用户名: 密码: 验证码:
特殊矩阵和非线性矩阵方程的若干结果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了以下内容:非线性矩阵方程Xs+A*X-tA=Q和Xs+A*F(X)A=Q的相关理论;增生-耗散矩阵范数不等式;两个非负矩阵Hadamard积的谱半径;两个M-矩阵Fan积的最小特征值;M-矩阵和M-矩阵逆的Hadamard积的最小特征值;对角魔方矩阵的性质分析;可对角化矩阵特征值的扰动界;任意矩阵的奇异值的扰动界.具体如下:
     1.研究了非线性矩阵方程Xs+A*X-t=Q有Hermitian正定解的条件,其中Q是一个Hermitian正定矩阵.分以下四种情况讨论这个方程:
     (a)当s和t都是正整数时,研究了上述非线性矩阵方程存在Hermitian正定解时[det(AA*)]1/n的上界;[detX]1/n的上下界;trX的上下界;Hermitian正定解特征值的上下界,特征值部分和的上下界以及特征值部分乘积的上界;
     (b)当s≥1,0     (c)当0     (d)当s,t>0时,研究了Hermitian正定解的一些性质.非线性矩阵方程存在Hermitian正定解时A的谱半径和谱范数的估计.
     2.对于非线性矩阵方程Xs+A*F(X)A=Q(s≥1),给出了此方程存在Hermitian(半)正定解与存在唯一解的条件,并由此得到唯一解的不动点迭代及其扰动分析.
     3.给出了块增生-耗散矩阵中非对角块和对角块之间的范数不等式;给出了增生-耗散矩阵与其对角块之间的范数不等式.
     4.给出了非负矩阵A与B Hadamard积的谱半径的上界;给出了非奇异M-矩阵A与B Fan积的最小特征值的下界,并给出了B与A-1Hadamard积的最小特征值的下界.
     5.提出了对角魔方矩阵的定义,并证明了:对角魔方矩阵的秩小于等于2;对角魔方矩阵的子方阵为对角魔方矩阵;对角魔方矩阵与某类特定矩阵的乘积为对角魔方矩阵.
     6.分别研究了可对角化矩阵特征值的扰动界与任意矩阵奇异值的扰动界.
In this dissertation, we study some problems on the nonlinear matrix equations Xs+A*X-tA=Q and Xs+A*F(X)A=Q; the norm inequalities for an accretive-dissipative matrix; the spectral radius of the Hadamard product of two nonnegative matrices; the minimum eigenvalue of the Fan product of two M-matrices; the minimum eigenvalue of the Hadamard product of M-matrices and the inverse of M-matrices; the properties of diagonally magic matrices; perturbation bounds for eigenvalues of diagonalizable matrices and perturbation bounds for singular values of arbitrary matrices. Our main results are as follows.
     1. Investigations of the nonlinear matrix equation Xs+A*X-tA=Q, where Q is a Hermitian positive definite matrix. We consider four cases of this equation:
     (a) s and t are positive integers, we present the upper bound of [det(AA*)]1/n when the nonlinear matrix equation Xs+A*X-tA=Q has a Hermitian positive def-inite solution. We also get the bounds of [detX]1/n and trX for the existence of a Hermitian positive definite solution. We obtain some bounds for the eigenval-ues of the Hermitian positive definite solution. We derive tight bounds of the partial sum and partial product about the eigenvalues of the solution X for the nonlinear matrix equation Xs+A*X-tA=Q;
     (b) s≥1,0     (c)0     (d) s,t>0, we present some properties of the Hermitian positive definite solutions. We also get a property of the spectral radius of A for the existence of a solution. The spectral norm of A for the existence of a Hermitian positive definite solution is given.
     2. Investigations of the nonlinear matrix equation Xs+A*F(X)A=Q with s≥1. Several sufficient and necessary conditions for the existence and uniqueness of the Hermitian positive (semidefinite) definite solution are derived; the fixed point itera-tion is given; and perturbation bounds are presented.
     3. We present inequalities between the norm of off-diagonal blocks and the norm of diagonal blocks of an accretive-dissipative matrix, and inequalities between the norm of the whole accretive-dissipative matrix and the norm of its diagonal blocks.
     4. A new upper bound on the spectral radius for the Hadamard product of A and B is obtained, where A and B are nonnegative matrices. Meanwhile, a new lower bound on the smallest eigenvalue for the Fan product of A and B is got, and some new lower bounds on the minimum eigenvalue for the Hadamard product of B and A-1are given, where A and B are nonsingular M-matrices.
     5. A new class of matrices called diagonally magic matrices is presented and studied. In particular, we prove that every diagonally magic matrix has rank at most2; every square submatrix of a diagonally magic matrix is still a diagonally magic matrix; the products of diagonally magic matrices with some given matrices are diagonally magic matrices.
     6. Perturbation bounds for the eigenvalues of diagonalizable matrices are derived. Per-turbation bounds for singular values of arbitrary matrices are also given.
引文
[1]A. Ambrosetti, G. Prodi, A Primer of Nonlinear Analysis, Cambridge Studies in Advanced Mathematics, Vol.34, Cambridge University Press, Cambridge,1993.
    [2]W.N. Anderson, T.D. Morley, G.E. Trapp, Positive solutions to X=A-BX-1B*, Linear Algebra Appl.,134 (1990),53-62.
    [3]T. Ando, R. Bhatia, Eigenvalue inequalities associated with the Cartesian decompo-sition, Linear Multilinear Algebra,22 (1987),133-147.
    [4]Z.Z. Bai, A class of iteration methods based on the Moser formula for nonlinear equations in Markov chains, Linear Algebra Appl.,266 (1997),219-241.
    [5]Z.Z. Bai, On Hermitian and skew-Hermitian splitting iteration methods for contin-uous Sylvester equations, J. Comput. Math.,29 (2011),185-198.
    [6]Z.Z. Bai, Y.H. Gao, Modified Bernoulli iteration methods for quadratic matrix equa-tion, J. Comput. Math.,25 (2007),498-511.
    [7]Z.Z. Bai, G. Golub, M. Ng, Hermitian and Skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl.,24(3) (2003),603-626.
    [8]Z.Z. Bai, X.X. Guo, S.F. Xu, Alternately linearized implicit iteration methods for the minimal nonnegative solutions of nonsymmetric algebraic Riccati equations, Numer. Linear Algebra Appl.,13 (2006),655-674.
    [9]Z.Z. Bai, X.X. Guo, J.F. Yin, On two iteration methods for the quadratic matrix equations, Int. J. Numer. Anal. Model.,2 (2005),114-122.
    [10]A. Berman, R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA,1994.
    [11]R. Bhatia, Matrix Analysis, Grad. Texts in Math.169, Springer-Verlag, New York, 1997.
    [12]R. Bhatia, X.Z. Zhan, Compact operators whose real and imaginary parts are posi-tive, Proc. Amer. Math. Soc.,129 (2001),2277-2281.
    [13]R. Bhatia, X.Z. Zhan, Norm inequalities for operators with positive real part, J. Operator Theory,50 (2003),67-76.
    [14]R. Bhatia, F. Kittaneh, The singular values of A+B and A+iB, Linear Algebra Appl.,431 (2009),1502-1508.
    [15]G. Birkhoff, Three observations on linear algebra, Univ. Nac. Tucuman. Revista A., 5 (1946),147-151. (in Spanish)
    [16]J.C. Bourin, E.Y. Lee, M.H. Lin, On a decomposition lemma for positive semi-definite block-matrices, Linear Algebra Appl.,437 (2012),1906-1912.
    [17]A. Brauer, Limits for the characteristic roots of a matrix Ⅱ, Duke Math. J.,14 (1947),21-26.
    [18]J. Cai, G.L. Chen, Some investigation on Hermitian positive definite solutions of the matrix equation Xs+A*X-tA=Q, Linear Algebra Appl.,430 (2009),2448-2456.
    [19]J. Cai, G.L. Chen, On the Hermitian positive definite solutions of nonlinear matrix equation Xs+A*X-tA=Q, Appl. Math. Comput.,217 (2010),117-123.
    [20]C. Cheng, R. Horn, C.K. Li, Inequalities and equalities for the Cartesian decompo-sition, Linear Algebra Appl.,341 (2002),219-237.
    [21]H. Dai, Z.Z. Bai, On eigenvalue bounds and iteration methods for discrete algebraic Riccati equations, J. Comput. Math.,29 (2011),341-366.
    [22]S.C. Chen, A lower bound for the minimum eigenvalue of the Hadamard product of matrices, Linear Algebra Appl.,378 (2004),159-166.
    [23]X.S. Chen, On perturbation bounds of generalized eigenvalues for diagonalizable pairs, Numer. Math.,107 (2007),79-86.
    [24]S.P. Du, J.C. Hou, Positive definite solutions of operator equations Xm+A*X-nA= I, Linear Multilinear Algebra,51 (2003),163-173.
    [25]X.F. Duan, C.M. Li, A.P. Liao, Solutions and perturbation analysis for the nonlinear matrix equation X+∑i=1mAi*X-1Ai=Q,Appl.Math. Comput.,218 (2011),4458-4466.
    [26]X.F. Duan, A.P. Liao, On the existence of Hermitian positive definite solutions of the matrix equation Xs+A*X-tA= Q, Linear Algebra Appl.,429 (2008),673-687.
    [27]X.F. Duan, A.P. Liao, On the nonlinear matrix equation X+A*X-qA= Q(q≥1), Math. Comput. Modelling,49 (2009),936-945.
    [28]S.M. El-Sayed, An algorithm for computing positive definite solutions of the non-linear matrix equation X+A*X-1A=I, Int. J. Comput. Math.,80 (12) (2003), 1527-1534.
    [29]S.M. El-Sayed, A.M. Al-Dbiban, On positive definite solutions of the nonlinear ma-trix equation X+A*X-nA=I, Appl. Math. Comput.,151 (2004),533-541.
    [30]S.M. El-Sayed, A.C.M. Ran, On an iterative method for solving a class of nonlinear matrix equations, SIAM J. Matrix Anal. Appl.,23 (2001),632-645.
    [31]L. Elsner, S. Friedland, Singular value, doubly stochastic matrices, and applications, Linear Algebra Appl.,220 (1995),161-169.
    [32]G.M. Engel, H.Schneider, Cyclic and diagonal products of a matrix, Linear Algebra Appl.,7 (1973),301-335.
    [33]J.C. Engwerda, On the existence of a positive definite solution of the matrix equation X+ATX-1A= I, Linear Algebra Appl.,194 (1993),91-108.
    [34]J.C. Engwerda, A.C.M. Ran, A.L. Rijkeboer, Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X+A*X-1A=I, Linear Algebra Appl.,186 (1993),255-275.
    [35]K. Fan, On strictly dissipative matrices, Linear Algebra Appl.,9 (1974),223-241.
    [36]M.Z. Fang, Bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl.,425 (2007),7-15.
    [37]M. Fiedler, C.R. Johnson, T. Markham, M. Neumann, A trace inequality for M-matrices and the symmetrizability of a real matrix by a positive diagonal matrix, Linear Algebra Appl.,71 (1985),81-94.
    [38]M. Fiedler, T. Markham, An inequality for the Hadamard product of an M-matrix and inverse.M-matrix, Linear Algebra Appl.,101 (1988),1-8.
    [39]T. Furuta, Operator inequalities associated with Holder-McCarthy and Kantorovich inequalities, J. Inequal. Appl.,2 (1998),137-148.
    [40]Y.H. Gao, Z.Z. Bai,On inexact Newton methods based on doubling iteration scheme for nonsymmetric algebraic Riccati equations, Numer. Linear Algebra Appl.,18 (2011),325-341.
    [41]A. George, Kh. D. Ikramov, On the properties of accretive-dissipative matrices, Math. Notes,77 (2005),767-776.
    [42]A. George, Kh. D. Ikramov, A. B. Kucherov, On the growth factor in Gaussian elimination for generalized Higham matrices, Numer. Linear Algebra Appl.,9 (2002), 107-114.
    [43]I. M. Glazman, Yu. I. Lyubich, Finite-Dimensional Linear Analysis, Nauka, Moscow, 1969. (in Russian)
    [44]X.X. Guo, On Hermitian positive definite solution of nonlinear matrix equation X+ A*X-2A= Q, J. Comput. Math.,23 (2005),513-526.
    [45]M. D. Gunzburger, R. J. Plemmons, Energy conserving norms for the solution of hyperbolic systems of partial differential equations, Math. Comp.,33 (1979),1-10.
    [46]V.I. Hasanov, S.M. El-Sayed, On the positive definite solutions of nonlinear matrix equation X+A*X-δA= Q, Linear Algebra Appl.,412(2006),154-160.
    [47]V.I. Hasanov, I.G. Ivanov, F. Uhlig, Improved perturbation estimates for the matrix equations X±A*X-1A=Q, Linear Algebra Appl.,379 (2004),113-135.
    [48]N.J. Higham, Factorizing complex symmetric matrices with positive real and imagi-nary parts, Math. Comp.,67 (1998),1591-1599.
    [49]A.J. Hoffman, H.W. Wielandt, The variation of the spectrum of a normal matrix, Duke Math. J.,20 (1953),37-39.
    [50]R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press,1985.
    [51]R.A. Horn, C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press, 1991.
    [52]R. Huang, Some inequalities for the Hadamard product and the Fan product of matrices, Linear Algebra Appl.,428 (2008),1551-1559.
    [53]Kh. D. Ikramov, Some estimates for the eigenvalues of a matrix, Zh. Vychisl. Mat. Mat. Fiz.,10 (1970),172-177. (in Russian)
    [54]Kh. D. Ikramov, A simple proof of the generalized schur inequality, Linear Algebra Appl.,199 (1994),143-149.
    [55]V.I. Istratescu, Fixed Point Theorem, Mathematics and Its Applications, Vol.7, Reidel, Dordrecht,1981.
    [56]I.G. Ivanov, S.M. El-sayed, Properties of positive definite solutions of the equation X+A*X-2A=I, Linear Algebra Appl.,279 (1998),303-316.
    [57]I.G. Ivanov, V.I. Hasanov, F. Uhlig, Improved methods and starting values to solve the matrix equations X±A*X-1A= I iteratively, Math. Comp.,74 (249) (2005), 263-278.
    [58]C.R. Johnson, A Hadamard product involving M-matrices, Linear Multilinear Alge-bra,4 (1977),261-264.
    [59]T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ,1980.
    [60]T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag,1976; Russian translation:Mir, Moscow,1972.
    [61]M. M. Konstantinov, D. Gu, V. Mehrmann, P. Petkov, Perturbation Theory of Matrix Equations, Elsevier, New York,2003.
    [62]R.C. Li, Norms of certain matrices with applications to variations of the spectra of matrices and matrix pencils, Linear Algebra Appl.,182 (1993),199-234.
    [63]R.C. Li, Spectral variations and Hadamard products:Some problems, Linear Algebra Appl.,278 (1998),317-326.
    [64]H.B. Li, T.Z. Huang, S.Q. Shen, H. Li, Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse, Linear Algebra Appl.,420 (2007),235-247.
    [65]Y.T. Li, F.B. Chen, D.F. Wang, New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse, Linear Algebra Appl.,430 (2009),1423-1431.
    [66]Y.T. Li, Y.Y. Li, R.W. Wang, Y.Q. Wang, Some new bounds on eigenvalues of the Hadamard product and the Fan product of matrices, Linear Algebra Appl.,432 (2010),536-545.
    [67]Y.T. Li, X. Liu, X.Y. Yang, C.Q. Li, Some new lower bounds for the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse, Electron. J. Linear Algebra,22 (2011),630-643.
    [68]W. Li, W.W. Sun, Combined perturbation bounds:Ⅰ. eigensystems and singular value decompositions, SIAM J. Matrix Anal. Appl.,29 (2007),643-655.
    [69]A.P. Liao, Z.Z. Bai, The constrained solutions of two matrix equations. Acta Math. Sin. (Engl. Ser.),18 (2002),671-678.
    [70]廖安平,白中治,矩阵方程ATXA= D的双对称最小二乘解,计算数学,24(2002),9-20.
    [71]A.P. Liao, Z.Z. Bai, Least-squares solution of AXB=D over symmetric positive semidefinite matrices X, J. Comput. Math.,21 (2003),175-182.
    [72]A.P. Liao, G.Z. Yao, X.F. Duan, Thompson metric method for solving a class of nonlinear matrix equation, Appl. Math. Comput.,216 (2010),1831-1836.
    [73]V. B. Lidskii, On the characteristic numbers of the sum and product of symmetric matrices. Doklady Akad. Nauk SSSR (N.S.),75 (1950),769-772. (in Russian)
    [74]M.H. Lin, Reversed determinantal inequalities for accretive-dissipative matrices, Math. Inequal. Appl.,12 (2012),955-958.
    [75]M.H. Lin, Fischer type determinantal inequalities for accretive-dissipative matrices, Linear Algebra Appl.,438 (2013),2808-2812.
    [76]M.H. Lin, A note on the growth factor in Gaussian elimination for accretive-dissipative matrices, Calcolo,2013, in press, DOI:10.1007/s10092-013-0089-1.
    [77]M.H. Lin, H. Wolkowicz, An eigenvalue majorization inequality for positive semidef-inite block matrices, Linear Multilinear Algebra,60 (2012),1365-1368.
    [78]X.G. Liu, H. Gao, On the positive definite solutions of the matrix equations Xs± ATX-tA=I, Linear Algebra Appl.,368 (2003),83-97.
    [79]M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Boston, MA:Allyn and Bacon,1964.
    [80]A. Ostrowski, Uber Normen von Matrizen, Math. Z.,63 (1955),2-18. (in German)
    [81]Z.Y. Peng, S.M. El-Sayed, X.L. Zhang, Iterative methods for the extremal positive definite solution of the matrix equation X+A*X-αA=Q, J. Comput. Appl. Math., 200 (2007),520-527.
    [82]A.C.M. Ran, M.C.B. Reurings, On the nonlinear matrix equation X+A*F(X)A=Q: Solutions and perturbation theory, Linear Algebra Appl.,346 (2002),15-26.
    [83]A.C.M. Ran, M.C.B.Reurings, A nonlinear matrix equation connected to interpola-tion theory, Linear Algebra Appl.,379 (2004),289-302.
    [84]A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, Proc. Amer. Math. Soc.,132 (2004),1435-1443.
    [85]A.C.M. Ran, M.C.B. Reurings, A.L. Rodman, A perturbation analysis for nonlinear selfadjoint operators, SIAM J. Matrix Anal. Appl.,28 (2006),89-104.
    [86]L.A. Sakhnovich, Interpolation Theory and Its Applications, Kluwer Academic Pub-lishers, Dordrecht, The Netherlands,1997.
    [87]C.L. Siegel, Topics in Complex Function Theory, Vol. Ⅲ, Wiley, New York.1973.
    [88]Y.Z. Song, On an inequality for the Hadamard product of an M-matrix and its inverse, Linear Algebra Appl.,305 (2000),99-105.
    [89]J.G. Sun, Matrix Perturbation Analysis, Science Press, Beijing,2001.
    [90]R.S. Varga, Minimal Gerschgorin sets, Pacific J. Math.,15 (2) (1965),719-729.
    [91]S.H. Xiang, On an inequality for the Hadamard product of an M-matrix or an H-matrix and its inverse, Linear Algebra Appl.,367 (2003),17-27.
    [92]S.F. Xu, Perturbation analysis of the maximal solution of the matrix equation X+ A*X-1A= P, Linear Algebra Appl.,336 (2001),61-70.
    [93]Y.T. Yang, The iterative method for solving nonlinear matrix equation Xs+ A*X-tA= Q, Appl. Math. Comput.,188 (2007),46-53.
    [94]G.Z. Yao, A.P. Liao, X.F. Duan, Positive definite solution of the matrix equation X= Q+A*(I(?)X-C)δA, Numer. Algorithms,56 (2011),349-361.
    [95]X.Y. Yin, S.Y. Liu, L. Fang, Solutions and perturbation estimates for the matrix equation Xs+A*X-tA= Q, Linear Algebra Appl.,431 (2009),1409-1421.
    [96]X.R. Yong, Z. Wang, On a conjecture of Fiedler and Markham, Linear Algebra Appl., 288 (1999),259-267.
    [97]X.Z. Zhan, Computing the extremal positive definite solutions of a matrix equation, SIAM J. Sci. Comput.,17 (1996),1167-1174.
    [98]X.Z. Zhan, Norm inequalities for Cartesian decompositions, Linear Algebra Appl., 286 (1999),297-301.
    [99]X.Z. Zhan, Singular values of differences of positive semidefinite matrices, SIAM J. Matrix Anal. Appl.,22 (2000),819-823.
    [100]X.Z. Zhan, Matrix Inequalities, Lecture Notes in Mathematics, vol.1790, Springer-Verlag, Berlin, Heidelberg,2002.
    [101]詹兴致,矩阵论,高等教育出版社,北京,2008.
    [102]X.Z. Zhan, Matrix Theory, Amer. Math. Soc, Providence, RI,2013.
    [103]X.Z. Zhan, J.J. Xie, On the matrix equation X+ATX-1A=I, Linear Algebra Appl.,247 (1996),337-345.
    [104]F.Z. Zhang, Matrix Theory:Basic Results and Techniques, second ed., Springer, New York,2011.
    [105]Y. Zhang, Unitarily invariant norm inequalities for accretive-dissipative operator matrices, J. Math. Anal. Appl.,412 (2014),564-569.
    [106]Y.H. Zhang, On Hermitian positive definite solutions of matrix equation X+ A*X-2A=I, Linear Algebra Appl.,372 (2003),295-304.
    [107]G.F. Zhang, W.W. Xie, J.Y. Zhao, Positive definite solutions of the nonlinear matrix equation X+A*XqA= Q(q>0), Appl. Math. Comput.,217 (2011),9182-9188.
    [108]L.L. Zhao, Some inequalities for the nonlinear matrix equations, Math. Inequal. Appl.,16 (2013),903-910.
    [109]D.M. Zhou, G.L. Chen, G.X. Wu, X.Y. Zhang, Some properties of the nonlinear matrix equation Xs+A*X-1A= Q, J. Math. Anal. Appl.,392 (2012),75-82.
    [110]D.M. Zhou, G.L. Chen, G.X. Wu, X.Y. Zhang, On the Nonlinear Matrix Equation Xs+A*F(X)A= Q with s≥1, J. Comput. Math.,31 (2013),209-220.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700