用户名: 密码: 验证码:
桑黄发酵过程优化及其多糖代谢调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桑黄属于担子菌亚门(Basidiomycotina)、层菌纲(Hymenomycetes)、多孔菌目(Polyporales)、多层孔菌科(Hymenochaetacae)、针层孔菌属(Phellinus),是一种多年生的珍稀药用真菌。桑黄主要含有多糖,其次还有黄酮、三萜和落叶松蕈酸等化合物,具有抗癌、增强免疫力、抗肝纤维化、抗脂质过氧化、抗肺炎、抗血管生成等功效。由于其生理复杂性、特殊性以及对外部生长环境的较高要求,其在自然界中形成子实体比较困难,尤其是需要多年才能形成可药用的子实体。加之,近几年人们对野生桑黄的大量采集,天然的桑黄资源已经非常稀少。人工栽培技术获得子实体,以及液体发酵法获得菌丝体,可以缓解供需矛盾获得有效药用成分。但桑黄人工栽培刚刚起步,并且子实体形成需要半年以上时间,而液体发酵法生产菌丝体,发酵周期短,不受季节气候影响,不受农药污染,具有广泛的应用前景。
     为了深入研究桑黄深层发酵过程中菌丝生长和胞外多糖合成的机理,为工业化大规模生产奠定基础。本文对桑黄菌丝发酵过程进行了优化,得到了大量生长良好,菌球松散的种子液和有利于桑黄菌丝体生长和胞外多糖合成的全合成培养基。筛选了对菌丝生长和胞外多糖合成有调控作用的碳源和植物激素,并从发酵动力学、菌丝体形态、氨基酸含量变化、多糖结构四个角度,分析了碳源和植物激素对桑黄胞外多糖合成代谢的调控机制。同时利用响应面优化了桑黄菌丝多糖提取工艺,并对胞外多糖结构进行了分析。最后以高脂饲料构建的高脂血症大鼠为实验对象,对发酵法生产的桑黄菌丝胞内、胞外多糖进行了降血脂活性分析。
     主要结果如下:
     1.通过桑黄种子液和全合成培养基筛选,优化了菌丝发酵过程
     种子液优化过程中,玻璃珠对增加菌球和菌丝数量,促进松散菌球形成具有显著作用。种龄是提高桑黄菌丝和胞外多糖产量的显著因素。优化后的种子培养条件为:3%葡萄糖、1.5%酵母粉上清液、0.1%MgSO_4、0.1%KH_2PO_4,加入一颗玻璃珠,10%接种量,96h种龄。优化后的种子液,菌球数量提高了62.5%、菌球直径和菌核直径分别缩小了39.1%和30.3%,得到了大量菌丝松散的种子液。通过正交试验优化了全合成培养基,其包括:4%葡萄糖、0.4%谷氨酸、0.4%(NH_4)_2SO_4.O.1%MgSO_4.O.1%KH2P04,初始pH为6.0。通过方差分析得到葡萄糖浓度、谷氨酸浓度、硫酸铵浓度和pH是影响菌丝生长的显著因素。桑黄菌丝发酵过程优化后,摇瓶发酵最大菌丝产量可达12.33±0.89 g.L~(-1),最大胞外多糖产量可达1.21±0.08 g.L~(-1)。该全合成培养基成分简单,成本低廉,可有效促进桑黄菌丝生长和胞外多糖合成,同时便于发酵过程中各种成分含量的变化分析。
     2.研究了碳源(包括糖、植物油)和植物激素对桑黄胞外多糖合成的代谢调控
     通过单因素试验,研究了糖对菌丝生长和胞外多糖合成的影响,筛选出对胞外多糖合成有显著促进作用的乳糖。通过正交试验优化了乳糖添加时间和添加浓度对菌丝生长和胞外多糖的影响,得到最佳组合为发酵初始添加3%乳糖,菌丝产量和胞外多糖产量最大分别可达17.436士2.227 g.L~(-1)和0.963士0.391 g.L~(-1)。验证实验表明乳糖对菌丝体生长和胞外多糖合成有显著促进作用。通过单因素实验研究了植物油对菌丝生长和胞外多糖合成的影响,统计分析得出植物油对菌丝生长有显著促进作用,对胞外多糖合成有明显抑制作用。发酵初始摇瓶添加1%菜籽油,菌丝产量和胞外多糖产量最大可达34.633±1.6 g.L~(-1)和0.73±0.063 g.L~(-1)。通过168 h菌丝体形态分析,发现添加乳糖后菌丝体出现多处空胞,而添加菜籽油后菌丝体极少有空胞出现并且菌丝体粗壮。通过168 h发酵液氨基酸含量变化分析,结果表明初始添加3%乳糖的发酵液中,谷氨酸族含量降低了7%,天冬氨酸族含量增加了43%,芳香族氨基酸族含量降低了4%,丝氨酸族含量降低了76%,丙氨酸族含量增加了277%。初始添加1%菜籽油的发酵液,谷氨酸族含量增加了11%,芳香族氨基酸含量降低了7%,丝氨酸族含量降低了29%,丙氨酸族含量增加了342%,天冬氨酸族含量没有变化。通过油和乳糖氨基酸含量比较,推测天冬氨酸族含量与胞外多糖合成密切相关,丙氨酸族含量与菌丝体合成密切相关。从发酵动力学分析,分别添加油和乳糖后,菌体生长和胞外多糖部分偶联。通过单因素试验,筛选出对菌丝和胞外多糖合成有明显促进作用的萘乙酸。发酵初始添加5.0 mg.L~(-1)萘乙酸菌丝体最大产量为6.24士0.18 g.L~(-1),最大胞外多糖产量为0.86士0.01 g.L~(-1),与空白比较产量分别提高了15.98%和56.36%。通过发酵过程动力学分析,得出菌丝生长速率和胞外多糖合成速率同步,通过高效液相和红外光谱分析胞外多糖结构没有变化。因此,推测萘乙酸是通过提高菌丝体生物量,从而提高胞外多糖产量。
     3.应用响应面试验设计优化菌丝多糖提取工艺
     响应面试验优化了发酵法获得的湿菌丝多糖提取工艺,优化后的菌丝多糖提取条件为:提取温度70℃,料液比1∶6.2,提取时间1.5 h,胞内多糖得率为5.04%。比常规菌丝干粉提取法缩短了提取时间,降低了提取温度。
     4.色谱法分析桑黄胞外多糖结构
     通过高效液相色谱、红外色谱、气相色谱对发酵法获得的桑黄胞外多糖进行了结构的初步分析。结果表明:桑黄胞外多糖含糖量49.7%、蛋白质含量18.0%,由四部分多糖组成,分子量分别为6.4×10~6g. mol~(-1)、3.3×10~5g.mol~(-1)、2.7×10~5 g. mol~(-1)、2.9 X103 g.mol~(-1)。气相色谱分析表明单糖组分主要含半乳糖。红外色谱分析其含有吡喃糖p型C-H变角振动的特征吸收峰。故推测胞外多糖主要是β-半乳聚糖。
     5.桑黄多糖降血脂活性分析
     通过高脂饲料饲养大鼠构建高脂血症动物模型,给予不同剂量的桑黄多糖进行干预,探讨发酵法生产的桑黄多糖降血脂活性。结果表明:低剂量和高剂量桑黄多糖均可显著降低高脂血症大鼠的血清总胆固醇、甘油三酯、低密度脂蛋白含量,与高脂血症大鼠相比,其最大降幅分别为19.7%、28.3%和32.9%;同时,多糖提高了高密度脂蛋白含量,最大增幅为12.6%。研究结果为桑黄开发为降血脂药物提供了理论参考。
Phellinus igniarius is a precious medicinal mushroom belonging to the subphylum Basidomycotina, class Hymenochaetacae, order Polyporales, family Hymenochaetaceae, genus Phellinus. It contains many kinds of compounds such as polysaccharides, flavonoids, triterpenoids, larch mushroom acids and so on. These compounds are able to prevent and cure many diseases including anti-cancer, anti-liver fibrosis, anti-pneumonia, anti-angiogenesis and enhancing immunity. Because of the physiological complexity, particularity and high requirement of growing environment, it is very difficult to cultivate fruit body with high quantity of bioactive compounds, In addition, the amounts of natural P. igniarius were decreased sharply due to the mass collection in recent years. It is a promising approach by artificial cultivation and fungi fermentation to address the contradiction between supply and demand. Using this method, polysaccharides from P. igniarius can be produced in large scale and used in medical care causes.
     In order to illuminate the mechanism of mycelia growth and biosynthesis of extracellular polysaccharides (EPS) by P. igniarius, the optimization of fermentation process was carried out. The seed culture with a large amount of loose pellets and a chemical defined media for mycelial growth and EPS synthesis were obtained. Fermentation kinetics, mycelial morphology, contents of amino acids and the characterization of EPS were used to analyze the metabolic regulation of EPS biosynthesis. Response surface methodology was used for optimizing extraction conditions of mycelia and the preliminary characterization of EPS was analyzed. The anti-hyperlipemia activity of intracellular polysaccharides (IPS) and EPS was analyzed by adult rats. The main results were as follows:
     1. The optimization of fermentation process including seed culture and a chemical defined media were carried out. Glass beads and seed age affected the amount of pellets formation. The optimal seed medium was including 3% glucose,1.5% yeast source,0.1% MgSO_4 and 0.1% KH_2PO_4. Inoculation volume and inoculation time were 10% and 96 h, respectively. During the seed culture, a glass bead was used to increase the amount of pellets. After optimization of seed culture, the amounts of pellets were increased 62.5%. The diameter of pellets and core pellets decreased 39.1% and 30.3%, compared with control. A chemically defined medium for mycelial growth and EPS production by submerged culture of P. igniarius was investigated. The mainly defined medium compositions were optimized by orthogonal matrix method. The optimal defined medium (per liter) included 40.0 g glucose,4.0 g glutamic acid,4.0 g (NH_4)_2SO_4,1.0 g MgSO_4 1.0 g KH_2PO_4 and initial pH value was 6.0. Under the optimal medium, the maximal mycelial biomass and EPS production were 12.33±0.89 g. L"1 and 1.21±0.08 g. L~(-1) at 192 hour in shake flask.
     2. Effects of different kinds of carbon sources and phytohormones on EPS biosynthesis were studied. Our results showed that lactose was able to significantly increase the production of mycelia and EPS. Plant oil was benefit to mycelia growth. Especially, rapeseed oil significantly increased the production of mycelia, whereas it inhibited EPS synthesis. Adding 3% lactose in initial medium was benefical for EPS biosynthesis, and the maximal production of dry cell weight (DCW) and EPS were 17.436±2.227 g. L~(-1) and 0.963±0.391 g. L~(-1), respectively, while adding 1% rapeseed oil in initial medium was helpful for mycelia growth, the maximal production of DCW and EPS were 34.633±1.6 g. L~(-1) and 0.73±0.063 g. L~-respectively. Morphology analysis revealed that some of mycelia cultured in lactose were hollow, but mycelia cultured in rapeseed oil were robust. Effect of phytohormones including indole-3-acetic acid (IAA), indoIe-3-butyric acid (IBA) and 1-naphthalentacetic acid (NAA) on mycelial growth of medicinal mushroom Phellinus linteus were investigated. The production of DCW and EPS with addition of5.0mg. L~(-1) NAA was 6.24±0.18 g. L~(-1) at 168 h and 0.86±0.01 g. L~(-1) at 192 h, which were enhanced by 15.98% and 56.36% compared to the control, respectively. However, the molecular weight and infrared spectrum of EPS were coincident with the control. Results indicated that NAA at the proper concentration was beneficial in stimulating mycelial growth and EPS biosynthesis, whereas it could not alter the molecular structure of EPS. The fermentation dynamic analysis showed thet specific growth rate was accord with specific production rate. These results indicated that the positive effect of NAA on EPS biosynthesis maybe cause by enhancing the mycelial growth.
     3. The methods of high performance liquid chromatography, infrared spectrometry and gas chromatography were used to analysis the preliminary character of EPS. The results showed that it contained 49.7% sugar,18.0% protein. It contained four parts of polysaccharide, molecular weight (g. mol~(-1)) were 6.4×10~6,3.3xl0~5,2.7×10~5 and 2.9xlO~3, respectively. The structure of monosaccharide was mainly galactose according to gas chromatogphy. The structure of polysaccharide could be composed ofβ-galactan.
     4. Response surface methodology was applied to optimize the extraction conditions of IPS of P. igniarius. The optimal conditions were extraction temperature 70℃, extraction time 1.5 h and the ratio of mycelia to water 1:6.2. Under the optimal condition, the maximal yield of crude IPS from mycelia was 50.39±0.41 mg. g~(-1). Compared with the extraction of dry power mycelia, the optimal extraction process was favor to save extraction time and decrease extraction temperature.
     5. The EPS and IPS extracted from mycelia can obviously reduce the level of the blood cholesterol (TC), serum triglyceride (TG), and serum low-density lipoprotein (LDL), and increase the level of high-density lipoprotein (HDL) of the hyperlipemia rats. Polysaccharide could decrease the level of TC, TG and LDL remarkably with decreasing rate of 19.7%,28.3% and 32.9%. Polysaccharide could increase the levels of HDL with the highest rates of 12.6%. Polysaccharides showed a significant effect of antihyperlipidaemia activity. The results indicated that polysaccharides from submerged culture of medicinal fungus have favorable potency to develop anti-hyperlipermia drugs.
引文
[1]庄文颖.2020年中国菌物学发展研究.2020年中国科学和技术发展研究暨科学家讨论会文集,中国北京:2004,1305-1309.
    [2]李林玉,金航,张金渝等.中国药用真菌概述.微生物学杂志,2007,2:57-61.
    [3]胡斌,杨益平,叶阳.茯苓化学成分研究.中草药,2006,655-658
    [4]贾联盟,刘柳,董群,等.猴头菇子实体中的主要多糖成分.中草药,2005,10-12.
    [5]黄年来.中国最有开发前景的主要药用真菌.食用菌,2005,1:3-5
    [6]Zou X, Sun M, Guo X. Quantitative response of cell growth and polysaccharide biosynthesis by the medicinal mushroom Phellinus linteus to NaCl in the medium. World J Microbiol Biotechnol,2008,22:1129-1133.
    [7]Zou X, Guo X, Sun M. pH control strategy in a shaken minibioreactor for polysaccharide production by medicinal mushroom Phellinus linteus and its anti-hyperlipemia activity. Bioprocess Biosyst Eng,2009,32:277-281.
    [8]张普照,舒任庚,谢小梅等.双向固体发酵后雷公藤菌质化学成分研究.中国食用菌,2008,27:41-47
    [9]庄毅,池玉梅,陈慎宝等.药用真菌新型固体发酵工程与槐芪菌质的研究.中国药学杂志,2004,3:175-178
    [10]钱律余.全灵芝孢子中有效成分的超临界CO_2萃取方法.中国:200410017468.8,2005-01-12.
    [11]陈宝义,高俊山.灵芝孢子油超临界CO_2萃取方法.中国:02144759.4,2003-10-01
    [12]Akramiene D, Kondrotas A, Didziapetriene J,et al. Effects of beta-glucans on the immune system.Medicina (Kaunas),2007,43:5972606.
    [13]Turnbull J E,Field R A. Emerging glycomics technologies. Nat Chem Biol,2007,3:74-77.
    [14]Rudd PM, Elliott T, Cresswell P, et al. Glycosylation and the immune system. Science.2001,291:2370-2376.
    [15]Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol.2008,9:593-601.
    [16]Guan R,Mariuzza RA. Peptidoglycan recognition proteins of the innate immune system. Trends Microbiol.2007,15:127-134.
    [17]Bertozzi CR,Kiessling LL. Chemical glycobiology. Science,2001,291:2357-2364.
    [18]蒋铁男,张宇光,李志旺等.银耳小鼠腹腔巨噬细胞功能和超微结构影响.电子显微学报,1990,3:104-106.
    [19]徐庆乐,杨锋.香菇多糖,银耳多糖对S-180荷瘤小鼠的免疫调节作用.浙江临床医学,2002,4:730-731.
    [20]Gao Q, Killie M, Chen H, et al. Characterization and cytokinesstimulating activities of acidic heteroglycan from Tremella fuciformis.Planta Med,1997,63:457-460.
    [21]林志彬,孙曼琴,柴宝玲等.银耳多糖对巨噬细胞吞噬功能、骨髓造血功能及蛋白质、核酸合成的影响.中医杂志,1982,23:389-391.
    [22]王红连,张东升,张凌裳等.硒化灵芝多糖制备及免疫学相关研究.食品科学.2009,30:316-318
    [23]Seidler DG, Goldoni S, Agnew C, et al. Decorin protein core inhibits in vivo cancer growth and metabolism by hindering epidermal growth factor recep tor function and triggering apoptosis viacaspase-3 activation. J Biol chem,2006,281:26
    [24]林志彬.灵芝的现代研究.北京:北京医科大学出版社,2001:225.
    [25]焦国慧,杨荣存.肿瘤相关免疫抑制细胞与免疫逃逸机制研究进展.癌症进展杂志,2008,6:147-151.
    [26]刘经亮.灵芝多糖的药理研究进展.广东药学,2000,10:46.
    [27]吕苏成,曹巧荆,张力.茯苓多糖对正常及荷瘤小鼠免疫功能的影响.1990,10:267-268
    [28]余建国,姜正前,严晗光.茯苓多糖对雏鸡细胞免疫活性的影响及其抗肿瘤作用,中国兽医科技,2004,34:70-73
    [29]唐雪明,余建国,宋大鲁等.黄芪多糖对雏鸡外周血T淋巴细胞转化的影响.中国兽医学报,1998,12(4):19.
    [30]龙振州,徐锦堂.茯苓多糖对小鼠外周血T淋巴细胞免疫活性的影响.中华微生物学和免疫学杂志,1985,5(5):280.
    [31]张彦民,李宝才,朱利平等.多糖化学及其生物活性研究进展。昆明理工大学学报,2003,28:140-149
    [32]张福明,张淑芹,孙非等.香菇多糖对单纯疱疹病毒的抑制作用.长春中医药大学学报,2007,23(1):17-18.
    [33]王凤仙,张吟秋.三种药(食)用真菌抗菌作用的研究.浙江省医学科学院学报,1992,3(1):6-8.
    [34]陈晓红,董明盛,黄文利等.不同碳源对Lactococcus FML02-8合成胞外多糖的影响.无锡轻工大学学报,2004,23:13-17
    [35]刘翠平,郭本恒,吴正钧等.营养因子对干酪乳杆菌胞外多糖合成的影响.工业微生物.2008,38:11-14
    [36]Tang YJ, Zhu LL, Liu RS, et al. Quantitative response of cell growth and Tuber polysaccharides biosynthesis by medicinal mushroom Chinese truffle Tuber sinense to metal ion in culture medium, Bioresource Technology,2008,99:7606-7615
    [37]黄清荣,张丽,王艳华等.营养因子对大杯伞胞外多糖的影响.食品研究与开发2008,29:59-62
    [38]毕华南,丁重阳,石贵阳等.墨汁鬼伞液体发酵营养因子对菌丝体生长和胞外多糖产量影响的研究.食品科学2008,29:291-296
    [39]Tang YJ, Zhong JJ. Role of oxygen supply in submerged fermentation of Ganoderma lucidumfor production of Ganoderma polysaccharide and ganoderic acid, Enzyme and Microbial Technology,2003,32:478-484
    [40]张泽生,史佳宁,张婕等.响应面法优化桦褐孔菌胞外多糖发酵条件.现代食品科技.2009,3:247-250
    [41]郭霞,邹祥,孙敏.发酵法生产桑黄胞外多糖条件的研究.食品与发酵工业.2007.233:85-88
    [42]汪玲玲,钟士清,方祥等.虫草多糖研究综述.微生物学杂志.2003,3:45-48
    [43]周晓燕,顾顺明,张文玉等.发酵法生产猪苓菌丝体及猪苓多糖的研究.工业微生物2001,30:1-4.
    [44]郝利民,邓桂芳,李政等.5种因子对裂褶菌菌丝生长及胞外多糖产生的影响.食品与发酵工业.2004,30:75-77
    [45]黄清荣,张恒基,张丽等.矿质元素对黄伞生长及其胞外多糖产量的影响.食品科学,2008,29:408-413
    [46]Fang QH, Zhong JJ. Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochem,2002,37:769-774
    [47]彭志英,张红城,赵谋明等.少动鞘脂单胞菌S1胞外多糖发酵工艺条件研究.微生物学通报,2000,27(2):97-100.
    [48]刘丽波,刘宁,孟祥晨.影响乳酸菌胞外多糖合成的因素.中国乳品工业.2004,32:46-49
    [49]唐明,邵伟,刘世玲等.茁霉多糖发酵工艺条件研究.三峡大学学报,2005,27.
    [50]郝利民,孙金旭,邢新会等.裂褶菌菌丝体与胞外多糖发酵条件研究.食品与发酵 工业,2008,34
    [51]邓百万,陈文强.美味牛肝菌胞外多糖的发酵条件研究.食品与发酵工业,2005,31
    [52]兰时乐,李佩,曹杏芝.北冬虫夏草液体发酵产胞外多糖发酵条件的研究.生物技术,2006,16:72
    [53]Plam PL, Dpont I, Roy D, et al. Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolongd fermentation. Appl. Environ. Microbiol,2000,66:2302-2310
    [54]李信,左志华.短梗霉胞外多糖发酵及其发酵动力学.微生物学杂志,1999,19(4):8-11.
    [55]王兴华,郑学瑞,邢会霞,任丽萍.嗜热链球菌产胞外多糖的研究.山西大学学报,2009,32(3):472-476.
    [56]Becker A, Katzen F, Puhler A, et al, Xanthan gum biosynthesis and application:a biochemical genetic perspective. Appl.Microbiol. Biotechnol.1998,50:145-152
    [57]Selitrennikoff CP. Antifungal drugs:(l,3)β-glucan synthesis inhibitors, Molcecular biology intelligence unit,1995,45-89
    [58]Brown, J., Bussey, H. The yeast KRE9 gene encodes an O-glycoprotein involved in cell surface β-glucan assenmble, Mol. Cell. Biol.1993,13:6346-6356
    [59]Ruiz-Herrera. Biosynthesis of P-glucan in fungi. Antonie van Leeuwenhoek,1991,60:73-81
    [60]Gura E, Rau u, Comparison of agitators for the production of branched p-1,3-Dglucans by Schizophyllum commune,Biotechnolo,1993,27:193-201
    [61]Rau U, Gura E, Olszewski E, et al. Enhanced glucan formation of filamentous fungi enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing, J Ind Microbiol,1992,9:19-26
    [62]郑立军,王清,季俊虬.药用真菌-桑黄的研究进展,现代中药研究与实践,2005,19:61-64
    [63]戴玉成.药用担子菌—鲍氏层孔菌(桑黄)的新认识.中草药,2003,34(1):94
    [64]孙培龙,徐双阳,杨开等.珍稀药用真菌桑黄的国内外研究进展.微生物学通报,2006,33(2):119-123
    [65]刘波.中国药用真菌.太原:山西人民出版社,1974,71-73
    [66]齐欣.珍稀药用真菌—桑黄.天津:天津科技翻译出版公司,2009,2
    [67]蔡林君.药用真菌—桑黄指纹图谱研究,2007,5-6
    [68]莫顺燕,杨永春,石建功.桑黄化学成分研究.中国中药杂志.2003,4(28):339-341
    [69]杨焱,刘艳芳,赵子高等.一种桑黄黄酮及其制备方法和用途.200710170486.3,2007-11-16
    [70]管国强,张玲,黄达明等.桑黄深层发酵上清液抗氧化活性的研究.食品工业科技.2008,12:106-107,192
    [71]Kojima K, Ogihara Y, Sakai Y, et al. HPLC profiling of Phellinus linteus. J Nat Med.2008,62:441-446
    [72]Kim GY, Park HS, Nam BH, et al. Purification and characterization of acidic proten-heteroglycan from the fruiting body of Phellinus linteus (Berk.&M.A. Curtis) Teng[J]. Bioresource Tech.2003 (89):81-87
    [73]Yang Y, zhang JS, Liu YF, et al. Structural elucidation of a 3-O-methyl-D-galactose-containing neutral polysaccharide from the fruiting bodies for Phellinus igniarius[J]. Carbohydr Res 2007, (342):1064-1070
    [74]Baker JR, Kim JS, Park SY. Composition and proposed structure of a water-soluble glycan from the Keumsa Sangwhang mushroom (Phellinus linteus) [J]. Fitoterapia. 2008, (79):345~350
    [75]Nakamura T, Matsugo S, Uzuka Y. Fractionation and anti-tumor activity of the mycelia of liquid-culture Phellinus linteus[J]. Biosci Biotechnol Biochem. 2004,68(4):868-872
    [76]Wu MJ, Jiang DZ, Liu TM, et al. Structural analysis of water-soluble polysaccharide PIP_1 extracted from the cultured mycelium of Phellinus igniarius[J]. Chem RES Chinese U.2006,22(6):708-711
    [77]Chuang HY, Kim Taewook. Isolation and characterization of a water-soluble polysaccharide from the mycelia of solid cultured Phellinus linteus[J]. Food Sci Biotechnol.2005,6(14):783-787
    [78]Hwang HJ, Kim SW, Choi JW, et al. Production and characterization of exopolysaxxharides from submerged culture of Phellinus linteus KCTC 6190[J]. Enzyme Microb Tech 2003,(33):309~319
    [79]Hwang HJ, Kim SW, Xu CP, et al. Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus[J]. J Appl Microbiol.2003,4(94):708~719
    [80]Collins L, Zhu T, Guo J, et al. Phellinus linteus sensitises apoptosis induced by doxorubicin in prostate cancer.Br J Cancer,2006,95(3):282-288
    [81]Sasaki T, Fujji, Sugura M, et al. Antitumor polysaccharides from some polyporaceae, Gader-ma applanatum (Pers.) Pat. and Phellinus linteus (Berk. & curt.) Teng. Chem Parm Bull,1971,19:821
    [82]Chung KS, Kim HS. An investigation on the antitumor or constituents of Phellinus linteus. Koran J Mycol,1991,19:361
    [83]杨全,张卉,王琦等.桑黄胞外多糖抗肿瘤活性研究.北京中医药大学学报.2007,3(30):188-190
    [84]IKekawa T,Nakanishi M,Uehara N, et al. Antitumor action of some basidiomycetes, especially Phellinus lintus.Gann,1968,59:155-157.
    [85]Nakano H, Namatame K, Nemoto H, et al. Amulti-institutional Prospective study of lentinan in advanced gastric cancer patients with unresectable and recurrent diseases:effect on prolongation of survival and improvement of quality of life. Kanagawa Lentinan Researe Group. HePatogastroenterology,1999,46:2662-2668.
    [86]张万国,胡晋红,蔡漆.桑黄增强人外周血单个核细胞产生γ-干扰素的研究.基层中药杂志,2002,16(3):5-6
    [87]Kim GY, Lee JD, Lee JO, et al. Partial characterization and immunostimulatory effete of a novel polysaccharide-protein complex extracted from Phellinus linteus. Biosci Biotechnol Bioehem.,2006,70(5):1218-1226.
    [88]Song YS, Kim SH, Sa JH, et al. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J Ethnopharmacol.2003, (88):113-116
    [89]张万国,胡晋红,蔡溱等.桑黄抗大鼠肝纤维化与抗脂质过氧化.中成药.2002,4(24):281-283
    [90]郑立军,沈业寿,季俊虬等.桑黄胞内多糖的抗突变和抗氧化作用.癌变畸变突变.2006,6(18):465-468
    [91]管国强,张玲,黄达明等.桑黄深层发酵上清液抗氧化活性的研究.食品工业科技.2008,12(29):106-107,192
    [92]王清,沈业寿,赵浩如.桑黄子实体水提物抗肿瘤和抗环磷酞胺致突变作用研究.食用菌.2006,(5):56-59
    [93]郑立军,沈业寿,季俊虬等.桑黄胞外多糖药理活性的初步研究.食品科学.2007,1(28):318-321
    [94]Kim DH,Yang BK, Jeong SC, et al. Production of a hypoglyeemic, extracellular polysaeeharide from the submerged culture of the mushroom, Phellinus linteus.Biotechnol.Lett.,2001,23:513-517.
    [95]贾建波,季彩宏.桑黄多糖高产菌株产糖营养条件优化.食品科技,2006(10):31-37.
    [96]杨全,李艳辉,严寒静等.药用真菌桑黄发酵工艺的研究.广东药学院学报,2004,20(3):212-220.
    [97]林百全,余晓斌,洪玉涛.豆饼粉和玉米浆粉浓度对桑黄胞外多糖产量的影响.食品研究与开发,2006,27(11):56-59.
    [98]樊锦艳,王秋颖,薛梅等.桑黄胞外多糖生产培养基的初步研究.食品科技,2004,(2):93-95.
    [99]李宜明,沈业寿,季俊蛇等.桑黄菌质多搪的固态发酵及其抗氧化作用.合肥工业大学,2006,29(12):1580-1553.
    [100]Sliva D, Kawasaki J, Stanley G, et al. Phellinus linteus inhibits growth and invasive behavior of breast cancer cells through the suppression of Akt signaling. Faseb Journal,2006,20 (4):A559-A560
    [101]Kim BC, Jeon WK, Hong HY, et al. The anti-inflammatory activity of Phellinus linteus (Berk. & MA Curt.) is mediated through the PKC delta/Nrf2/ARE signaling to up-regulation of heme oxygenase-1.Journal of Ethnopharmacology, 2007,113 (2):240-247
    [102]Zhu T, Guo J, Collins L, et al. Phellinus linteus activates different pathways to induce apoptosis in prostate cancer cells. British Journal of Cancer,2007,96 (4): 583-590
    [103]Kim GY, Lee JY, Lee JO, et al. Partial characterization and immunostimulatory effect of a novel polysaccharide-protein complex extracted from Phellinus linteus, Bioscience Biotechnology and Biochemistry,2006,70 (5):1218-1226
    [104]Yeo WH, Hwang EI, So SH, et al. Phellinone, a new furanone derivative from the Phellinus linteus KT&G PL-2. Archives of Pharmacal Research,2007,30 (8): 924-926
    [105]Wu MJ, Jiang D, Liu TM, et al. Structural analysis of water-soluble polysaccharide PIP1 extracted from the cultured mycelium of Phellinus igniarius. Chemical Research in Chinese Universities,2006,22 (6):708-711
    [106]Zhu T, Guo J, Collins L, et al. Phellinus linteus activates different pathways to induce apoptosis in prostate cancer cells. British Journal of Cancer,2007,96 (4): 583-590
    [107]Wu MJ, Jiang DZ, Liu TM, et al. Structural analysis of water-soluble polysaccharide PIP1 extracted from the cultured mycelium of Phellinus igniarius. CHEMICAL RESEARCH IN CHINESE UNIVERSITIES,2006,22 (6):708-711
    [108]骆冬青,桑黄液体发酵和桑黄多糖提取纯化的研究,安徽农业大学,2008
    [109]杨全,桑黄的液体发酵及其粗多糖抗肿瘤作用的研究,吉林农业大学,2002
    [1]储炬,现代工业发酵调控学,化学工业出版社,2003,261
    [2]Maria Papagianni, Fungal morphology and metabolite production in submerged mycelial processes, Biotechnology Advances,2204,22:189-259
    [3]Wolschek MF, Kubicek CP, Biochemistry of citric acid accumulation by Aspergillus niger. Citric acid biotechnology.1999,11-32
    [4]Hossain M, Brooks JD, Maddox IS. The effect of the sugar source on citric acid production by Aspergillus niger. Appl microbiol Biotechnol,1984,19:393-397
    [5]Xu DB, Kubicek CP, Rohr M, A comparison of factors influencing citric acid production by Aspergillus niger grown in submerged culture and on filter paper. Appl Microbiol Biotechnol 1989,30:444-449
    [6]Papagianni M, Mattey M, Kristiansen B. The influence of glucose concentration on citric acid production and morphology of Aspergillus niger in batch and glucostat culture. Enzyme Microb Technol,1999,25:710-717
    [7]Muller C, Spohr AB, Nielsen J. et al, Role of substrate concentration in mitosis and hyphal extension of Aspergillus. Biotechnol Bioeng 2000,67:390-397
    [8]Schrickx JM, Krave AS, Verdoes JC. et al, Growth behaviours and glucoamylase production by Aspergillus niger N402 and a glucoamylase overproducing transfprmant in recyling culture without a nitrogen source. Appl Mircobiol Biotechnol 1995,43:109-116
    [9]Znidarsic P, Komel R, Pavko A. etal. Influence of some environmental factors on Rhizopus nigricans submerged growth in the form of pellets. World J Microbiol Biotechnol,2000,16:589-593
    [10]Braun S, Vecht-Lifshitz SE, Mycelial morphology and metabolite production. Trends biotechnol,1991,9:63-68
    [11]Du LX, Jia SJ, Lu FP. Morphological changes of Rhizopus chinesis 12 in submerged culture and its relationship with antibiotic production. Process Biochem,2002,38:1643-1646
    [12]Papagianni M, Nokes SE, Filer K. Production of phytase by Aspergillus niger in submerged culture and solid-state fermentation. Process Biochem. 1999,35:397-402
    [13]Papagianni M. Morphology and citric acid production of Aspergillus niger in submerged culture, University of Strathclyde, UK,1995
    [14]Papagianni M. Mattey M, Berovic M et al, Aspergillus niger morphology and citric acid production in submerged batch fermentation:effects of culture pH, phosphate and manganese levels. Food Technol Biotechnol,1999,37:165-171
    [15]Haq IU, Ali S, Qadeer MA, et al. Effect of copper ions on mould morphology and citric acid productivity by Aspergillus niger using molasses based media. Process Biochem,2002,37:1085-1090
    [16]Papagianni M, Mattey M, Berovic M, et al. Aspergillus niger morphology and citric acid production in submerged batch fermentation:effects of culture pH, phosphate and manganese levels. Food Technol Biotechnol.1999,37:165-171
    [17]McIntyre M, Eade JK, Cox PW, et al. Quantification of autolysis in Penicillium chrysogenum by semiautomatic image analysis. Can J Microbiol, 2001,47:315-321
    [18]Higashiyama K, Murakami K, Tsujimura H, et al, Effects of dissolved oxygen on the morphology of an arachidonic acid production by Mortiella alpina IS-4. Biotechnol Bioeng,1999,63:442-448
    [19]Kubicek CP, Rohr M, Citric acid fermentation. Crit Rev Biotechnol,1989.3:331-371
    [20]Schugerl K, Gerlach SR, Siedenberg D. Influence of process parameters on the morphology and enzyme production of Aspergilli. Adv Biochem Eng Biotechnol, 1998,60:195-266
    [21]Carlsen M, Spohr AB, Nielsen J, et al, Morphology and physiology of an a-amylase producing strain of Aspergillus oryzae during batch cultivations. Biotechnol Bioeng,1995,49:266-276
    [22]Miles E, Trinici APJ. Effect of pH and temperature on morphology of batch and chemostat cultures of Penicillium chrysogenum. Trans Br Mycol Soc, 1983,81:193-200
    [23]Madigan M, Martinko JM, Parker J, Brock biology of microorganisms. USA: Prentice Hall,2000
    [24]Wang Y, McNeil B. pH effects on exopolysaccharide and oxalic acid production in cultures of Sclerotium glucanicum. Enzyme Microb Technol,1995,17:124-130
    [25]Gerlach SR, Siedenberg D, Gerlach D. et al, Applicationof neural network and cluster analysis for characterization of fungal morphology. Process Biochem, 1998,33:601-615
    [26]Lacroix C, LeDuy A, Noel G, et al, Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol Bioeng,1985,27:292-207
    [27]秦义,富锌灵芝液态发酵研究,硕士学位论文,陕西,西北农林科技大学,2007,8-10
    [28]孙纳新,蛹虫草多糖降血糖的机理研究,博士学位论文,山东,山东师范大学,2005,41
    [29]付娟妮,真姬菇液态发酵及菌丝体多糖的提取纯化与结果解析,博士学位论文,陕西,西北农林科技大学,2008,20
    [30]骆冬青,桑黄液体发酵和桑黄多糖提取纯化的研究,硕士学位论文,安徽,安徽农业大学,2008,11
    [31]杨全,桑黄的液体发酵及其粗多糖抗肿瘤作用的研究,吉林,吉林农业大学,2002,8
    [32]李朔,桑黄液体发酵生产多糖的研究,硕士学位论文,南京,南京农业大学,2007,12
    [33]Kim SW, Hwang HJ, Park JP, et al. Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Bioresource Technol.2002,34:56-61
    [34]Zou X, Guo X, Sun M. pH control strategy in a shaken minibioreactor for polysaccharide production by medicinal mushroom Phellinus linteus and its anti-hyperlipemia activity. Bioproc Biosystems Eng.2009,32:277-281
    [35]Hwang HJ, Kim SW, Xu CP,et al. Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J Appl Microbiol.2003,94:708-719
    [36]Hwang HJ, Kim SW, Choi JW, et al. Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme Microb Tech,2003,33:309-319
    [37]Lee SY, Bae HK, Song MK, et al. Bioconversion of starch processing waste to Phellinus linteus mycelium in solid-state cultivation. J Ind Microbiol Biot.2008, 35:859-865
    [38]北京大学生物系生物化学教研室,生物化学实验指导.1979,北京人民教
    [39]Ji HJ, Jong ML, et al.Optimization of submerged culture conditions for exopolysaccharide production in Sarcodon aspratus (Berk) S.lto TG-3, World Journal of Microbiology & Biotechnology 2004,20:767-773
    [40]Wei C, Zhao Z, Shi FC, et al. Optimization for the production of exopolysaccharide from Fomes fomentarius in submerged culture and its antitumor effect in vitro, Bioresource Technology 2008,99:3187-3194
    [41]盖钧镒.试验统计方法.北京:中国农业出版社,2000:382.
    [42]方开泰,马长兴著,正交与均匀试验设计,科学出版社2001.9
    [43]Chen TQ, Zhong WJ, Ji JY, et al. Composition analysis and micro morphological observation of log cultivated fruitbodies of Phellinus igniarius, J Fungi research,2005,3:30-34
    [44]Nakamura T, Matsugo S, Uzuka Y, et al. Fractionation and anti-tumor activity of mycelia of liquid-cultured Phellinus linteus. Biosci Biotechno Biochem, 2004,68(4):868-872
    [45]Lee BC, Bae JT, Pyo HB, et al. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifola frondosa. Enzyme Microb Technol,2004,35(5):369-376
    [46]Lim JM, Kim SW, Hwang HJ, et al. Optimization of medium by orthogonal matrix method for submerged mycelial culture and exopolysaccharide production in Collybia maculata. Appl Biochem Biotechnol.2004,119:159-170
    [47]Kim HH, Geol NJ, Chang YK, et al. Optimization of submerged culture conditions for mycelial growth and exopolysaccharides production by Agaricus blazei. J Microbiol Biotechnol.2004,14:944-951
    [48]贺小贤,生物工艺原理,化学工业出版社,2004,205-206
    [49]杨全,桑黄的液体发酵及其粗多糖抗肿瘤作用的研究,吉林,吉林农业大学,2002,8
    [50]侯玉如,柳松菇的功效性研究和桑黄的双向性新型发酵研究,南京师范大学,2005,44
    [51]徐双阳,桑黄多糖提取、分离纯化及其理化性质研究,东北师范大学2006,56
    [52]Tsivileva OM, Pankratov AN, Nikitina VE, et al. Relationship between the molecular structure of the nitrogen source and the activity of the extracellular lections of Lentinus edodes(Berk.) Sing[Lentinula edodes (Berk.)Pegler] upon submerged cultivation. Microbiology.2004,73:410-413
    [53]Letisse F, Chevallereau P, Simon JL, et al. The influence of metabolic network structures and energy requirements on xanthan gum yields. J Biotechnol. 2002.99:307-317
    [1]贺小贤,生物工艺原理,化学工业出版社,2008,56
    [2]骆冬青,桑黄液体发酵和桑黄多糖提取纯化的研究,安徽农业大学,2008
    [3]杨全,桑黄的液体发酵及其粗多糖抗肿瘤作用的研究,吉林农业大学,2002
    [4]张郁松,蚕蛹油超临界萃取与有机溶剂萃取的比较研究,2009,2:45~46
    [5]方开泰,马长兴著,正交与均匀试验设计,科学出版社2001.9
    [6]臧以政,生物反应工程,北京:化学工业出版社,2003,81
    [7]储炬,现代工业发酵调控学,北京:化学化工出版社,2003
    [8]Lee BC, Bae JT, Pyo HB, et al. Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible Basidiomycete Grifolafrondosa. Enzyme Microb Technol,2004,5:369-376
    [9]Joo JH, Lim JM, Kim HO, et al. Optimization of submerged culture conditions for exopolysaccharide production in Sarcodon aspratus (Berk) S.lto TG-3. World J Microbiol Biotech,2004,20:767-773
    [10]Hwang HJ, Kim SW, Choi JW, et al. Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme Microb Tech,2003,33:309-319
    [11]Wardle EN, Menon IS, Fibrinolysis in pre-eclamptic toxaemia of pregnancy, British Medical Journal,1969
    [12]赵明亮,邓世瑜,油与香菇菌丝生长的关系,食用菌,1987,26
    [13]Yang F.C, Ke YF, Kuo SS, Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask culture, Enzyme and Microbial Technology.2000,27:295-301
    [14]Schisler LC, Volkoff O. The effect of safflower oil on mycelial growth of Boletaceae in su bmerged liquid cultures. Mycologia.1977,69:118-25.
    [15]Yoshikawa H, Okazaki M,et al. Studies on riboflavin production by Eremothecium ashbyii. J Ferment Technol.1972,50:716-23.
    [16]Reese ET, Maguire A. Surfactants as stimulants of enzyme production by microorganisms. Appl Microbiol.1969,17:242-5.
    [17]Fukushima Y, Itoh H, Fukase T, et al. Stimulation of protease production by Aspergillus oryzae with oils in continuous culture. Appl Microbiol Biotechnol. 1991,34:586-90.
    [18]Kojima I, Stasinopoulos SJ, Seviour RJ. Stimulation of exopolysaccharide production in the fungus Acremonium persicinum with fatty acids. Biotech Bioeng.1990,36:778-82.
    [19]赵明亮,邓世瑜,油与香菇菌丝生长的关系,食用菌,1987,26
    [20]Yang FC, Ke YF, Kuo SS, Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures,, Enzyme and Microbial Technology.2000,27:295-301
    [21]Schisler LC, Volkoff O. The effect of safflower oil on mycelial growth of Boletaceae in su bmerged liquid cultures. Mycologia.1977,69:118-25.
    [22]Lee ML, Lee SY, Lee YY, Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. J Bioscience Bioengineering.1999,6:646-650
    [23]Degeest B, Vuyst LD, Correlation of activities of the enzymes a-Phosphoglucomutase, UDP-Galactose 4-Epimerase, and UDP-Glucose Pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LLY03, Applied Environmental Microbiogoly,2000,3519-3527
    [24]Torino MI, Mozzi F, Valdez GF, Exopolysaccharide biosynthesis by Lacobacillus helveticus ATCC 15807, Applied Microbial Cell Physiology,2005, 68:259-265
    [25]Grobben GJ, Smith MR, Sikkema K, et al. Influence of fructose and glucose on the production of exopolysaccharides and the activities of sugar nucleotides in Lactobacillus delbruecii subsp. Bulgaricus NCFB2772, Appl Microbiol Biotechnol,1996,46:279-284
    [26]Letisse F, Chevallereau P, Simon J, et al. The influence of metabolic network structures and energy requirements on xanthan gum yields, J Ferment Technol 2002,99:307-317
    [27]Jonathan SG, Fasidi IO. Studies on Psathyerella atroumbonata (Pegler), a Nigerian edible fungus. Food Chem,2003,81:481-484
    [28]Zhong JJ. Production of ginseng saponin and polysaccharide by cell cultures of Panax notoginseng and Panax ginseng. Appl Biochem Biotechnol,1998,75: 261-268
    [1]曹新志,金征宇.响应曲面法在环糊精糖基转移酶反应中的应用.郑州工程学院学报,2004,25(1):58-61.
    [2]崔凤杰,徐泓瑜,舒畅等.响应曲面法优化灰树花水溶性多糖提取工艺的研究.食品科学,2006,27(4):142-151.
    [3]应芝,励建荣,韩晓祥.响应面分析法优化桑叶多糖提取工艺的研究.中国食品学报,2008,4:39-42
    [4]Zhu L,Zhang Q,Wang YF, et al. Optimum extraction process of polysaccharides from Grateloupia filicina by orthogonal test, Food Science,2006,2:23-26
    [5]Cao PF. Study on Extraction Condition of Tea Polysaccharide by Orthogonal experiment, Journal of Anhui Agricultural Sciences,2007,14:41-25
    [6]霍文,孙广利,刘鹏.正交试验法优选茯苓多糖提取工艺,西北药学杂志,2006,01:61-64
    [7]边洪荣,孙广利,张海岚.用正交试验法研究超声提取香菇多糖的最佳工艺,中药材,2006,3:72-75
    [8]应芝,励建荣,韩晓祥.响应面分析法优化桑叶多糖提取工艺的研究,中国食品学报,2008,8:39-45
    [9]Muralidhar RV. Chirumamila RR, Marchant R,et al. A response surface approach for the comparison of lipase production by Canida cylindracea using two different carbon sources. Biochemical Engineering Journal,,2001,9:17-23.
    [10]Qiao DL, Hu B, Gan D, Sun Y, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii. Carbohydrate Polymers, 2009,76:422-429.
    [11]Sun Y, Li Y, Li M, Tong H, et al. Optimization of extraction technology of the Anemone raddeana polysaccharides (ARP) by orthogonal test design and evaluation of its anti-tumor activity. Carbohydrate Polymers,2009,75:575-579.
    [12]Wang, ZJ, Luo DH, Ena C. Optimization of polysaccharides extraction from Gynostemma pentaphyllum Makino using uniform design. Carbohydrate Polymers,2007,69:311-317.
    [13]王允祥,吕凤霞,陆兆新.杯伞发酵培养基的响应曲面法优化研究.南京农业大学学报,2004,27(3):89-94.
    [14]逯家辉,董媛,张益波.响应面法优化桑黄菌丝体多糖超声波提取工艺的研 究.林产化学与工业.2009,29,(2):63-68
    [15]刘安军,陈伟伟,王稳航.桑黄(Phellinus linteus):水溶多糖提取技术研究.食品研究与开发,2006,27(10):32-35
    [16]孙军德,温立丽,鲁婷婷.桑黄液体发酵菌丝体多糖提取条件的优化.沈阳农业大学学报,2009,40(3):322-325
    [17]时东方,周勇,李雪.桑黄菌丝体粗多糖的提取方法研究.菌物研究,2008,16(14):226-233
    [1]杨全,严寒静,李艳辉,等.药用真菌桑黄菌丝体多糖提取工艺的研究.广东药学院学报,2005,21(6):697-698,705.
    [2]郭树凡,张慧丽,李昱,等.桑黄子实体多糖提取条件的研究.食用菌学,报,2006,13(4):49-55.
    [3]刘安军,陈伟伟,王稳航,等.桑黄(Phellinus linteus)水溶多糖提取技术研究.食品研究与开发,2006,27(10):32-35.
    [4]窦茜茜,丁建新,张东娜,等.桑黄多糖提取工艺研究.解放军药学学报,2007,23(6):423-426.
    [5]郭树凡,蔡天革,李辉,等.微波辅助提取桑黄多糖的工艺研究.特产研究,2008,30(1):22-25.
    [6]Hawes CR, Satiat-Jeunemaitre B. Plant cell biology:a practical approach.2nd ed.New York:Oxford University Press,2001,193-194.
    [7]Hwang HJ, Kim SW, Lim JM, et al.Hypoglycemic effect of crude exopolysaccharides produced by a medicinal mushroom Phellinus baumii in streptozotocin-induced diabetic rats.Life Sciences,2005,76(26):3069-3080.
    [8]Kim DH,Yang S, Jeong J, et al.Production of hypoglycemic,extracellular polysaccharide from submerged culture of mushroom Phellinus linteus. Biotechnology Letters 2001,23:513-517.
    [9]Kim GY, Kim SH, Hwang SY,et al.Administration of Proteoglycan Isolated from Phellinus linteus in the Prevention and Treatment of Collagen-Induced Arthritis in Mice.Biol Pharm Bull,2003,26(6):823-831.
    [10]Lee JH, Cho SM, Song Ks, et al. Immunostimulating activity and characterization of polysaccharides from mycelium of Phellinus linteus, Morcobiol Biotechnol,1996,3:8-213
    [11]Lee JH, Cho SM, Ko Ks, et al. Effect of cultural conditions on polysaccharide production and its monosaccharide composition in Phellinus linteus L13202, Korean J Mycol,1991,23:31-325
    [12]Kim SH, Song YS, Kim SK, et al. Anti-inflammatory and related pharmacological activities of the n-BuOH subfraction of mushroom Phellinus linteus.J Ethnopharmacol,2004,93(1):141-146.
    [13]Zhang W J Biochemical techniques in complex carbon hydrates,2nd ed. Hangzhou:Zhejiang University Publishing House,1991.
    [14]Ajith TA, Jose N, Janardhanan KK.Amelioration of cisplatin induced nephrotoxicity in mice by ethyl acetate extract of a polypore fungus Phellinus rimosus.J Exp Clin Cancer Res,2002,21:213-217.
    [15]Dubios M,Gillis K A,Hamilton J K, et al.Colorimetic methnod for determination of sugars and related substances. Anal Chem,1956,28,350-356
    [16]Ignjatovic N., Savic V., Najman S., et al. A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials,2001,22, 571-575.
    [17]Kim Y.S., Park K.S., Park H.K., et al. Compositional sugar analysis of antitumor polysaccharides by high performance liquid chromatography. Archives of Pharmacal Research,1994,17,337-342.
    [18]Hwang HJ, Kim SW, Choi JW, et al. Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme Microb Tech 2003,33:309-319
    [19]Hwang HJ, Kim SW, Xu CP et al, Production and molecular characteristics of four groups of exopolysaccharides from submerged culture of Phellinus gilvus. J Appl Microbiol,2003,94:708-719
    [20]Han SB, Lee CW, Kang JS, et al, Acidic polysaccharide from Phellinus linteus inhibits melanoma cell metastasis by blocking cell adhesion and invasion. Int Immunopharm,2006,6:697-702
    [21]Wei YA, Fang JN, Determination of homogeneity and molecular weigh t of poly-saccharides by HPGPC Acata Pharm Sin,1989,24 (7):532-536
    [22]Yang Y, Zhou C Y, Bai YQ, Isolation and purification of the polysaccharides from the fruiting bodies and mycelium of Hericium erinaceus and comparison between their physicochemical properties. Mycosystem,2001,20 (3):397-402.
    [1]江苏新医学院.中药大辞典.上海:海科学技术出版社,1995
    [2]Sasaki T, Fujji, Sugura M, et al. Antitumor polysaccharides from some polyporaceae, Gader-ma applanatum (Pers.) Pat. and Phellinus linteus (Berk.& curt.) Teng. Chem Parm Bull,1971,19:821
    [3]Chung KS, Kim HS. An investigation on the antitumor or constituents of Phellinus linteus. Koran J Mycol,1991,19:361
    [4]张万国,胡晋红,蔡漆.桑黄增强人外周血单个核细胞产生γ-干扰素的研究.基层中药杂志,2002,16(3):5-6
    [5]Kim GY,Lee JD,Lee JO, et al. Partial characterization and immunostimulatory effete of a novel polysaccharide-protein complex extracted from Phellinus linteus.Biosci. Biotechnol Bioehem.,2006,70(5):1218-1226.
    [6]Kim DH,Yang BK,Jeong SC, et al. Production of a hypoglyeemic, extracellular polysaeeharide from the submerged culture of the mushroom, Phellinus linteus.Biotechnol.Lett.,2001,23:513-517.
    [7]Song YS, Kim SH, Sa JH, et al. Anti-angiogenic, antioxidant and xanthine oxidase inhibition activities of the mushroom Phellinus linteus. J Ethnopharmacol.2003, (88):113-116
    [8]张万国,胡晋红,蔡溱等.桑黄抗大鼠肝纤维化与抗脂质过氧化.中成药.2002,4(24):281-283
    [9]郑立军,沈业寿,季俊虬等.桑黄胞内多糖的抗突变和抗氧化作用.癌变畸变突变.2006,6(18):465-468
    [10]王清,沈业寿,赵浩如.桑黄子实体水提物抗肿瘤和抗环磷酞胺致突变作用研究.食用菌.2006,(5):56-59
    [11]林文庭,张智芳,浒苔多糖降血脂及抗脂质过氧化作用,中国公共卫生,2009,25:567-569
    [12]李湘鸣.SPSS 10.0常用生物医学统计使用指导,东南大学出版社,2005
    [13]Kim DH, Yang BK, Jeong SC, et al. Production of a hypoglycemic, extracellular polysaccharide from the submerged culture of the mushroom, Phellinus linteus, Biotechnology Letters,2001,23:513-517.
    [14]Miller M. Raising an isolated low HDL-L level:Why, how, and when?. Cleveland Clinic Journal of Medicine,2003,6:553-560.
    [15]崔鹤松,金光.桦褐孔菌多糖对实验性高脂血症模型大鼠血脂的影响.延边大学医学学报,2007,30(3):173-174.
    [16]肖红波,卢向阳,孙志良等.可溶性裙带菜膳食纤维对小鼠糖代谢的影响.中国临床营养杂志,2005,14(3):179-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700