用户名: 密码: 验证码:
波浪作用下沉管管段沉放运动的试验与数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋环境条件下,大型沉管隧道管段的沉放是沉管隧道施工中的一个关键环节。海洋中的风、浪、流作用将给管段的海上沉放施工带来很大的困难,较差的海洋动力环境条件将不利于管段的沉放施工作业。研究沉管管段沉放过程中的运动特性和缆绳受力特性,有助于把握沉管的运动稳定性和施工安全性。到目前为止,对海洋环境条件下沉管管段沉放运动的研究还很少。基于此,本文开展了波浪作用下沉管管段沉放运动的试验研究和数值模拟研究。
     本文开展了规则波作用下沉管管段沉放的试验研究,研究了规则波作用下管段的运动响应特性和缆绳受力特性,分析了管段沉深和相关波要素对管段沉放过程中的运动响应及缆绳受力的影响;讨论了正向波作用下波浪与管段运动及缆绳张力之间的相位关系。试验结果表明,管段沉深和波浪周期对管段的运动有较大的影响,特别当管段沉深较小时,管段的运动表现出强非线性特征;管段沉深较小的情形下,波高对管段的无量纲运动位移的影响较为明显,且缆绳随时间出现周期性的松弛状态。试验还对规则波和水流联合作用下管段的运动特征和缆绳受力特征进行了研究。对于正向波流联合作用的情形,水流对管段的运动有很大的影响。在流力作用下,管段在水平、垂直方向和横摇运动方向上均产生一定的偏移,偏移量的大小与水流流速的大小有关;缆绳的张力随波高和流速的增大而增大。
     本文对不规则波作用下沉管管段的沉放开展了试验研究,研究了不规则波作用下管段的运动响应特性和缆绳受力特性,分析了管段沉放过程中的运动响应频谱特征及管段沉深、波浪有效波高和谱峰周期对管段运动响应和缆绳受力的影响。根据试验分析结果,不规则波作用下,管段除了产生与波浪谱峰周期对应的波频运动外还作低频运动;不同沉深的管段其横荡低频运动均大于横荡波频运动,而对于垂荡运动,随着管段沉深的增大,运动从以低频运动为主逐渐过渡到以波频运动为主;有效波高和谱峰周期越大,管段的运动响应也越大;对应于管段的运动响应,缆绳张力频谱同样存在波频谱峰和低频谱峰,并且在管段沉深较小、波浪有效波高较大和谱峰周期较大的情形下,缆绳的张力相应地大。
     本文分别建立了波浪作用下沉管管段运动的频域和时域数值计算模型。应用基于三维分布源方法的频域模型计算分析了波浪作用下管段处于不同沉放阶段的波浪荷载及频域响应。频域计算对于反映线性系统的管段沉放运动是一个简单而方便的方法;应用基于有限水深条件下满足自由面条件的时域格林函数建立了波浪对管段作用的时域内的积分方程,并采用边界元方法求解,应用牛顿第二定律建立了管段的时域运动方程,并采用四阶Runge-Kutta方法求解,由此建立起管段运动的时域数值计算模型。时域模型能够反映管段非线性运动和缆绳张力非线性变化的特性,并能给出管段运动响应和缆绳张力随时间变化的过程。时域计算结果与试验结果的比较验证,显示了时域计算模型的正确性和有效性。应用该时域模型研究了不同沉放深度、不同负浮力、不同波浪入射角度等影响因素条件下沉管管段的运动响应特征和缆绳的受力情况,数值计算结果进一步表明了其与试验分析结论的一致性。
The immersion of large-scale tunnel elements is one of the most important procedures of immersed tunnel construction under the ocean environment conditions.The winds,waves and currents in the ocean will have an unfavorable influence on the immersion of tunnel elements. Studying the dynamic characteristics of tunnel elements in the immersion and the behaviour of cable tensions will be helpful for the immersion stability and construction safety of the tunnel elements.Up to now,there are still a very few researches about the motion dynamics of tunnel elements in the immersion under the ocean environment conditions.On the base of this consideration,the investigation on the motion characteristics of a tunnel element under wave actions during its immersion is carried out in this thesis,including the experimental and numerical study.
     The experimental study is conducted on the immersion of the tunnel element under regular wave actions in the finite water depth.The emphasis of the investigation is on the characteristics of the tunnel element motion responses and the cable tensions.The influences of the immersing depth and the relevant wave factors on the motion responses of the tunnel element in the immersion and the cable tensions are analyzed.The relations of phase among the waves,the motions of the tunnel element and the cable tensions are discussed under the right-angled wave condition.The experimental results indicate that the wave period and immersing depth have large effects on the motions of the tunnel element.Especially,as the immersing depth is relatively small,the motions of the tunnel element show strong nonlinearity.In the case of relatively small immersing depth,the effects of the wave height on the non-dimensional motion displacements of the tunnel element are obvious,and there occurs slack state periodically in the cables during the movement of the tunnel element.The investigations on the cable tensions and motion characteristics of the tunnel element under combined wave-current actions are also carried out.For the case of the joint actions of the right-angled waves and current,the current has large effect on the motions of the tunnel element.Under the current actions,the excursions occur to the tunnel element in the horizontal and vertical direction,as well as in the tunnel element roll motion direction.The magnitude of the excursions depends on that of the current velocity.And the cable tensions increase with the increase of wave height and current velocity.
     The experimental investigation on the immersion of the tunnel element under irregular wave actions is also conducted.The frequency spectrum characteristics of the motion responses of the tunnel element and the influences of the immersing depth,the significant wave height and the peak frequency period on the motion responses and cable tensions are analyzed.According to the experimental results,under the irregular wave actions the tunnel element has the wave frequency motions corresponding to the wave peak frequency period, and has the low frequency motions in addition.For the sway motion of the tunnel element,the low frequency motion is dominant in different immersing depths.But for the heave motion, that the low frequency motion is dominant gradually turns to that the wave frequency motion is dominant with the increase of the immersing depth.The larger are the significant wave height and peak frequency period,the larger are the motion responses of the tunnel element. Corresponding to the motions of the tunnel element,the frequency spectra of the cable tensions have similarly wave frequency and low frequency peak,and the cable tensions are comparatively large as the immersing depth is relatively small and the significant wave height and peak frequency period are relatively large.
     The frequency-domain and time-domain numerical models are developed respectively in the thesis.The frequency-domain numerical model is presented based on the 3-dimensional source distribution method,and with the model the wave loads and frequency responses of the tunnel element under wave actions in different immersing depths are calculated.The frequency analysis for the reflection to the immersion motion of the tunnel element in a linear system is a simple and convenient method.Based on the time-domain Green function that satisfies the free water surface condition in the finite water depth,the integral equation is established,and solved by the boundary element method.By adopting Newton second's law, the time-domain motion equations of the tunnel element are proposed,and solved by the fourth order Runge-Kutta method.On the basis of the theories above,the time-domain numerical model is developed.The model can reflect the characteristics of the nonlinear motions of the tunnel element and the nonlinear variation of the cable tensions,and can give the variation information of the motion responses of the tunnel element and the cable tensions with the time.Compared with the results of the experiments,the time-domain numerical model proves to be correct and effective.By using the model,the motion responses of the tunnel element and the cable tensions are calculated under different immersing depth, different negative buoyancy and different incident wave direction conditions,etc.The computational results further show the agreement with the experimental results.
引文
[1]傅琼阁.沉管隧道的发展与展望[J].中国港湾建设,2004(5):53-58.
    [2]李兴碧,王明洋,钱七虎.沉管隧道的发展与琼州海峡的沉管隧道方案[J].岩土工程界,2003,6(7):7-11.
    [3]吴之明.英吉利海峡隧道与台湾海峡隧道[J].铁道知识,2005(2):42-44.
    [4]陈宝春,刘织,林涵斌,世界海底隧道工程概况与台湾海峡通道构想[J].福州大学学报,2000,21(4):51-55.
    [5]李梅.中国专家惊世梦想—海底隧道贯通渤海湾[J].中国水运报,2003,5.
    [6]谭忠盛,王梦恕,张弥.琼州海峡铁路隧道可行性研究探讨[J].岩土工程学报,2001,23(2):139-143.
    [7]台湾海峡道论证学术研讨会论文集编委会.台湾海峡隧道论证学术研讨会论文集[M].北京:清华大学出版社,2000.
    [8]宋建,陈百玲.沉管隧道穿越江河海湾的优越性[J].现代隧道技术,2005,42(3):28-31.
    [9]ITA WG.Immersed Tunnels - a better way to cross waterways[EB/OL].1999.[2008,05,28].http://www.ita-aites.org/cms/ita-aites-home/publications/wg-publications/work ing-groups/datum/2008/05/28/imsersed-tunnels-a-better-way-to-cross-waterways-tribune -special-edition-mai-1999,html
    [10]邓富甲.世界最早的沉管隧道底特津河(The Dtroit River)沉管隧道[J].交通工程科技,2002(3):15-27.
    [11]Glerum A.Developments in immersed tunnelling in Holland[J].Tunnelling and Underground Space Technology,1995,10(4):455-462.
    [12]Gursoy A.Immersed steel tube tunnels:an American experience[J].Tunnelling and Underground Space Technology,1995,10(4):439-453.
    [13]Grantz W C.Steel-shell immersed tunnels-forty years of experience[J].Tunnelling and Underground Space Technology,1997,12(1):23-31.
    [14]Rasmussen N S.Concrete immersed tunnels-forty years experience[J].Tunnelling and Underground Space Technology,1997,12(1):33-45.
    [15]Grantz W,Rasmussen N.Chapter 9:Catalog of immersed tunnels[J].Tunnelling and Underground Space Technology,1997,12(2):163-316.
    [16]薛勇.沉管隧道技术的进展[J].特种结构,2005,22(1):70-72.
    [17]周瑜.大型沉管隧道管段水上施工问题研究[D]:(博士学位论文).上海:上海交通大学,2001.
    [18]Joseph Y C.The state-of-the-art technology for immersed tube tunnel in Hong Kong and Korea[C].Seminar on "The state-of-the-art technology and experience on geotechnical engineering in Korea and Hong Kong".2008,Hong Kong.
    [19]作者不详.广州珠江沉管隧道概况[J].世界隧道,1996,(6):4-6.
    [20]管敏鑫,严金秀,唐英.沉管隧道技术在我国的应用[J].岩石力学与工程学报,1998,18,增刊:1000-1004.
    [21]蒋义康.甬江水底隧道工程的管段沉放技术[J].港口工程,1998,(4):49-55.
    [22]刘干伟.采用沉管法施工的宁波常洪隧道[J].上海建设科技,2001(5):14-15.
    [23]沈秀芳,乔宗昭,贺春宁.上海外环沉管隧道设计(一)[J].地下工程与隧道,2003(3):2-5.
    [24]贺春宁,陈鸿,乔宗昭.上海外环沉管隧道设计(二)[J].地下工程与隧道,2003,(4):1-6.
    [25]ITA WG.Immersed and floating tunnels[J].Tunnelling and Underground Space Technology,1993,8(2):119-285.
    [26]Odgaard S S,Jessen O P,Kasper T.Design of long immersed tunnel for highway in offshore conditions Busan - Geoje Fixed Link[J].Tunnelling and Underground Space Technology,2006,21.
    [27]Jensen O P,Olsen T H,Zim C W,et al.Construction of immersed tunnel in off-shore wave conditions Busan - Geoje project South Korea[J].Tunnelling and Underground Space Technology,2006,21.
    [28]董国贤.渤海海峡高速公路水下潜伏隧道浅析[J].地下空间,2002,22(3):271-273.
    [29]钱七虎,金丰年,李兴碧,等.琼州海峡越海隧道可行性研究初步探讨[R].中国人民解放军工程学院,1996.
    [30]谭忠盛,王梦恕,杨小林.海底隧道施工技术及琼州海峡隧道方案的可行性[J].焦作工学院学报(自然科学版),2001,20(4):286-291.
    [31]麦继婷,关宝树.琼州海峡悬浮隧道的可行性研究[J].铁道工程学报,2003,(4):93-96.
    [32]项贻强,薛静平.悬浮隧道在国内外的研究[J].中外公路,2002,22(6):49-52.
    [33]Fujii T.Submersed floating tunnels project in Funka Bay design and execution[C].International Conference on Submersed Floating Tunnel.1996,Sandnes,Norway.
    [34]FEHRL report no 1996/2a.Analysis of the submerged floating tunnel concept[J].In:FEHRL(Forum of European National Highway Research Laboratories).Berkshire(Crowthorne):Transport Research Laboratory,1996.
    [35]Larssen R M.Estimation of structural parameters from response measurements on submerged floating tunnels[D]'(dissertation).Trondheim:Norwegian University of Science and Technology,1996.
    [36]Ahrens D.Submerged floating tunnels:a concept whose time has arrived[J].Tunnelling and Underground Space Technology,1997,12(4):317-336.
    [37]Aadnesen L.The case for submerged floating tunnels[J].Tunnels and Tunnelling Interrnational,1999,6:32-34.
    [38]Remseth S,Leira B J,Okstad K M,et al.Dynamic response and fluid/structure interaction of submerged floating tunnel[J].Computers and Structures,1999, 72:659-685.
    [39]Fogazzi P,Perotti F.The dynamic response of seabed anchored floating tunnels,under seismic excitation[J].Earthquake Engineeringand Structural Dynamic,2000,29:273-295.
    [40]naukas T,Remseth S.Global dynamic analysis of floating submerged tunnels[J].Report N-7034,Deparment of Structural Engineering,Norwegian University of Science and Technology,Trondheim,Norway,2007.
    [41]Di Pilato M,Perotti F,Fogazzi P.39 dynamic response of submerged floating tunnels under seismic and hydrodynamic excitation[J].Engineering Structures,2008,30(1):268-281.
    [42]Kanie S,Mikami T,Horiguchi H,et al.Effect of non-linearity in restoring force on dynamic response of SFT[C].Srait Crossing.2001,Krobeborg:Swets & Zeitlinger Pulishers Lisse.
    [43]麦继婷,关宝树.用Morison方程计算分析悬浮隧道所受波浪力初探[J].石家庄铁道学院学报,2003,16(3):1-4.
    [44]项贻强.水下悬浮隧道的空间分析与阶段模型试验[D]:(博士学位论文).杭州:浙江大学,2003.
    [45]麦继婷,罗忠贤,关宝树.流作用下悬浮隧道张力腿的涡激动力响应[J].西南交通大学学报,2004,39(5):600-604.
    [46]Xiang Yiqiang,Gan Yong,Xu Xing.Spatial analysis of the submerged floating tunnel in the Jingtang Strait[J].Seventh International Symposium on Structural Engineering for Yong Experts,2002.
    [47]麦继婷,杨显成,关宝树.波流作用下悬浮隧道的动态响应分析[J].水动力学研究与进展A 辑,2005,20(5):616-623.
    [48]麦继婷,罗忠贤,关宝树.波浪作用下悬浮隧道的涡激动力响应[J].铁道学报,2005,27(1):102-105.
    [49]王长春.水中悬浮隧道与洋流耦合作用的模型试验[D]:(硕士学位论文).成都:西南交通大学,2005.
    [50]陈洋.台湾海峡隧道构想[J].大自然探索,2002(2):27-28.
    [51]Grantz W C.Immersed tunnel settlements-Parts 2:case histories[J].Tunnelling and Underground Space Technology,2001,16:203-210.
    [52]陈贵红.沉管隧道抗震数值分析[D]:(硕士学位论文).成都:西南交通大学,2002.
    [53]邵俊江.沉管隧道的沉降预测及其控制研究[D]:(博士学位论文).上海:同济大学,2003.
    [54]Anastasopoulos I,Gerolymos N,Drosos V,et al.Nonlinear response of deep immersed tunnel to strong seismic shaking[J].Journal of Geotechnical and Geoenvironmental Engineering,2007,133(9):1067-1090.
    [55]Ding Junhong,Jin XianLong,Guo YiZhi,et al.Numerical simulation for large-scale seismic response analysis of immersed tunnel[J].Engineering Structures,2006,28(10):1367-1377.
    [56]Grantz W C.Immersed tunnel settlements-Part 1:nature of settlements[J].Tunnelling and Underground Space Technology,2001,16:195-201.
    [57]Ingerslev C,Kiyomiya O.Earthquake analysis,immersed,and floating tunnels[J].Working Group Report,ITA,1997,2(2):76-80.
    [58]Kiyomiya O.Earthquake-resistant design features of immersed tunnels in Japan[J].Tunnelling and Underground Space Technology,1995,10(4):463-475.
    [59]Hashash Y M,Tseng W S,Krimotat A.Seismic soil-structure interaction analysis for immersed tube tunnels retrofit[C].Proceeding of Geotechnical Earthquake Engineeing and Soil Mechanics.1998,Reston,Va.
    [60]张晓兔,张乐文,刘祖源.长江沉管隧道管节的顶推操纵运动模拟[J].武汉造船,1999(3):14-17.
    [61]张晓兔,张乐文,刘祖源.沉管管节的拖航操纵运动模拟[J].武汉交通科技大学学报,1999,23(5):533-536.
    [62]胡晓明.南京长江沉管隧道管节顶推浮运系统操纵性模型试验研究[J].武汉交通科技大学学报,2000(4):397-401.
    [63]张庆贺,高卫平.沉管隧道施工阶段不同工况的受力性态研究[J].工程力学,2003,增刊:301-305.
    [64]张庆贺.沉管隧道浮运与沉放阶段受力性态研究[D]:(硕士学位论文).上海:同济大学.2004.
    [65]Zhou Yu,Tan Jiahua,Yang Jianmin,et al.Experimental investigation on element immersing process of immersed tube tunnel[J].China Ocean Engineering,2001,15(4):531-540.
    [66]Zhan Dexin,Wang Xingquan.Experiments of hydrodynamics and stability of immersed tube tunnel on transtportation and immersing[J].Journal of Hydrodynamics.Ser.B,2001,(2):121-126.
    [67]詹德新,张乐文,赵成璧,等.大型管节水面浮运及沉放数值模拟和可视化实现[J].武汉理工大学学报(交通科学与工程版),2001,25(1):16-20.
    [68]陈韶章.沉管隧道设计与施工[M].北京:科学出版社,2002.
    [69]Hakkaart C J A.Transport of tunnel elements from baltimore to boston,over the atlantic ocean[J].Tunnelling and Underground Space Technology,1996,11(4):479-483.
    [70]潘永仁.上海外环沉管隧道大型管段浮运方法[J].施工技术,2004,33(5):52-54.
    [71]Aono T,Sumida K,Fujiwara R,et al.Rapid stabilization of the immersed tunnel element[C].Proceedings of the Coastal Structures 2003 Conference.2003,Portland,Oregon.
    [72]Janssen W,Hass P D,Yoon Y H.Busan- Geoje Link:Immersed tunnel opening new horizons[J].Tunnelling and Underground Space Technology,2006,21.
    [73]Kasper T,Steenfelt J S,Pedersen L M,et al.Stability of an immersed tunnel in offshore conditions under deep water wave impact[J].Coastal Engineering,2008,55(9):753-760.
    [74]赵占广,黄骤屹.关于修建沉管隧道的若干技术问题[J].现代隧道技术,2007,44(4):5-8.
    [75]Ingerslev L C F.Considerations and strategies behind the design and construction requirements of the Istanbul Strait immersed tunnel[J].Tunnelling and Underground Space Technology,2005,20:604-608.
    [76]钟辉虹,李树光,刘学山,等.沉管隧道研究综述[J].市政技术,2007,25(6):490-494.
    [77]詹德新,王兴权,刘祖源,等.沉管隧道及其相关模型试验[J].武汉交通科技大学学报,2000,24(5):488-492.
    [78]大连工学院水利系编.量测技术、模型试验和数据处理[M].大连工学院,1986.
    [79]桂福坤.深水重力式网箱水动力学特征研究[D]:(博士学位论文).大连:大连理工大学,2006.
    [80]缪国平,刘应中.水波及其与结构物的相互作用——新时期海洋高科技的水波动力学问题之一[J].水动力学研究与进展A辑,2000,15(2):156-162.
    [81]Mei C C.Numerical methods in water wave diffraction and radiation[J].Annual Review of Fluid Mechanics,1978,10:393-418.
    [82]Mei C C.The applied dynamics of ocean surface waves[M].New York:Jonh Wiley and Sons,Inc.,1983.
    [83]Hess J L,Smith A M O.Calculation of non-lifting potential flow about arbitrary three-dimensional bodies[J].Journal of Ship Research,1984,8(2):22-44.
    [84]Garrison C · J.Hydrodynamics loading of large offshore structures:Three-dimensional source distribution method,in:Numerical Methods in Offshore Engineering[M],Z.O.C,L.R.W,and S.K.G,Editors.,Wiley:England,1978:87-140.
    [85]Liu Y H,Kim C H,Lu X S.Comparison of higher-order boundary element and constant panel methods for hydrodynamic loading[J].International Journal Offshore and Polar Engineering,1991,1(1):8-17.
    [86]Teng B,Eatock Taylor R.New higher-order boundary element methods for wave diffraction/radiation[J].Applied Ocean Research,1995a,17(2):71-77.
    [87]李玉成,滕斌.波浪对海上建筑物的作用[M].北京:海洋出版社,2001.
    [88]刘应中,缪国平.船舶在波浪上的运动理论[M].上海:上海交通大学出版社,1987.
    [89]Newman J N.Marine Hydrodynamic[M].Massachusetts:MIT Pr.,1977.
    [90]Wang Yanying.Waves and wave loads on offshore structures[M].Dalian:Dalian Maritime Univ.Pr.,2003.
    [91]Wehausen J V,Laitone E V.Surface waves[M].Berlin:Springer-Verlag.446-778, 1960.
    [92]Natarajan R,Ganaphy C.Analysis of moorings of a berthed ship[J].Marine Structures,1995,8:481-499.
    [93]贺五洲,戴遗山.简单Green函数法求解三维水动力系数[J].中国造船,1986,2:1-15.
    [94]滕斌.波浪对三维浮体的二阶作用[J].动力学研究与进展A辑,1995,10(3):316-327.
    [95]Van Oortmerssen G.The motion of a moored ship in waves[]].NSMB Publication No.510,1979.
    [96]韩凌.应用时域格林函数方法模拟有限水深中波浪对结构物的作用[D]:(博士学位论文).大连:大连理工大学,2005.
    [97]Stoker J J.Water Waves,Pure andapplied mathematics[M].New York:Interscience Publishers,Inc.,1957.
    [98]滕斌,韩凌.应用时域格林函数方法模拟有限水深中波浪对结构物的作用[J].水动力学研究与进展A辑,2006,21(2):161-170.
    [99]戴遗山.舰船在波浪中运动的频域与时域势流理论[M].北京:国防工业出版社,1998.
    [100]Newman J N.The approximation of free-surface Green functions,in:Waves Asymptotics[M].Cambridge Univ.Pr.:Cambridge,1990:107-135.
    [101]Teng Bin,Ban Ling,Gou Ying.Fast evaluation of time-domain Green function for finite water depth[J].China Ocean Engineering,2003,17(3):417-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700