on Mo electrode[J]. Transactions of NonferrousMetals Society of China,2012,22:711-716P
    [99] HAN W, CHEN Q, Ye K, et al. New preparation of Mg–Li–Al alloys by electrolysisin molten salt[J]. Acta Metallurgica. Sin.ica(Engl. Lett.),2010,23(2):129–136P
    [100]于化顺,闵光辉,陈熙琛.合金元素在Mg–Li基合金中的作用[J].稀有金属材料与工程,1996,25(2):1–5页
    [101] Yamamoto A, Ashida T, Kouta Y, et a1. Precipitation in Mg–(4~13)%Li–(4~5)%Znternary alloys[J]. Materials Transactions,2003,44(4):619–624P
    [102]王涛.稀土在镁锂合金中的作用及机理.哈尔滨工程大学博士学位论文[D].2008,10–15页
    [103]李德辉,董杰,曾小勤等.高性能稀土镁合金研究进展[J].材料导报,2005,(08):51–54页
    [104]杨素媛,张丽娟,张堡垒.稀土镁合金的研究现状及应用[J].稀土,2008,(04):81–86页
    [105]徐光宪.稀土(下)[M].北京:冶金工业出版社,1995:462–463页
    [106]邓永和.稀土镁合金研究现状与发展趋势[J].稀土,2009,1:76–79页
    [107] Wang T, Zhang M L, Wu R Z. Microstructure and properties of Mg–8Li–1Al–1Cealloy[J]. Materials Letters,2008,62(12–13):1846–1848P
    [108] Zhang M L, Wu R Z, Wang T. Microstructure and mechanical properties ofMg–8Li–(0–3) Ce alloys[J]. Journal of Materials Science,2009,44(5):1237–1240P
    [109] Liu B, Zhang M, Wu R Z. Effects of Nd on microstructure and mechanical propertiesof as–cast LA141alloys[J]. Materials Science and Engineering A,2008,487(1–2):347–351P
    [110]陈范才,肖鑫,周琦等.现代电镀技术[M].北京:中国纺织出版社,2009:23–31页
    [111]王秋萍,蔡超,李建梅.纳米晶FeCoNi软磁薄膜的制备及其耐蚀性能的研究[J].腐蚀科学与防护技术,2009,21(2):158–160页
    [112] Fujimura T, Dolmatovb V Y, Burkat G K, et al. Electrochemical codeposition ofSn–Pb–metal alloy along with detonation synthesis nanodiamonds[J]. Diamond&Related Materials,2004,13:2226–2229P
    [113] Elvira Gómez, Salvador Pané, Elisa Vallés. Electrodeposition of Co–Ni andCo–Ni–Cu systems in sulphate–citrate medium[J]. Electrochimica Acta,2005,51:146–153P
    [114]曾跃,姚素薇,郭鹤桐.从氨性柠檬酸熔盐中电沉积Ni–Mo的机理研究[J].物理化学学报,1995,11(4):351–355页
    [115]牛振江,姚士冰,周绍民.现场表面拉曼光谱研究Fe–Mo合金诱导共沉积[J].物理化学学报,1998,14(12):1074–1079页
    [116]颜永得,张密林,韩伟等. KCl–LiCl–MgCl2熔盐体系中共电沉积制备Mg–Li合金及理论分析[J].无机化学学报,2008,24(06):902–906页
    [117] Yan Y D, Zhang M L, Xue Y, et al. Electrochemical study of the codeposition ofMg–Li–Al alloys from LiCl–KCl–MgCl2–AlCl3melts[J]. Journal of AppliedElectrochemistry,2009,39(3):455–461P
    [118] Yan Y D, Zhang M L, Xue Y, et al. Electrochemical formation of Mg–Li–Ca alloysby codeposition of Mg, Li and Ca from LiCl–KCl–MgCl2–CaCl2melts[J]. PhysicalChemistry Chemical Physics,2009,11(29):6148–6155P
    [119] Yan Y D, Zhang M L, Xue Y, et al. Study on the preparation of Mg–Li–Zn alloys byelectrochemical codeposition from LiCl–KCl–MgCl2–ZnCl2melts[J].Electrochimica Acta,2009,54(12):3387–3393P
    [120] Chen Z, Zhang M L, Han W, et al. Electrochemical Reduction of Zr (IV) in theLiCl–KCl Molten Salt[J]. Rare Metal Materials and Engineering,2009,38(3):456–459P
    [121] Han W, Tian Y, Zhang M L, et al. Preparation of Mg–Li–Sm alloys byelectrocodeposition in molten salt[J]. Journal of Rare Earths,2009,27(6):1046–1050P
    [122] Wei S Q, Zhang M L, Han Wi, et al. Electrochemical codeposition of Mg–Li–Gdalloys from LiCl–KCl–MgCl2–Gd2O3melts[J]. Transactions of Nonferrous MetalsSociety of China,2011,21(4):825–829P
    [123]赵浩峰,王玲,孙磊等. Mg–Mn–Pb铸造合金在力学环境下的行为研究[J].铸造工程,2009,6:36–37页
    [124]卫爱丽,杨学军,赵浩峰.合金元素对镁合金的性能影响研究[J].铸造设备研究,2005,3:16–17页
    [125] Srinivasan A, Pillai U T S, Pai B C. Effect of Pb addition on ageing behavior ofAZ91magnesium alloy[J]. Materials Science and Engineering: A,2007,452–453:87–92P
    [126]孙斌.铅锡合金准二维电沉积的微观结构研究[J].电化学,2006,12(3):284–287页
    [127]姜妍妍,曹梅,郭忠诚等. Ti阳极上电沉积制备Pb–聚丙烯腈-碳化钨复合镀层及其电化学性能[J].应用化学,2011,28(3):308–313页
    [128]王明涌,王志,郭占成.超重力场强化铅电沉积的规律与机理[J].物理化学学报,2009,25:883–889页
    [129]常志文,郭忠诚,潘君益等. Al/Pb–WC–ZrO2复合电极材料的电化学性能研究[J].云南大学学报,2007,29(3):272–277页
    [130]王森林,张妍.甲磺酸中Pb–Sb合金的电沉积及其电化学性能[J].应用化学,2008,25(11):1324–1329页
    [131] Rashkova B, Guel B, P tzschke R T, et al. Electrodeposition of Pb on n-Si(111)[J].Electrochimica Acta,1998,43(19–20):3021–3028P
    [132] Wang H Y, Pritzker M. Effect of low concentrations of Pb2+on Sn electrodepositionin methyl sulphonic acid solutions[J]. Electrochimica Acta,2008,53(5):2430–2440P
    [133] Xiao F, Yoo B Y, Ryan M A, et al. Electrodeposition of PbTe thin films from acidicnitrate baths[J]. Electrochimica Acta,2006,52(3):1101–1107P
    [134]张丁非,齐福刚,石国梁等. Mn含量对Mg–Zn–Mn变形镁合金显微组织和力学性能的影响[J].稀有金属材料与工程,2010,39(12):2205–2210页
    [135]王春建,金青林,周荣等. Mn元素对高纯Mg–3Al合金晶粒尺寸的影响[J].中国有色金属学报,2010,20(8):1495–1500页
    [136]周学华,钮洁欣,卫中领等.添加RE和Mn元素对Mg–9Al合金耐蚀性的影响[J].轻合金加工技术,2006,34(10):49–54页
    [137] Huang L W, Elkedim O, Jarzebski M, et al. Structural characterization andelectrochemical hydrogen storage properties of Mg2Ni1xMnx(x=0,0.125,0.25,0.375) alloys prepared by mechanical alloying[J]. International Journal of HydrogenEnergy,2010,35(13):6794–6803P
    [138] Zhang Z Y, Peng L M, Zeng X Q, et al. Effects of Cu and Mn on mechanicalproperties and damping capacity of Mg–Cu–Mn alloy[J]. Transactions of NonferrousMetals Society of China,2008,18(1):55–58P
    [139] Tong L B, Zheng M Y, Xu S W, et al. Effect of Mn addition on microstructure,texture and mechanical properties of Mg–Zn–Ca alloy[J]. Materials Science andEngineering: A,2011,528(10–11):3741–3747P
    [140] Zhang J SH, Du H W, Liang W, et al. Effect of Mn on the formation of Mg–basedspherical icosahedral quasicrystal phase[J]. Journal of Alloys and Compounds,2007,427(1–2):244–250P
    [141] Fang X Y, Yi D Q, Nie J F, et al. Effect of Zr, Mn and Sc additions on the grain sizeof Mg–Gd alloy[J]. Journal of Alloys and Compounds,2009,470(1–2):311–316P
    [142]张玻,贾江涛,廖春生等.电极液酸度及稀土浓度对硫酸体系电解还原提纯的影响[J].中国稀土学报,2006,24(1):116–119页
    [143]于彭,张景怀,刘珂等. Yb对Mg–5Al–0.4Mn镁合金显微组织和力学性能的影响[J].铸造,2009,58(2):108–112页
    [144]叶呈武,刘志义.对挤压ZK31镁合金室温力学性能的影响[J].材料研究,2005,30(10):17–19页
    [145]吴正刚,宋旼,贺跃辉.对铝–镁合金显微组织和力学性能的影响[J].稀有金属,2009,33(5):616–620页
    [146] Johnson K E, Mackenzie J R. Samarium, Europium, and Ytterbium ElectrodePotentials in LiCl–KCl Eutectic Melt[J]. Journal of Electrochemical Society,1969,116(12):1697–1703P
    [147] Guankun L, Yexiang T, Quichan H, et al. Electroreduction of Yb(III) on nikelcathode in molten chloride, The Transactions of Nonferrous Metals Society of China,1998,8(3):516–519P
    [148] Novoselova A, Smolenski V, Thermodynamic properties of thulium and ytterbium infused NaCl–KCl–CsCl eutectic[J]. Journal of Chemical Thermodynamics,2011,43:1063–1067P
    [149] Smolenski V, Novoselova A, Osipenko A, et al. The influence of electrode materialnature on the mechanism of cathodic reduction of ytterbium (III) ions in fusedNaCl–KCl–CsCl eutectic[J]. Journal of Electroanalytical Chemistry,2009,633:291–296P
    [150] Chen Y, Ye K, Zhang M L. Preparation of Mg–Yb alloy film by electrolysis in themolten LiCl–KCl–YbCl3system at low temperature[J]. Journalof Rare Earths,2010,28(1):128–133P
    [151]刘冠昆,童叶翔,洪惠婵.氯化物熔体中铜中间合金的形成和电解制备[J].中国有色金属学报,1998,8(4):663–667页
    [152]刘丽英,张海燕,曹培健等.超级电容器用无定形MnO2的制备及性能[J].广东化工,2008,35(6):23-25页
    [153]李素梅,朱琦,尚屹等.纳米二氧化锰制备及在环境治理方面应用的研究进展[J].工程技术,2009,414:75-77页
    [154]肖鸽,胡彩园,郑华均.纳米二氧化锰的制备及其应用研究[J].广东化工,2011,38(8):73–74页
    [155]彭爱国,贺周初,肖伟等.化学二氧化锰研究进展[J].无机盐工业,2011,43(3):8–10页
    [156]冯杨柳,张密林,陈野等.无机盐水溶液反应合成MnO2纳米粉体及其电容特性[J].硅酸盐学报,2005,33(3):318–322页
    [157] Yang L, Hudson R G. Some investigations of the Ag AgCl in LiCl–KCl eutecticreference electrode[J]. Journal of the Electrochemical Society,1959,106:986–990P
    [158] Serp J, Allibert M, Terrier A L, et al. Electroseparation of Actinides fromLanthanides on Solid Aluminum Electrode in LiCl–KCl Eutectic Melts. Journal ofthe Electrochemical Society,2005,152: C167–172P
    [159]张永健,罗亮明.氯化镁电解时液镁阴极析出相过程的研究[J].中南矿冶学院学报,1991,22(5):529–533页
    [160]张永健,罗亮明.氯化镁电解阴极过程机理及液镁析出状态的研究[J].中南矿冶学院学报,1994,25(2):176–181页
    [161] Yang B G, Qiu Z X, Gao B L. Electrolytic preparation of Al–Ca master alloy in liquidAl cathode[J]. Transactions of Nonferrous Metals Society of China,2000,10(2):246–249P
    [162] Lu H M, Zou X, Fang K M, et al. Preparation of Al–Si–Ti master alloys byelectrolysis of silica and titania in cryolite-alumina melts[J]. Rare Metals,2000,19:141–146P
    [163]郭青蔚,王桂生等.常用有色金属二元合金相图集[M].北京:化学工业出版社,2009:36页,44页,81页
    [164]刘楚明,朱秀荣等.镁合金相图集[M].长沙:中南大学出版社,2006:35页,43页,62页
    [165] Caravaca C, Cordoba G. D, Tomas M J, et al. Electrochemical behaviour ofgadolinium ion in molten LiCl–KCl eutectic[J]. Journal of Nuclear Materials,2007,360:25–31P
    [166] Smolenski V, Novoselova A, Osipenko A, et al. Electrochemistry of ytterbium (III) inmolten alkali metal chlorides[J]. Electrochimica Acta,2008,54:382–387P
    [167] Hamel C, Chamelot P, Laplace A, et al. Reduction process of uranium(IV) anduranium(III) in molten fluorides[J]. Electrochimica Acta,2007,52:3995–4003P
    [168] Hamel C, Chamelot P, Taxil P. Neodymium(III) cathodic processes in moltenfluorides[J]. Electrochimica Acta,2004,49:4467–4476P
    [169] Serrano K, Taxil P. Electrochemical reduction of trivalent uranium ions in moltenchlorides[J]. Journal of Applied Electrochemistry,1999,29:497–503
    [170] Berzins T, Delahay P. Oscillographic Polarographic Waves for the ReversibleDeposition of Metals on Solid[J]. Journal of the American Chemical Society,1953,75:555–559P
    [171] Rodríguez-Díaz J M, Teresa Santos-Martín M. Study of the best designs formodifications of the Arrhenius equation[J]. Chemometrics and Intelligent LaboratorySystems,2009,95(2):199–208P
    [172] Rodríguez-Aragón L J, López-Fidalgo J. Optimal designs for the Arrheniusequation[J]. Chemometrics and Intelligent Laboratory Systems,2005,77(1–2):131–138P
    [173] Dollimore D, Tong P, Alexander K S. The kinetic interpretation of the decompositionof calcium carbonate by use of relationships other than the Arrhenius equation[J].Thermochimica Acta,1996,282–283:13–27P
    [174]杨绮琴,方北龙,童叶翔.应用电化学(第二版)[M].广州:中山大学出版社,2005:172-178页
    [175]张力德,牟季美.纳米材料学[M].沈阳:辽宁科技出版社,1994:19–21页,30–31页
    [176]杨惠.二氧化锰的制备及超级电容性能研究[D].哈尔滨工程大学硕士论文,2006
    [177] Xi G CH, Peng Y Y, Zhu Y CH, Xu L Q, et al. Preparation of β-MnO2nanorodsthrough a γ-MnOOH precursor route[J]. Materials Research Bulletin,2004,39(11):1641–1648P
    [178] Ahmed K A M, Peng H, Wu K B, et al. Hydrothermal preparation of nanostructuredmanganese oxides (MnOx) and their electrochemical and photocatalytic properties[J].Chemical Engineering Journal,2011,172(1):531–539P
    [179] Zhang W X, Yang Z H, Wang X, et al. Large-scale synthesis of β–MnO2nanorodsand their rapid and efficient catalytic oxidation of methylene blue dye[J]. CatalysisCommunications,2006,7(6):408–412P
    [180]刘彬,卢荣.物理化学[M].武汉:华中科技大学出版社,2008:309–312页
    [181] WU W J, Nancollas G H. A new understanding of the relationship between solubilityand particle size[J]. Journal of Solution Chemistry,1998,27(6):521–531P
    [182] Burns D T, Townshend A, Carter A H. Inorganic Reaction Chemistry[M]. New York:John Wiley and Sons,1981:365P
    [183]杜森林,吴美煌,杜富英等.稀土氧化物在碱金属和碱土金属氟化物熔盐中的溶解度[J].稀土,1987,2:59–62页
    [184] Esquivel M R, Bohe A E, Pasquevich D M, et al. Effect of reaction temperature onthe chlorination of a Sm2O3–CeO2–C mixture[J]. Thermochimica Acta,2005,432:47–55P
    [185] Esquivel M R, Bohe A E, Pasquevich D M, et al. Chlorination of samariumsesquioxide[J]. Journal of Materials Processing Technology,2005,170:304–309P
    [186] Esquivel M R, Bohe A E, Pasquevich D M, et al. Synthesis of samarium sesquioxidefrom the thermal decomposition of samarium oxychloride[J]. Materials ResearchBulletin,2007,42:553–562P
    [187] Binnewies M, Milke E. Thermochemical Data of Elements and Compounds[M].Weinheim: Wiley-VCH Verlag GmbH,2002:317P,332P,339P,380P,571P,668P,678P,679P,741P,763P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700