用户名: 密码: 验证码:
镁锂合金力学性能及LPSO构筑
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金是目前最轻的金属结构材料,具有轻质、高比强度、高比刚度、导电导热性好、电磁屏蔽性能好等优点,使得其在航空航天、武器装备、交通装备、便携电子等领域具有很好的应用前景。在这些应用中往往涉及到合金材料的焊接加工,在合金制成器件后的服役过程中也经常会遇到动态冲击等状况,而目前对于镁锂基合金焊接性能和动态力学性能的研究较少。此外,镁锂合金目前的绝对强度不高、高温力学性能不好等缺点也是制约其广泛应用的关键问题。
     本论文针对镁锂合金的这一研究现状,对镁锂基合金进行钨极惰性气体保护焊,研究多种具有不同相组成的镁锂合金的焊接组织和性能,以及镁锂合金和铝合金进行异种材料连接时的焊接组织和性能;采用分离式Hopkinson压杆(SHPB)测试系统对不同应变率下Mg-8Li-1Al和Mg-8Li-1Al-1Ce合金的力学行为进行了研究,通过对比在准静态和动态下材料的不同力学反应,得到该种材料的应变率效应等信息;此外,为提高镁锂合金的强韧性和高温性能,在镁锂合金内首次尝试在铸态和热处理态制备了具有长周期堆垛有序结构(LPSO)的超轻镁锂合金。并采用光学显微镜、扫描电子显微镜、透射电镜、能谱仪、力学拉伸仪等测试了合金的微观组织结构和性能。获得了如下研究结果:
     1.在对不同锂含量的镁锂合金的焊接接头进行研究中发现,镁锂基合金均具有很好的焊接性能,其中含有双相组织的镁锂合金(锂含量8wt.%左右)的焊接性能最好。在TIG焊过程中,虽然可能产生焊接裂纹和焊接缩孔两种焊接缺陷,但这些缺陷可以通过采用适当速度添加母材本体材料的焊丝的方法来避免这些缺陷的产生;对镁锂合金与5083铝合金异种材料焊接接头的组织和性能的研究表明,镁锂合金可以通过TIG焊接方法实现和5083铝合金很好的连接,在焊缝中存在硬脆的Mg-Al相。
     2.在对挤压态Mg-8Li-1Al合金进行的准静态压缩试验(≤10~(-3)/s)表明,此合金在压缩过程中表现为应变强化效应,而且,在应变率发生变化时,该合金表现出较强的应变率敏感性,即为应变率效应,合金在压缩过程中的流变应力会随着应变率的增大而增大;但当压缩试验的应变率在900/s-1700/s范围内时,此合金的应变率效应变得不明显。在对此合金分别在准静态和高应变率下压缩后的应力应变曲线进行对比后发现:此合金具有较敏感的应变率效应;在不同应变率的条件下对不同方向的试样进行压缩测试并对比其应变率敏感系数后发现:挤压态Mg-8Li-1Al合金有压缩变形行为方面具有较强的各向异性,沿着挤压方向上的试样对应变率的敏感性低于垂直于挤压方向的试样,在平行于挤压方向的力学性能要优于垂直于挤压方向的力学性能。
     在对Mg-8Li-1Al-1Ce合金进行不同加载速率下的动态压缩试验表明,随着应变速率的增加,此合金的整体应力应变曲线先升高后降低,各个应力应变曲线对应的屈服强度也是随着应变率的增加先升高后降低的,这一转折区间对应的应变速率范围为2300/s-2700/s,分别这一转折的原因是因为在这一应变速率区间试样变形过程中发生了变形局部化,导致了屈服强度的降低。应用Hollomon经验公式,并结合试验结果,得出此合金的应变硬化指数在4.6左右,且该材料的强度系数随应变率的升高先升高后降低。
     3.通过铸造、热挤压、热处理分别制备了铸态、挤压态和热处理态的Mg-8Li-6Y-2Zn合金,对其组织和结构进行测试表明,在铸态条件下,合金组织中不存在LPSO结构,在对铸态试样进行热挤压后,仍然不存在LPSO结构,铸态合金进行固溶处理后,原来合金内的(Mg,Zn)_(24)Y_5发生了相转变,生成18R类型的LPSO结构相。相比铸态合金室温拉伸性能,固溶态合金抗拉强度提高35MPa左右,延伸率提高了近1倍,相比铸态合金高温拉伸性能,其强度提高了30MPa左右,延伸率也有一定提高。合金性能的提高主要归因于长周期结构相的形成。
     4.在制备Mg-5Li-6Y-2Zn合金时发现,在铸态条件下,合金即存在LPSO结构(以精细条纹的形式存在于α-Mg相内),但这种合金性能不太理想,主要是因为合金内存在着大量分布于枝晶边界的脆性相((Mg,Zn)_(24)Y_5),进一步对此合金进行挤压加工把脆性相细化后有望提高合金的性能。
Mg-Li alloys are the lightest engineering materials with the advantages of low density,high specific strength, high specific stiffness, good heat-conductivity andelectricity-conductivity, good property of electromagnetic shielding, etc. Therefore, Mg-Lialloys have wide prospect of applications in the fields of aerospace, weapon equipment, trafficequipment, and portable equipment, etc. In these applications, the alloys are often processedby welding, and the alloys are often applied with dynamic impacting load. However, theweldability and dynamic mechanical properties for Mg-Li base alloys are seldom researched.The absolute strength and high temperature mechanical properties are somewhat poor, whichrestrict the wide applictions.
     In this dissertation, the research points are based on the background mentioned above.Mg-Li alloys were welded with TIG welding method, and the welding microstructure andmechanical properties of Mg-Li alloys with different phase composition were studied. Mg-Lialloy was also welded with aluminum alloy, and the welding microstructure and mechanicalproperties of it was also studied. The mechanical properties of Mg-8Li-1Al andMg-8Li-1Al-1Ce under the condition of different strain rate were researched with SHPB.Comparing the mechanical behaviors of the alloys between quasi-static and dynamicconditions, the strain rate effecting of the alloys was obtained. What’s more, to improve thestrength and high temperature mechanical properties, the Mg-Li alloys with LPSO structurewere prepared and their microstructure and mechanical properties were studied. The researchcontents and results show that:
     1. Mg-Li base alloys possess good weldability. The mechanical properties of the weldingjoint of Mg-Li alloys with different Li content are all good, and the best of them is the alloywith dual phases(Li content is about8wt.%). During the welding process, some weldingfaults, such as cracks and shrinkage cavities, form in the welding joints. A suitable feedingspeed of the welding wire with the same compositon with that of alloys can be used to avoidthese welding faults. Mg-8Li-3Al-2Zn-1Ce can be welded well with the alloy of Al5083withTIG welding method. The bondings between welding seam and matrix alloys are good, andsome hard brittle Mg-Al phase forms in the welding seam.
     2. In the experiments of quasi-static compression with the strain rate lower than10~(-3)/s, when the strain rate is defined, the stress of extruded Mg-8Li-1Al increases with strain, that isstrain-strengthening effect. When the strain is defined, the stress of the alloy increases withstrain rate, showing strong strain rate sensitivity, that is a strain rate effect. When the strainrate is between900/s and1700/s, the strain rate effect of Mg-8Li-1Al is not obvious. However,comparing the results of the alloy under quasi-static and dynamic states, the strain rate effectof the alloy is very sensitive. The strain rate sensitivity coefficients under different strain withthe strain rate between10~(-5)/s and2000/s show that, the strain rate sensitivity of Mg-8Li-1Alin the direction of extrusion is lower that in the vertical to the extrusion direction. Theextruded Mg-8Li-1Al alloy has obvious mechanical property difference between the cross andlongitudinal directions. The mechanical properties in the direction of parallel to extrusiondirection are better than those in the direction of vertical to extrusion direction.
     The dynamic stress-strain curves of Mg-8Li-1Al-1Ce in the dynamic compressionexperiments with different loading rates show that, the stress increases with the strain rate,then decreases with it. The yielding strength of the alloy increases with the strain rate, thendecreases with it. During the dynamic impacting, the refined microstructure makes thestrength increase. However, the deformation localization when the strain rate is between2300/s and2700/s makes the yielding strength decrease. According to Hollomon empiredequation and the results of experiments, the strain hardening exponent is about4.6, and thestrength factor increases with strain rate first, then decreases with it.
     3. The as-cast, as-extruded and as-heat treatment Mg-8Li-6Y-2Zn is prepared. Themicrostructure for them shows that, without LPSO structure is found in the as-cast andas-extruded alloys. After solid solution, the LPSO structure exists in the alloy. The (Mg,Zn)24Y5phase transfers to18R type LPSO phase. Compared with the tensile properties ofas-cast alloy, the strength increases by35MPa, and elongation increases by1times. At150oC,the strength increases by30MPa, and elongation also somewhat increases. The improvementof tensile properties is mainly attributed to the LPSO structure.
     4. The as-cast Mg-5Li-6Y-2Zn possesses much LPSO structure(existing inα-Mg).However, the mechanical properties of as-cast Mg-5Li-6Y-2Zn are somewhat poor. This isbecause much (Mg,Zn)_(24)Y_5existing at boundaries of dendrites. The strengthening effect ofLPSO structure is small because of the existence of much brittle (Mg,Zn)_(24)Y_5at boundaries ofdendrites. To improve the mechanical properties, the alloy should be extruded to crush the brittle (Mg,Zn)_(24)Y_5phase.
引文
[1]黄清民,魏晓伟.超轻质Mg-Li合金的研究现状.2005年中国压铸、挤压铸造、半固态加工学术年会会刊,2005:56-59页
    [2]乐启炽,崔建忠. Mg-Li合金力学性能及拉伸断裂特点.材料工程,1997,(10):19-22.
    [3] L V Nikulin, G L Lykasova, N M Shklyaeva. Structure and properties of binarymagnesium-lithium alloys subjected to pressure casting. Metallovedenie i TermicheskayaObrabotka Metallov,1986,10:59-62P
    [4] M L Zhang, R Z Wu, T Wang, et al. Microstructure and mechanical properties ofMg-xLi-3Al-1Ce alloys. Trans. Nonferrous Met. Soc. China,2007,17:s381-384.
    [5] R Z Wu, M L Zhang, T Wang. Microstructure characterization and mechanical propertiesof Mg-9Li-5Al-1Zn-0.6RE alloy. Trans. Nonferrous Met. Soc. China,2007,17:s448-451P
    [6]孙德新,孙大千,李金宝,等.镁合金焊接技术的研究进展及应用.材料导报,2006,20(8):122-127页
    [7]冯吉才,王亚荣,张忠典.镁合金焊接技术的研究现状及应用.中国有色金属学报,2005,15(2):165-179页
    [8]孙四全,王立君.镁合金焊接接头力学性能的研究现状.机械工程材料,2005,29(10):1-3页
    [9]张书权,胥锴.镁合金焊接技术的研究进展.现代焊接,2010,(12): J3-J6页
    [10]初雅杰,李晓泉,吴申庆.镁合金焊接方法的研究进展.机械工程材料,2010,34(6):10-13页
    [11] I J Polmear. Light alloys-Metallurgy of the light metals(Third edition). Halstedpress-Wiley (1996)
    [12] ASM Handbook,Vol.6-Welding, brazing, and soldering. Edited by ASM International,772(1993)
    [13] M Marya, et al. Proceedings of7thInternational symposioum of the Japan WeldingSociety,2001, Nov.20-22, Kobe, Japan, Vol.1, Paper LM4-3,597(2001)
    [14] A Garrett, M Manuel, O David, E Dan. Magnesium-lithium alloy weldability: amicrostructural characterization. Magnesium Technology,2004:37-41P
    [15] T Masato, A Yukiko, S W Chung, O Sachio, H Kenji. Cold-rolled Mg-14mass%Li-1mass%Al alloy and its friction stir welding. Materials Transactions,2006,47(4):1077-1081P
    [16] T Masato, A Yukiko, S W Chung, O Sachio, H Kenji. Friction stir welding of Mg-14mass%Li alloy. Materials Science Forum,2007,539-543:3838-3843P
    [17]沙桂英,于涛,王洪顺,王赫男,孙晓光. Mg-8%Li合金动态断裂行为的加载速率效应.兵工学报,2011,32(1):58-62页
    [18] G Y Sha, Y B Xu, E H Han. Dynamic crack propagation behavior of the Mg-Li alloysunder high-speed impact loading. Materials Science Forum,2005,488-489:717-720P
    [19]刘翠云,沙桂英,邢芳超,孙晓光. Mg-8%Li合金的高速冲击变形行为.轻合金加工技术,2009,37(4):50-53页
    [20] G Y Sha, C Z Liu, T Yu, J H Shi. Deformation Behavior of Mg-8wt%Li Alloy underHigh-speed Impact. Chinese Journal of Aeronautics,2006,19: s235-238P
    [21]沙桂英,徐永波,韩恩厚,于涛,刘路,高国忠.高速冲击载荷下Mg-Li合金的动态裂纹扩展行为.航空材料学报,2005,25(5):50-53页
    [22]沙桂英,孙晓光,刘腾,朱宇宏,冯晓刚.添加微量Sc对Mg-3Li合金高应变率变形行为的影响.航空材料学报,2011,31(3):31-34页
    [23]孙晓光,沙桂英,刘腾.添加微量Sc对Mg-3%Li合金组织与性能的影响.金属热处理,2010,35(3):29-32页
    [24]沙桂英,孙晓光,刘腾,朱宇宏,冯晓刚. Mg-3.04Li-0.77Sc合金的高应变率变形局部化行为.材料研究学报,2010,24(6):567-571页
    [25]江慧丰,张青川,陈学东,范志超,陈忠家,伍小平.位错与溶质原子间动态相互作用的数值模拟研究.物理学报,2007,56(6):3388-3391页
    [26] M A Meyers, Y B Xu, Q Xue, M T Perez-Prado, T R Mcnelley. Microstructuralevolution in adiabatic shear localization in stainless steel. Acta Materialia,2003,51(5):1307-1325P
    [27]沙桂英,朱宇宏,刘腾,孙晓光,于涛.热轧及退火处理对Mg-3%Li-1%Sc合金冲击变形行为的影响.金属热处理,2010,35(11):23-26页
    [28]沙桂英,刘翠云,刘腾,孙晓光,李根.添加Y对Mg-3.5%Li合金冲击变形行为的影响.材料工程,2010,(7):64-67页
    [29] Y Kawamura, K Hayashhi, A Inoue, T Masumoto. Rapidly solidified powder metallurgyMg97Zn1Y2alloys with excellent tensile yield strength above600MPa. MaterialsTransactions,2001,42:1172-1176P
    [30] A Inoue, Y Kawamura, M Matsushita, K Hayashi, J Koike. Novel hexagonal structureand ultrahigh strength of magnesium solid solution in the Mg-Zn-Y system. Journal ofMaterials Research,2001,16(7):1894-1900P
    [31] J H Zhang, Z Leng, S J Liu, J Q Li, M L Zhang, R Z Wu. Microstructure and mechanicalproperties of Mg–Gd–Dy–Zn alloy with long period stacking ordered structure orstacking faults. Journal of Alloys and Compounds,2011,509:7717-7722P
    [32] Y Kawamura, T Kasahara, S Izumi. Elevated Temperature Mg97Y2Cu1alloy with longperiod ordered structure. Scripta Materialia,2006,55:453-456P
    [33] T Itoi, K Takahashi, H Moriyama. A High-Strength Mg-Ni-Y Alloy Sheet with aLong-Period Ordered Phase Prepared by Hot-Rolling. Scripta Materialia,2009,59(10):1155-1158P
    [34]曾小勤,吴玉娟,彭立明,林栋梁,丁文江,彭颖红. Mg-Gd-Zn-Zr合金中的LPSO结构和时效相.金属学报,2010,46(9):1041-1046页
    [35] P Y Tang, M M Tang, B Y Tang, J W Wang, L M Peng, W J Ding. Microstructure of18R-type long period ordered structure phase in Mg97Y2Zn1alloy. Transactions ofNonferrous Metals Society of China,2011,21(4):801-806P
    [36] E Abe, Y Kawamura, K Hayashi, A Inoue. Long-period ordered structure in ahigh-strength nanocrystalline Mg-1at%Zn-2at%Y alloy studied by atomic-resolutionZ-contrast STEM. Acta Materialia,2002,50(15):3845-3857P
    [37] Y X Yi, B Y Tang, D L Li, L M Peng, W J Ding. Crystal structure of the mirrorsymmetry10H-type long-period stacking order phase in Mg-Y-Zn alloy. Journal ofAlloys and Compounds,2011,509(3):669-674P
    [38] M Matsuda, S Li, Y Kawamura, Y Ikuhara, M Nishida. Variation of long-period stackingorder structures in rapidly solidified Mg97Zn1Y2alloy. Materials Science andEngineering A,2005,393:269-274P
    [39] Y Gao, Q D Wang, J H Gu, Y Zhao, Y Tong, D D Yin. Comparison of microstructure inMg-10Y-5Gd-0.5Zr and Mg-10Y-5Gd-2Zn-0.5Zr alloys by conventional casting. Journalof Alloys and Compounds,2009,477:374-378P
    [40] P Chen, D L Li, J X Yi, B Y Tang, L M Peng, W J Ding. Microstructure and electroniccharacteristics of the6H-type ABACAB LPSO structure in Mg97Zn1Y2alloy. Journal ofAlloys and Compounds,2009,485:672-676P
    [41] A Datta, U V Waghmare, U Ramamurty. Structure and stacking faults in layeredMg-Zn-Y alloys: a first-principles study. Acta Materialia,2008,56:2531-2539P
    [42]王红梅,王宇飞.镁合金中的LPSO结构.材料导报,2010,24(5):467-472P
    [43] X H Shao, Z Q Yang, J H You, K Q Qiu, X L Ma. Microstructure and microhardnessevolution of a Mg83Ni6Zn5Y6alloy upon annealing. Journal of Alloys and Compounds,2011,509:7221-7228P
    [44] E K Park, W J Kim, T S Kim, K H Lee. Long period structures and stacking faults inrapidly solidified powder metallurgy (RS P/M) Mg97Zn1Y2alloy. Korea Journal ofMaterials Research,2009,19(8):447-151P
    [45] M Matsuda, S Ii, Y Kawamura, Y Ikuhara, M Nishida. Interaction between long periodstacking order phase and deformation twin in rapidly solidified Mg97Zn1Y2alloy.Materials Science and Engineering A,2004,386:447-452P
    [46] X H Liu, S H Gu, H B Zhan, R Z Wu, M L Zhang. Superplasticity in a two-phaseMg-8Li-2Zn alloy processed by two-pass extrusion. Materials Science Engineering A,2011,528:6157-6122P
    [47] Z K Qu, R Z Wu, M L Zhang. Microstructure and mechanical properties of Mg–8Li–(1,3)Al–(0,1)Y alloys. International Journal Cast Metals Reserch,2010,23:364-367P
    [48] T C Chang, J Y Wang, C L Chu, S Lee. Mechanical properties and microstructures ofvarious Mg-Li alloys. Materials Letter,2006,60:3272-3276P
    [49] J Q Li, Z K Qu, R Z Wu, M L Zhang. Microstructure, mechanical properties and agingbehaviors of as-extruded Mg-5Li-3Al-2Zn-1.5Cu alloy. Materials Science Engineering A,2011,528:3915-3920P
    [50] T Wang, R Z Wu, M L Zhang, L Li. Effects of calcium on the microstructures and tensileproperties of Mg-5Li-3Al alloys. Materials Science Engineering A,2011,528:5678-5684P
    [51]于化顺,闵光辉.合金元素在Mg-Li基合金中的作用[J].稀有金属材料与工程,1996,25(2):1-5页
    [52] J Q Li, Z K Qu, R Z Wu, M L Zhang. Effects of Cu addition on the microstructure andhardness of Mg-5Li-3Al-2Zn alloy. Materials Science Engineering A,2010,527:2780-2783P
    [53] H Y Wu, J C Yan, H H Tsai, C H Chiu, G Z Zhou, C F Lin. Tensile flow andstrain-hardening behaviors of dual-phase Mg-Li-Zn alloy thin sheets[J]. MaterialsScience and Engineering A,2010,527:7197-7203P
    [54] R Z Wu, M L Zhang. Reviews on the influences of alloying elements on themicrostructure and mechanical properties of Mg-Li base alloys. Reviews on AdvancedMaterials Science,2010,24:14-34P
    [55]马洪波,赵平. Y和混合稀土对Mg-Li-Al合金力学性能的影响.材料热处理技术,2008,37(2):34-37页
    [56] L B Wu, C L Cui, R Z Wu, et al. Effects of Ce-rich RE additions and heat treatment onthe microstructure and tensile properties of Mg-Li-Al-Zn-based alloy. Materials ScienceEngineering A,2011,528:2174-2179P
    [57] T Wang, M L Zhang, R Z Wu. Microstructure and properties of Mg-8Li-1Al-1Ce alloy.Materials Letters,2008,62(12-13):158-163P
    [58] T Wang, M L Zhang, R Z Wu. Effect of Cerium on Microstructure and MechanicalProperties of Mg-8Li-3Al Alloy. Journal of Rare Earths,2007,25: s194-197P
    [59]吴玉娟,丁文江,彭立明,曾小勤,林栋梁.高性能稀土镁合金的研究进展.中国材料进展,2011,30(2):1-9页
    [60]吴玉娟. Mg-Gd-Zn(-Zr)镁合金中长周期堆垛有序结构的形成及强韧化机理研究[D].上海:上海交通大学,2009
    [61]高岩,王渠东,赵阳,童炎,郑江. Mg97Zn1Y2合金中LPSO结构的研究现状.材料导报,2008,22(1):94-97页
    [62]姜风春.金属动态断裂的理论与试验研究[D].哈尔滨:哈尔滨工程大学,2000
    [63]凤仪.泡沫铝的动态力学性能及物理性能研究[D].合肥:中国科学院固体物理研究所,2002
    [64] K H马图哈.材料科学与技术丛书.第八卷.非铁合金的结构与性能.丁道云,等译.北京:科学出版社,1999
    [65]张津,章宗和.镁合金及应用.北京:化学工业出版社,2004
    [66]袁择,李德全,付涛.镁合金焊接技术的现状和发展趋势.现代焊接,2008,(3): J1-J5页
    [67]吴华.现代精密焊接技术综述[J].现代焊接,2011,(7): J1-J4页
    [68]陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991
    [69]刘会杰.焊接冶金与焊接性[M].北京:机械工业出版社,2007
    [70] B Jiang, H M Yin, R H Li, L Gao. Grain refinement and plastic formability ofMg-14Li-1%Al alloy[J]. Transactions of Nonferrous Metals Society of China,2010,20:s503-s507P
    [71] P Crawford, R Barrosa, J Mendez, J Foyos. On the transformation characteristics ofLA141A(Mg-Li-Al) alloy[J]. Journal of Materials Processing Technology,1996,56:108-118P
    [72] A A Kazakov, M A Timonova, L G Borisova. Properties of magnesium-lithium alloys[J].Metal Science and Heat Treatment,1983,25:682-684P
    [73] R K Kalimullin, V B Spiridonov, A T Berdnikov, A A Romanov, G N Pautkina.Properties of alloy MA21after laser treatment[J]. Metal Science and Heat Treatment,1988,30:338-348P
    [74]宋刚,刘黎明,王继锋,周继扬.激光—TIG复合焊接镁合金AZ31B焊接工艺[J].焊接学报,2004,25(3):31-35页
    [75]李亚江.轻金属焊接技术[M].北京:国防工业出版社,2011
    [76]于在洪,温景辉,姜海雨.焊接裂纹的产生原因及防止措施[J].科技信息,2011,(8):769-770页
    [77]李亚江,刘强,王娟.焊接质量控制与检验[M].北京:化学工业出版社,2006
    [78]张兆栋,刘黎明,王来.镁合金活性TIG焊焊接接头组织特征分析.焊接学报,2004,25(4):55-58页
    [79] A Toshikatsu. Solidification crack sensitivity of TIG welded AZ31magnesiumalloy.Journal of Institute of Light Metals,1999,49(12):595-599P
    [80]李亚江,刘鹏,王娟,夏春智. Mg/Al异种材料脉冲TIG焊接头的组织结构.焊接学报,2006,27(9):39-40页
    [81]张红,索涛,李玉龙.不锈钢材料高温、高应变率下动态力学性能的试验研究[J].航空材料学报,2012,32(1):78-83页
    [82]尤振平,惠松骁,叶文君,于洋,刘睿. TC4钛合金轧板的织构对动态力学性能影响[J].稀有金属,2012,36(1):31-35页
    [83]王洪欣,查晓雄.3004铝的动态力学性能及本构模型[J].华中科技大学学报,2011,39(5):39-42页
    [84] D.H. Kim, Y.S. Han, H.I. Lee, B. Cantor. Structure and decomposition behaviour ofMg-Li-Al alloys. Scripta Metallurgica Materialia,1994,31(7):819-824P
    [85] Y.M. Kim, D.H. Kim, H.I. Lee, C.P. Hong. Widmanst tten type solidification in squeezecasting of Mg-Li-Al alloys. Scripta Materialia,1998,38(6):923-929P
    [86]李红斌,姚广春,刘宜汉,吉海滨.超轻Mg-Li-Al系变形镁合金冷轧及热处理后的组织和性能.功能材料,2005,36(4):525-528页
    [87]赵亮,赵平.热处理对Mg-7.28Li-8.02Y合金显微组织和力学性能的影响.金属热处理,2008,33(8):3-5页
    [88] H. Yan, R.S. Chen, E.H. Han. Microstructures and mechanical properties of cold rolledMg-8Li and Mg-8Li-2Al-2RE alloys. Transactions of Nonferrous Metals Society ofChina,2010,20(z2): s550-s554P
    [89] X.R. Meng, R.Z. Wu, M.L. Zhang, L.B. Wu, C.L. Cui. Microstructures and properties ofsuperlight Mg-Li-Al-Zn wrought alloys. Journal of Alloys and Compounds,2009,486:722-725P
    [90] M.L. Zhang, X.R. Meng, R.Z. Wu, C.L. Cui, L.B. Wu. Effect of Ce on microstructuresand mechanical properties of as-cast Mg-8Li-1Al alloys. Kovove Mater.,2010,48:211-216P
    [91] M. Yamasaki, T. Anan, S. Yoshimoto, Y. Kawamura. Mechanical properties ofwarm-extruded Mg-Zn-Gd alloy with coherent14H long periodic stacking orderedstructure precipitate. Scripta Mater.,2005,53:799-803P
    [92] Y.M. Zhu, A.J. Morto, J.F. Nie. The18R and14H long-period stacking orderedstructures in Mg-Y-Zn alloys. Acta Mater.,2010,58:2936-2947P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700