用户名: 密码: 验证码:
橘子皮化学改性及其对重金属离子吸附行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代工业的迅速发展产生了大量含重金属废水,对环境和人体健康造成严重危害。如何消除重金属的危害并有效地回收贵重金属是当今环境保护工作面临的突出问题。生物吸附技术作为新兴的重金属去除技术,愈来愈受到人们的关注。与传统的重金属离子去除方法相比,生物吸附法的吸附原料来源广泛,且在原料的成本及环境保护方面显示出较大的优势,因此具有广阔的应用前景。
     本论文选用农林废弃物质橘子皮(OP)为原料,对其进行化学改性,制备了一系列重金属离子生物吸附剂,并通过对水溶液中Cu2+,Pb2+,Cd2+,Zn2+和Ni2+吸附行为的研究,考察了改性橘子皮生物吸附剂的吸附性能。采用现代分析检测技术,如BET-N2吸附法、红外光谱分析和扫描电镜等,对改性前后橘子皮的比表面积、表面电荷、结构、形貌进行了表征,探讨了橘子皮化学改性的机理,优化了改性反应的条件。通过静态吸附实验,考察了在不同加入量、pH、温度、初始浓度以及干扰离子存在的条件下,改性橘子皮生物吸附剂对重金属离子吸附效果的影响,并对吸附热力学及吸附动力学行为进行了研究;同时,对改性橘子皮的再生技术以及对含金属离子的实际工业废水的处理效果进行了试验。通过动态吸附实验,测定了不同床层高度、不同流量和不同初始浓度下的透过曲线,考察了床层高度、溶液流速和初始浓度对吸附过程的影响。
     用氢氧化钠、氢氧化钠和氯化钙以及丙烯酸甲酯对橘子皮分别进行了皂化、皂化交联和接枝共聚三种方式改性处理。改性研究结果表明,使用氢氧化钠、氢氧化钠和氯化钙以及丙烯酸甲酯对橘子皮进行改性时,反应物料配比、各反应阶段的反应温度和反应时间等因素影响改性橘子皮的吸附容量以及改性物质产率或接枝率。在结构形貌方面,扫描电镜观察表明,与OP相比,皂化改性橘子皮(SOP)和皂化交联改性橘子皮(SCOP)的表面变得粗糙多孔,比表面积增大;在表面电性方面,Zeta电位和总负电荷测定结果表明SOP和SCOP表面所带的负电荷增多,有利于与重金属离子相互吸引。IR图谱分析表明皂化及皂化交联改性使橘子皮中甲酯化的羧基水解为羧基,活性官能团的数目提高。接枝共聚改性后的橘子皮(OPAA)由于分子表面接枝聚丙烯酸,使外观形貌变得光滑,比表面积减少,但由于羧基官能团数目的剧增,使表面所带负电荷随之急剧增加。IR图谱分析也表明聚丙烯酸被接枝到主要组成的分子上。
     静态吸附实验结果表明,吸附过程的最佳pH值为5.0-6.0;随着固体吸附剂加入量的提高,改性橘子皮对水溶液中重金属离子的去除率也随之提高,当固液比为4 g/L时,SOP和SCOP对水溶液中Cu2+,Pb2+,Cd2+,Zn2+和Ni2+具有较好的吸附效果;除SCOP对Cd2+的吸附外,所有其它吸附过程的吸附量随温度的升高而减小,热力学数据说明改性橘子皮生物吸附剂对重金属离子的吸附过程是自发进行的、熵减小的放热过程。改性橘子皮生物吸附剂对重金属离子的吸附均符合Langmuir等温吸附模式。与OP相比,SOP、SCOP和OPAA对水中重金属离子的吸附容量均得到提高,特别是OPAA,对Cu2+,Pb2+, Cd2+,Zn2+和Ni2+的吸附容量比改性前分别提高了6.5,4.3,4.6,18.5和16.5倍,也优于文献记载的其它生物吸附材料的最大吸附容量。SOP和SCOP对水溶液中重金属离子的吸附是一个符合准二级动力学方程的快速吸附过程,20min达到吸附平衡。OPAA对重金属离子的吸附在2h基本达到平衡,吸附反应速率先快后慢,吸附过程符合准二级动力学方程,而且吸附过程由膜扩散和颗粒内扩散联合控制,颗粒内扩散速率大小是决定整个吸附反应速度的关键。水溶液中常见的K+、Na+、Ca2+、Mg2+阳离子的存在以及其它重金属离子的存在对改性橘子皮生物吸附剂吸附性能的影响比较复杂,没有确定的规律可循,总体来说重金属离子的存在对吸附的遏制作用大于常见阳离子。使用0.1mol/L HCl溶液对吸附饱和的改性橘子皮生物吸附剂解吸,解吸率可达到90%以上。通过3-4次吸附-解吸循环试验表明,改性橘子皮的吸附容量未发生明显的变化,可以循环利用。
     SCOP的动态吸附过程研究表明,较大的流速、较高的初始浓度和较短的床层长度将使床层穿透加快。根据静态吸附实验结果,将Pb2+和Zn2+混合溶液在pH 2.5时通过装有SOP、SCOP和OPAA的固定床进行分离,结果表明可以通过装有这三种吸附剂的固定床实现水溶液中Pb2+的富集、Pb2+与Zn2+的分离或从Zn2+溶液中富集Pb2+。
     使用改性橘子皮生物吸附剂对实际水样进行了处理,结果表明,经过改性橘子皮生物吸附剂的吸附,废水中重金属离子含量达到了国家工业废水的排放标准。
     吸附过程中溶液的pH降低、Na+、K+、Ca2+和Mg2+的释放量测定结果以及红外光谱、能谱和X-荧光光谱分析结果表明,在改性橘子皮生物吸附剂吸附重金属离子过程中以离子交换机制为主。
     通过本研究,获得了高效利用废弃物质橘子皮和净化重金属污染废水的基础性数据,对实现资源综合利用具有经济和环境双重意义,为生物废弃物质的资源化及深度利用提供一种新的思路,并为开发高效、低成本的重金属污染治理技术奠定良好的基础。
Nowadays heavy metals are among the most important pollutants in source and treated water and are becoming a severe public health problem. These metal ions can be harmful to aquatic life, and water contaminated by toxic metal ions remains a serious public health problem for human health. Consequently, it is urgent to find new technologies for removing heavy metal ions from wastewater. So, biosorption can be a promising alternative method to treat industrial effluents, mainly because of its low cost, high metal binding capacity, high efficiency in dilute effluents and environmental friendly.
     In this paper, a series of biosorbents were prepared using orange peel from agriculture residues by chemical modification and adsorption properties of Cu2+,Pb2+,Cd2+,Zn2+and Ni2+ on these biosorbents in aqueous solution were studied. The structure and morphology of orange peel and modified orange peel were characterized by lots of instruments, such as BET-N2 adsorption, infrared spectroscopy and scanning electron microscopy technique. Also the physical and chemical characteristics such as surface area, surface charge, were examined. The modifying mechanisms of orange peel were discussed, and the reaction conditions of modification were optimized. By using batch adsorption techniques, the influence of pH, adsorbent dosage, concentration and temperature on adsorption effect was investigated. In addition,the adsorption thermodynamics and the adsorption kinetics were studied systematically. Furthermore,the technologies of desorption and reuse for the modified orange peel and technological applications for the wastewater were also tested. By the column adsorption experiments, the figures of breakthrough curve were determined in different experimental conditions, such as flow rate of solution, initial concentration of adsorbent and the column height to inspect on the adsorption effects.
     The chemical modification of orange peel are in the methods of saponification(SOP), saponification-crosslinking(SCOP) and graft copolymerization(OPAA) with sodium hydroxide, sodium hydroxide and calcium chloride and methyl acrylate in this paper. When orange peel were modified by sodium hydroxide, sodium hydroxide and calcium chloride and methyl acrylate, the modification conditions, such as material ratio,reaction temperature and reaction time,must be controlled strictly,which could affect the adsorption capacity and the yield of the modified orange peel.
     The changes of physical structure and chemical properties of series of modified orange peel were characterized by using a variety of analytical instruments and methods. The results of scanning electronic microscope showed that the SOP and SCOP become rough porous in structural morphology, surface area was increased. The determination results of zeta potential and total negative charge show that the surface of modified orange peel has more negative charge than raw orange peel, which facilitates the electrostatic interaction with cations.For FT-IR spectrum of the SOP and SCOP, results indicated that the methyl esters were hydrolyzed with NaOH and ester group was converted to carboxylate ions, which improved the number of active functional groups. IR analysis of OPAA shows that polyacrylic acid was grafted to the main components of the orange peel.After the graft copolymerization of orange peel with methyl acrylate, the appearance of morphology was smooth and specific surface area decreased as a result of grafting polyacrylic acid. But due to the number of carboxyl functional groups increased, at the same pH value, the zeta potentials of OPAA are more negative than those of OP and total negative charge of OPAA is more than that of OP, which indicate that the amount of-COOH of OPAA is more than that of OP because of grafting with PMA on the OP.
     The adsorption process is a function of pH, metal ion concentration, time, temperature and the adsorbent dose. The optimum pH value was found out 5.0~6.0.The adsorption percentage increased with the increase of adsorbent dose.It was found that the adsorption effects of SOP and SCOP to Cu2+,Pb2+,Cd2+,Zn2+ and Ni2+ is better when adsorbent dose was 4g/L.In all other adsorption processes, adsorption capacity decreases with the adsorption temperature increasing and enthalpy, Gibbs free energy and entropy change were negtive except Cd2+ adsorption on SCOP. In the adsorption process,the enthalpy change(ΔH) was negative, which demonstrated that the adsorption process was of exothermic process.The free energy change(ΔG) was negative, which indicated the adsorption process was spontaneous.The entropy change (ΔS) was also negative because of the increasing of order caused by the new ion-bonds and the decreasing of disorder in aqueous solutions. The experimental adsorption data for modified orange peel were fitted to the Langmuir adsorption model.From Langmuir isotherm, the adsorption capacity for heavy metal ions on the modified orange peel increased compared with the OP. Especially for OPAA, the highest metal uptake for Cu2+,Pb2+,Cd2+, Zn2+and Ni2+ were 289.0,492.6,293.3,393.7 and 162.6mg/g, which is respectively about 6.5,4.3,4.6,18.5 and 16.5 time higher than that of the unmodified biomass and also much higher than some other biosorbents reported in literatures. It was found that the adsorption of heavy metals on SOP and SCOP was a fast adsorption process that could be reached equilibrium in 20 minutes. The adsorption process was mainly fitted the pseudo-second-order equation. The removal rate of heavy metals on OPAA was rapid in the first 30 min, and leveled off after 2h. The biosorption kinetics followed the pseudo-second order model and intra-particle diffusion model.In addition,the intra-particle diffusion was the main rate-controlling step.The existence of common cations such as K+, Na+, Ca2+, Mg2+ and other heavy metal ions in water interfered the adsorption of modified orange peel, but had no definite pattern. The loaded biosorbent was regenerated using 0.1 mol/L HCl solution and could be used repeatedly for four times with little loss of adsorption capacity.
     At dynamic process of SCOP, the figure of breakthrough curve was strongly dependent on experimental conditions, such as flow rate of solution, initial concentration of adsorbent and the column height. Higher flow rate, bigger initial concentration of adsorbent and shorter column height will quicken the breakthrough of column. A mutual chromatographic separation test was carried out by using SOP, SCOP and OPAA between Pb2+ and Zn2+, i.e.,a small amount of Pb2+ was separated from a large excess of Zn2+ using a column packed with the modified orange peel.These results suggest that effective mutual separation and pre-concentration of Pb2+ away from Zn2+ using modified orange peel can be satisfactorily achieved.
     The practical treatments were studied by using modified orange peel to dispose of electroplating wastewater. The results clearly indicate that the proposed method is prospective for the removal of heavy metal ions from wastewater.
     Different experimental approaches were applied to show mechanistic aspects, especially the role of calcium, sodium and hydrogen present in the biosorbents in ion exchange mechanism.
     In this paper, the direction of research conforms to China's current ecological protection, recycling economy and environmental policy. Based on the findings above, a new high-performance, low-cost approach and a new way of thinking will be provide to treat the heavy metals contamination by using orange peel discarded.
引文
[1]贾广宁.重金属污染的危害与防治.有色矿冶,2004,20(1):39-42
    [2]蒋清民,柴凤兰.工业废水处理技术进展.河南化工,2003,(1):8-10
    [3]张建梅.重金属废水处理技术研究进展.西安联合大学学报,2003,6(2):55-59
    [4]王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社,1993
    [5]许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境科学出版社,1996
    [6]Friberg L, Elinder C G. Encyclopedia of Occupational Health, thirded. International Labor Organization, Geneva,1985
    [7]Kjellstrom T, Shiroishi K, Erwin P E. Urinary beta./sub 2/-microglobulin excretion among people exposed to cadmium in the general environment[J]. Environ. Res,1977,13:318-344
    [8]陈静生,周家义.中国水环境金属研究.北京:中国环境科学出版社,1988,3-5
    [9]Babel S and Dacera D del M. Heavy metal removal from contaminated sludge for land application:A review. Waste Management,2006,26:988-1004
    [10]Sheoran A S and Sheoran V. Heavy metal removal mechanism of acid mine drainage in wetlands:A critical review. Minerals Engineering,2006, 19(2):105-116
    [11]佟玉衡,实用废水处理技术.北京:化学工业出版社,1998
    [12]胡海祥,重金属废水治理技术概况及发展方向.中国资源综合利用,2008,26(2):22-25
    [13]杜军.石灰中和法处理含重金属离子废水.工业水处理,1987,7(4):23-24
    [14]姜玉兰.含铜锌重金属废水处理.工业水处理,1987,7(1):52-54
    [15]上海环保局编,废水物化处理.上海:同济大学出版社,1999
    [16]杨彤.化学法处理重金属离子废水的改进.电镀与精饰,1999,21(5):38-42
    [17]顾雪芹.印刷线路板工艺废水处理.上海环境科学1991,10(3):20-23
    [18]Perez-de-Mora A, Burgos P, Madejon E, et.al. Microbial community structure and function in a soil contaminated by heavy metals:effects of plant growth and different amendments. Soil Biology and Biochemistry,2006,38(2):327-341
    [19]Khan G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology,2005,18(4):355-364
    [20]Hawari A H, Catherine N. Mulligan. Biosorption of lead(Ⅱ), cadmium(Ⅱ), copper(Ⅱ) and nickel(Ⅱ) by anaerobic granular biomass. Bioresource Technology,2006,97(4):692-700
    [21]Ahluwalia S S, Goyal D.Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresource Technology,2007,98:2243-2257
    [22]Miretzky P, Saralegui A, Cirelli A F. Simultaneous heavy metal removal mechanism by dead macrophytes. Chemosphere,2006,62(2):247-254
    [23]Saeed A, Akhter M W, Iqbal M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology,2005,45(1):25-31
    [24]谈明辉.重金属废水治理技术的现状[M].环境科学与技术,1997,1:35-37
    [25]王宪,陈丽丹,徐鲁荣,等.海藻生物吸附金属离子技术的特点和功能.台湾海峡,2003,22(2):262-268
    [26]Ruchhoft C C.The foundation of successful industrial waste disposal to municipal sewage works.J. Sweage Works,1949,21(5):877-.
    [27]Niu H, Xu X S, Wang J H, et al. Removal of lead from aqueous solutions by Penicillium biomass. Biotech Bioeng,1993;42:785-787
    [28]沈振国,刘友良.重金属超积累植物研究进展.植物生理学通讯,1998,34(2):133-139
    [29]蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景.农业环境保护,2000,19(3):179-183
    [30]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状.地球科学进展,2002,17(6):833-839
    [31]吴涓,李清彪.黄孢原毛平革菌吸附铅离子机理的研究.环境科学学报,2001,21(3):291-295
    [32]王亚雄,郭谨珑,刘瑞霞.微生物吸附剂对重金属的吸附特性.环境科学,2001,22(6):72-75
    [33]Zouboulis A I, Loukidou M X, Matis K A, Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils, Process Biochemistry,2004,39:909-916
    [34]Lacher C, Smith R W. Sorption of Hg(II) by potamogeton natans dead biomass. Minerals Engineering,2002,15:187-191
    [35]Gloab Z, Oplowska B.Biosorption of lead and uranium by Streptomyces sp. Water,Air and Soil Pollution,1991,60:99-106
    [36]Bailey S E, Olin T J, Bricka R M, et al. A review of potentially low-cost sorbents for heavy metals.Water Research,1999,33(11):2469-2477
    [37]Conrad K, Hansen H C B, Sorption of zinc and lead on coir. Bioresource Technology,2007,98:89-97
    [38]Reddad Z, Gerente C, Andres Y, et al.Ni (Ⅱ) and Cu (Ⅱ) binding properties of native and modified sugar beet pulp. Carbohydr Polym,2002,49:23-31
    [39]Annadurai G, Juang R S,Lee D L, Adsorption of heavy metals from water using banana and orange peels.Water Sci Technol,2002,47:185-190
    [40]Cimino G, Passerini A, Toscano G, Removal of toxic cations and Cr(Ⅵ) from aqueous solution by hazelnut shell. Water Res,2000,34:2955-2962
    [41]王文华,冯永梅,常秀莲,等.玉米芯对废水中铅的吸附研究.水处理技术,2004,30(2):95-98
    [42]Mohanty K, Jha M, Biswas M N, et al. Removal of chromium (Ⅵ) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride. Chem Eng Sci,2005,60:3049-3059
    [43]Randall J M. Variations on effectiveness of barks as scavengers for heavy metal ions.Forest Product Journal,1977,27(11):51-56
    [44]章明奎,方利平.利用非活体生物质去除废水中重金属的研究.生态环境,2006,15(5):897-900
    [45]Tee T W, Khan R M, Removal of lead, cadmium and zinc by waste tea leaves. Environ Technol Lett,1988,9:1223-1232
    [46]Macchi G, Marani D, Tirivanti G. Uptake of mercury by exhausted coffee grounds.Environ Technol Lett,1986,7:431-444
    [47]吕金顺,姜春华,王小芳,等.用PDF处理含Pb2+、Cu2+重金属离子废水的研究.甘肃科学学报,2004,16(3):110-112
    [48]Hashem A, Abou-Okeil A, El-Shafie A, et al. Grafting of high-cellulose pulp extracted from sunflower stalks for removal of Hg (Ⅱ) from aqueous solution. Polym Plast Technol Eng,2006,45:135-141
    [49]Srivastava S K, Singh A K, Sharma A. Studies on the uptake of lead and zinc by lignin obtained from black liquor-a paper industry waste material.Environment Technology,1994,15:353-361
    [50]Orhan Y, Buyukgungor H. The removal of heavy metals by using agricultural wastes. Water Science and Technology,1993,28:247-255
    [51]Tarley C R T, Arruda M A Z. Biosorption of heavy metals using rice milling by-products.Characterisation and application for removal of metals from aqueous effluents. Chemosphere,2004,54:987-995
    [52]叶锦韶,尹华,彭辉,等.重金属的生物吸附研究进展仁.城市环境与城市生态,2001,14(3):30-32
    [53]Basso M C, Cerrella E G, Cukierman A L.Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater. Chem Res,2002, 41:3580-3585
    [54]Qaiser S, Saleemi A R, Ahmad M M.Heavy metal uptake by agro based waste materials. Environ Biotechnol,2007,10:409-416
    [55]刘瑞霞,汤鸿霄.重金属的生物吸附机理及吸附平衡模式研究.化学进展,2002,14(2):87-92
    [56]Kuyucak N, Volesky B.The mechanism of cobalt biosorption. Biotechnol Bioeng,1989,33:823-831
    [57]Krishnani K K, Meng X, Christodoulatos C, et al.Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk, Journal of Hazardous Materials,2008,153:1222-1234
    [58]Brady J M,Tobin J M,Binding of hard and soft metal ions to Rhizopus arrhizus biomass. Enzyme and Microbial Technol,1995,17:791-796
    [59]Teszos M, Volesky B.Adsorption behavior of uranium ion and thorium ion on chitin. Biotechnol Bioeng,1982,24:955-964
    [60]Guibal E, Roulph C, Cloirec P L. Infrared Spectroscopic Study of Uranyl Biosorption by Fungal Biomass and Materials of Biological Origin. Environ Sci Technol,1995,29:2496-2504
    [61]Fourest E, Volesky B.Contribution of Sulfonate Groups and Alginate to Heavy Metal Biosorption by the Dry Biomass of Sargassum fluitans. Environ Sci Technol,1996,30:277-282
    [62]Yu J, Tong M, Sun X, et al.Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker's yeast. Bioresource Technology,2008, 99:2588-2593
    [63]Hosea M, Greene B,Mcpherson R, et al.Accumulation of elemental gold on the alga Chlorella vulgaris. Inorganica Chimica Acta,1986,123:161-165
    [64]Greene B,Hosea M, Mcpherson R, et al. Interaction of gold(Ⅰ) and gold(Ⅲ) complexes with algal biomass. Environ Sci Technol,1986,20:627-632
    [65]Adhikari C R, Parajuli D, Kawakita H, et al. Dimethylamine-Modified Waste Paper for the Recovery of Precious Metals.Environ Sci Technol,2008,42(15): 5486-5491
    [66]Parajuli D, Kawakita H, Inoue K, et al. Recovery of gold(II), palladium(II), and platinum(Ⅳ) by aminated lignin derivatives.Ind Eng Chem Res,2006,45 (19): 6405-6412
    [67]Parajuli D, Adhikari C R, Kuriyama M, et al. Selective recovery of gold by novel lignin-based adsorption gels. Ind Eng Chem Res,2006,45 (1):8-14
    [68]Strandberg G W, Starling E. S,Parrott J R. Microbial Cells as Biosorbents for Heavy Metals:Accumulation of Uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbio,1981,41(1):237-245
    [69]Kyriakopoulos G, Doulia D, Anagnostopoulos E. Adsorption of pestieideson porous polymeric adsorbents. Chemieal Engineering Science,2005, 60:1177-1186
    [70]Balci S.Nature of ammonium ion adsorption by sepiolite:analysis of equilibrium data with several isotherms. Water Research,2004,38:1129-1138
    [71]Holan Z R, Volesky B, Prasetyo I. Biosorption of cadmium by biomass of marine algae. Biotech Bioeng,1993,41:819-825
    [72]Davis T A, Volesky B, Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Wat Res,2003,37:4311-4330
    [73]Davis T A, Llanes F, Volesky B, et al.1H-NMR study of Na alginates extracted from Sargassum sp. in relation to metal biosorption. Appl Biochem Biotechnol, 2003,110(2):75-90
    [74]Schiewer S,Volesky B.Modeling of the proton-metal ion exchange in biosorption. Environ Sci Technol,1995,29(12):3049-3058
    [75]Schiewer S, Volesky B.Ionic strength and electrostatic effects in biosorption of divalent metal ions and protons. Environ Sci Technol,1997,31:2478-2485
    [76]Schiewer S,Volesky B.Ionic strength and electrostatic effects in biosorption of protons. Environ Sci Technol,1997,31(7):1863-1871.
    [77]Saltali K, San A, Aydin M. Removal of ammonium ion from aqueous solution by natural Turkish (Yildizeli) zeolite for environmental quality. J Hazard Mater, 2007,B141:258-263
    [78]Borah D, Satokawa S, Kato S,et al. Surface-modified carbon black for As(V) removal. Journal of Colloid and Interface Science,2008,319:53-62
    [79]Sari A, Tuzen M, Uluozlu O D, et al.Biosorption of Pb(Ⅱ) and Ni(Ⅱ) from aqueous solution by lichen (Cladonia furcata) biomass. Biochemical Engineering Journal,2007,37:151-158
    [80]Lazaridis N K, Karapantsios T D, Georgantas D.Kinetic Analysis for the Removal of a Reactive Dye from Aqueous Solution onto Hydrotalcite by Adsorption. Water Research,2003,37:3023-3033
    [81]Ho Y S,Mckay G. Pseudo-second order model for sorption process. Process Bioehemistry,1999,34:451-465
    [82]詹怀宇,李志强,蔡再生.纤维化学与物理.北京:科学出版社,2005
    [83]Yang X Y,Bushra A D.Application of Branched Pore Diffusion Model in the Adsorption of Reactive Dyes on Activated Carbon. Chemical Engineering Journal,2001,83:15-23
    [84]Ozacar M, Ayhan I, Sengil A, Kinetic Study of Metal Complex Dye Sorption onto Pine Sawdust. Process Biochemistry,2005,40:565-572
    [85]Yang X Y, Bushra A D. Kinetic Modeling of Liquid-phase Adsorption of Reactive Dyes on Activated Carbon. Journal of Colloid and Interface Science,2005, 287:25-34
    [86]Mohana S V, Raoa N C, Karthikeyan J. Adsorptive Removal of Direct Azo Dye from Aqueous Phase onto Coal Based Sorbents:a Kinetic and Mechanistic Study. Journal of Hazardous Materials,2002,B90:189-204
    [87]Brady D, Stoll D A, Starke L. Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell wall of saccharomyces crevisiae. Biotech Bioeng,1994,4:297-302
    [88]Kapoor A, Viraraghavan T. Fungi biosorption-an alternative treatment option for heavy metal bearing wastewaters:a review. Bioresource Technology,1995, 53:195-206
    [89]Ozer A, Ozer D. Comparative study of the biosorption of Pb(Ⅱ), Ni(Ⅱ) and Cr (Ⅵ)ions onto S. cerevisiae:determination of biosorption heats. Journal of Hazardous Materials,2003,B100:219-229
    [90]陈,甘一如.重金属的生物吸附.化学工业和工程,1999,16(1):19-25
    [91]Hashim M A, Chu K H. Biosorption of cadmium by brown, green and red seaweeds. Chem Eng J,2004,97:249-255
    [92]Miguel A. Appl Microbiol Biotechnol, Study on the characteristic of sorbent pretreatment.1995,22:355-366
    [93]Yan G Y, Viraraghavan T. Heavy-metal removal from aqueous solution by fungus Mucor rouxii.Water Research,2003,37:4486-4496
    [94]刘刚,李清彪.重金属生物吸附的基础和过程研究.水处理技术,2002,28(1):17-21
    [95]Mohanty A K, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites:An overview. Macromolecular Materials and Engineering,2000, 276(3-4):1-24
    [96]Mohanty A K, Misra M, Drzal L T. Sustainable bio-composites from renewable resources:opportunities and challenges in the green materials world. Journal of Polymers and the Environment,2002,10(1-2):19-26
    [97]刘传富,张爱萍,孙润仓,等.农林废弃物用作重金属离子吸附剂的研究进展.林产工业,2007,34(5):6-9
    [98]Namasivayam C, Kadirvelu K. Activated carbons prepared from coir pith by physical and chemical activation methods. Bioresource Technology,1997, 62:123-127
    [99]Kadirvelu K, Namasivayam C.Activated carbons from coconut coir-pith as metal adsorbent:adsorption of Cd(Ⅱ)from aqueous solution. Advances in Environmental Research,2003,7:471-478
    [100]Johns M M, Marshall W E, Toles C A. The effect of activation method on the properties of pecan shell-activated carbons. Journal of Chemical Technology & Biotechnology,1999,74(11):1037-1044
    [101]Daifullah A A M, Girgis B S,Gad M H. Utilization of agro-residues (rice husk) in small waste water treatment plans. Materials Letters,2003,57:1723-1731
    [102]Mohan D, Singh K P. Single-and multi-component adsorption of cadmium and zinc using activated carbon derivated from bagasse-an agricultural waste. Water Research,2002,36:2304-2318
    [103]马志红,陆忠兵,石碧.单宁酸的化学性质及应用.天然产物研究与开发,2003,15(1):87-91
    [104]Parajuli D, Kawakita H, Inoue K, et al.Persimmon peel gel for the selective recovery of gold. Hydrometallurgy,2007,87:133-139
    [105]张力平,孙长霞,江明开.落叶松单宁净化有毒金属离子的研究.林产工业,2004,31(2):32-34
    [106]Randall J M, Bermann R L, Garrett V, et al.Use of bark to remove heavy metal ions from waste solution. Forest Product Journal,1974,24(9):80-84
    [107]周隽,翟建平,吕慧峰,等.木屑和花生壳吸附去除水溶液中Cr3+的试验研究.环境污染治理技术与设备,2006,7(1):122-125
    [108]Randall J M, Hautala E J, Waiss A C, et al. Modified barks as scavengers for heavy metal ions.Forest Product Journal,1976,26(9):46-50
    [109]Vazquez G, Gonzalez-Alvarez J, Freire S,et al.Removal of cadmium and mercury ions from aqueous solutions by sorption on treated pinus pinaster bark: kinetics and isotherms.Bioresource Technology,2002,82:247-251
    [110]Aomaya M, Tsuda M, Removal of CrⅥ from aqueous solutions by larch bark. Wood Science and Technology,2001,35:425-435
    [111]Han J S,Rowell J S.Chemical Composition of Fibers, in Paper and Composites from Agro-Based Resources. London:CRC Press,1996:83-134
    [112]Yoshihiko A, Takahisa K. New Insights into Cellulose Degradation by Cellulases and Related enzymes. Trends in Glycoscience and Glycotechnology, 2002,14:27-34
    [113]Aspinall G O.Structural chemistry of the hemicelluloses.Adv Carbohydrate Chem,1959,14:429-468
    [114]Lewis N G, Yamamoto E. Lignin:Occurrence, biogenesis and biodegradation. Annu. Rev. Plant Physiol and Plant Mol.Biol.1990,41:455-496
    [115]洪树楠,刘明华,范娟等.木质素吸附剂研究现状及进展.造纸科学与技术,2004,23(2):38-43
    [116]曲荣君,孙向荣,王春华,等.纤维素基吸附剂的研究进展.林产化学与工业,2004,24(3):102-106
    [117]Yoshitaka O, Hitoshi K. Combination of cellulosic materials ions.Journal of Polymer Science Part A—1.Polymer chemistry,1969,7(8):2087-2095
    [118]Shigeo N, Masato A, Yasuo S, et al.Preparation of aminoalkyl celluloses and their adsorption and desorption of heavy metal ions. Journal of Applied Polymer Science.1992,45(2):265-271
    [119]Reddad Z, Gerente C, Andres Y, et al.Adsorption of several metal ions onto a low-cost bisorbent:Kinetic and equilibrium studies. Environmental Science & Technology,2002,36(9):2067-2073
    [120]Reddad Z, Gerente C, Andres Y, et al.Modeling of single and competitive metal adsorption onto a natural polysaccharide, Environmental Science & Technology,2002,36(10):2242-2248
    [121]Karsheva M I, Hristov J Y, Nenkova S D.Adsorption of lead from aqueous solutions onto technical hydrolyzed lignin. Hungarian Journal of Industrial Chemistry,2000,28:151-156
    [122]Lalvani S B, Hubner A, Wiltowski T S.Chromium adsorption by lignin. Energy Sources,2000,22:45-56
    [123]Laszlo J A, Dintzis F R. Crop residues as ion-exchange materisls, Treatment of soybean hull and sugar beet fiber (pulp) with epichlorohydrin to improve cation-exchange capacity and physical stability. Journal of Applied Polymer Science,1994,52:531-538
    [124]蒋挺大.木质素.北京:化学工业出版社,2001
    [125]Chang S T, Chang H T. Comparisons of the photostability of esterified wood, Polymer Degradation and Stability,2001,71:261-266
    [126]Gellerstedt F, Gatenholm P. Surface properties of lignocellulosic fibers bearing carboxylic groups. Cellulose,1999,6:103-121
    [127]Lehrfeld J. Conversion of agricultural residues into cation exchange materials. Journal of Applied Polymer Science,1996,61:2099-2105
    [128]Hassan M L, El-Wakil N A. Heavy metal ion removal by amidox-imated bagasse. Journal of Applied Polymer Science,2003,87:666-670
    [129]Li C,Chen H, Li Z. Adsorption removal of Cr(VI) by Fe-modified steam exploded wheat straw process. Biochemistry,2004,39:541-545
    [130]王格慧,宋湛谦.氨基木粉的制备与吸附性能研究.林产化学与工业,2000,(3):1-5
    [131]王格慧,宋湛谦.含杀菌、吸附双功能基棉纤维的制备与性能.应用化学,2001,18(10):831-833
    [132]陈玉成,胡必琴.玉米芯处理含汞废水的研究.重庆环境科学,1997,19(3):39-43
    [133]Metwally M S,Metwally N E, Samy T M. Synthesis and studies of Egyptian bagasse pith phenol formaldehyde cationic exchangers.Journal of Applied Polymer Science,1994,52:61-67
    [134]Orlando U S,Baes A U, Nishijima W. A new procedure to produce lignocellulosic anion exchangers from agricultural waste materials. Bioresource Technology,2002,83:195-198
    [135]Lee S H, Yang J W, Removal of copper in aqueous solution by apple wastes, Sep Sci Technol,1997,32 (8):1371-1387
    [136]Low K S,Lee C K. Leo A C.Removal of metals from electroplating wastes
    using banana pith. Bioresour Technology,1995,51 (2/3):227-231
    [137]乔海鸥,丁晓雯,张庆祝.柑橘皮的综合利用.浙江农业科学,2003,3:147-149
    [138]Perez-Marin A B, Zapata V M, Ortuno J F, et al. Removal of cadmium from aqueous solutions by adsorption onto orange waste. Journal of Hazardous Materials,2007,B139:122-131
    [139]Ajmal M, Rao R A K, Ahmad R, et al. Adsorption studies on Citrus reticulata (fruit peel of orange):removal and recovery of Ni (II) from electroplating wastewater. Journal of Hazardous Materials,2000, B79:117-131
    [140]Noeline B F, Manohar D M, Anirudhan T S.Kinetic and equilibrium modelling of lead(Ⅱ) sorption from water and wastewater by polymerized banana stem in a batch reactor.Separation Purification Technology,2005,45:131-140
    [141]Gaballah I, Goy D, Allain E, et al. Recovery of copper through decontamination of synthetic solutions using modified barks. Metallurgical and Materials Transactions,1997,B28:13-23
    [142]Nakajima A, Sakaguchi T. Recovery and removal of uranium by using plant wastes. Biomass,1990,21:55-63
    [143]Prasad R, Ghimire K N, Inoue K. Adsorptive separation of heavy metals from an aquatic environment using orange waste. Hydrometallurgy,2005,79(3-4): 182-190
    [144]Ghimire K N, Inoue K, Yamaguchi H, et al. Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste.Water Research,2003,37(20):4945-4953
    [145]Dhakal R P, Ghimire K N, Inoue K, et al. Acidic polysaccharide gels for selective adsorption of lead (Ⅱ) ion. Separation and Purification Technology, 2005,42(3):219-225
    [146]Li X, Tang Y, Cao X, et al. Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids and Surfaces A:Physicochem Eng Aspects,2008,317:512-521
    [147]Li X, Tang Y, Xuan Z, et al. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Separation and Purification Technology,2007,55:69-75
    [148]Xuan Z, Tang Y, Li X, et al.Study on the equilibrium, kinetics and isotherm of biosorption of lead ions onto pretreated chemically modified orange peel. Biochemical Engineering Journal,2006,31:160-164
    [149]Lu D, Cao Q, Li X, et al. Kinetics and equilibrium of Cu(Ⅱ) adsorption onto chemically modified orange peel cellulose biosorbents.Hydrometallurgy,2009, 95:145-152
    [150]Marshall W E, Wartelle L H, Boler D E, et al. Enhanced metal adsorption by soybean hulls modified with citric acid. Bioresource Technology,1999, 69:263-268
    [151]催化剂、吸附剂表面积测定法.中华人民共和国国家标准,GB5816-86
    [152]张祥麟,康衡.配位化学.长沙:中南工业大学出版社,1986
    [153]W斯塔姆,J J摩尔根.水化学天然水体化学平衡导论.北京:科学出版社,1987
    [154]J A 迪安.兰氏化学手册.北京:科学出版社,1991
    [155]方景礼.多元络合物电镀.北京:国防工业出版社,1983
    [156]姚允斌,解涛,高英敏.物理化学手册.上海:上海科学技术出版社,1985
    [157]Baig T H, Garcia A E, Tiemann K J, et al. Adsorption of heavy metal ions by the biomass of Solanum elaeagnifolium (Silverleaf night-shade), in:L. E. Erickson(Ed.), Proceedings of the 10th Annual EPA Conference on Hazardous Waste Research, US Environmental Protection Agency, Washington DC,1999, 131-139
    [158]Min S H, Han J S,Shin E W, et al. Improvement of cadmium ion removal by base treatment of juniper fiber. Water Res,2004,38:1289-1295
    [159]Wan Ngah W S, Hanafiah M A K M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review. Bioresource Technology,2008,99:3935-3948
    [160]Low K S,Lee C K, Liew S C, Sorption of cadmium and lead from aqueous solutions by spent grain. Process Biochem,2000,36:59-64
    [161]Wing R E. Starch citrate:preparation and ion exchange properties. Starch/Starke,1996,48:275-279
    [162]Wing R E. Cellulosic citrates:preparation and ion exchange properties. J Polym Mater,1997,14:303-309
    [163]Feng N, Guo X, Liang S.Adsorption study of copper (II) by chemically modified orange peel. J Hazard Mater,2009,164:1286-1292
    [164]Aravindhan R, Madhan B,Rao J R. Bioaccumulation of chromium from tannery wastewater:an approach for chrome recovery and reuse.
    Environmental Science and Technology,2004,38:300-306
    [165]Yun Y S, Park D, Park J M, et al.Biosorption of Trivalent Chromium on the Brown Seaweed Biomass.Environ Sci Technol,2001,35:4353-4358
    [166]王宇.利用农业秸杆制备阴离子吸附剂及其性能的研究:[博士学位论文].济南,山东大学,2007
    [167]Gnanasambandam R, Protor A. Determination of pectin degree of esterification by diffuse reflectance Fourier Transform Infrared Spectroscopy. Food Chem, 2008,68:327-332
    [168]张庆轩,杨普江,杨国华.大豆种皮果胶的制备及果胶性质分析.食品研究与开发,2005,26(5):40-43
    [169]Mathew B,Pillai V N R. Polymer-metal complexes of amino functionalized divinylbenzene-crosslinked polyacrylamides. Polymer,1993, 34(12):2650-2658
    [170]陈桂秋.褐腐菌生物吸附剂去除水体重金属的应用基础研究:[博士学位论文].长沙,湖南大学,2006
    [171]Aksu Z. Equilibrium and kinetic modelling of cadmium(Ⅱ) biosorptions by C. vulgaris in a batch system:effect of temperature. Separations and Purifications Technology,2001,21:285-294
    [172]Yang J, Volesky B.Biosorptions of uranium on Sargassum biomass.Water Res, 1999,33:3357-3363
    [173]Asmal M, Khan A H, Ahamd S,et al. Role of sawdust in the removal of copper (Ⅱ)from industrial wastes. Water Res,1998,32:3085-3091
    [174]Ozacar M,Sengil I A. Adsorption of reactive dyes on calcined alunite from aqueous solutions. Journal of Hazardous Material,2003,B 98:211-224.
    [175]崔龙哲,吴桂萍,邓克俭.质子化剩余污泥吸附染料的性能及机理.化工学报,2007,58(15):1290-1295
    [176]Ozer A, Ozer D, Ozer A. The adsorption of copper(Ⅱ) ions on to dehydrated wheat bran(DWB):determination of the equilibrium and thermodynamic parameters. Process Biochemistry,2004,39:2183-2191
    [177]Chen G, Zeng G, Tang L, et al.Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. BioresourceTechnology,2008,99(15): 7034-7040
    [178]吴唯,薛扬,徐嘉凉,等.层析聚酰胺树脂对茶多酚的吸附热力学和吸附动力学研究.塑料工业,2008,36(7):42-45
    [179]Csaki K F, CsemPesz F. Competitive adsorption of uncharged macromolecules from homopolyme-copolymer mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,299(1-3):217-223
    [180]Sheng P X, Ting Y-P, Chen J P. Biosorption of Heavy Metal Ions (Pb, Cu, and Cd) from Aqueous Solutions by the Marine Alga Sargassum sp. in Single-and Multiple-Metal Systems. Ind Eng Chem Res,2007,46(8),2438-2444
    [181]邓莉萍.藻体对水环境中N、P及重金属Cu2+/Pb2+、Cd2+、Cr6+的吸附特征研究:[博士学位论文].北京,中科院海洋研究所,2008
    [182]Chojnacka K, Chojnacki A, Gorecka H. Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue-green algae Spirulina sp:kinetics, equilibrium and the mechanism of the process. Chemosphere,2005,59(1):75-84
    [183]Cruz C C, Costa A C, Henriques C A, et al. Kinetic modeling and equilibrium studies during cadmium biosorption by dead Sargassum sp.biomass.Biores Technol,2004,91(3):249-257
    [184]Gong R, Ding Y, Liu H, et al. Lead biosorption and desorption by intact and pretreated Spirulina maxima biomass. Chemosphere,2005,58(1):125-130
    [185]Jana K, Edita V. Comparison of differences between copper bioaccumulation and biosorption. Environ Intern,2005,31 (2):227-232
    [186]叶振华.化工吸附分离过程.北京:中国石油化工出版社,1992
    [187]王长泰,林诚.固定床透过曲线的预测.化工学报,1986,(2):183-192
    [188]Amarasinghe B M W P K, Williams R A, Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J,2007,132:299-309
    [189]Lenoble V, Chabroullet C, Al-Shukry R, et al. Dynamic arsenic removal on a MnO2-loaded resin. J Colloid Interface Sci,2004,280:62-67
    [190]Zouboulis A I, Katsoyiannis I A. Arsenic removal using iron oxide loaded alginate beads, Ind Eng Chem Res,2002,41:6149-6155
    [191]涂响,曾光明,陈桂秋,等.蘑菇培养基废料在不同物化条件下吸附水体中pb2+的研究.湖南大学学报(自然科学版),2005,32(6):153-155
    [192]Panda G C, Das S K, Chatterjee S,et al.Adsorption of cadmium on husk of Lathyrus sativus:Physico-chemical study. Colloids and Surfaces B: Biointerfaces,2006,50:49-54
    [193]Ahmady-Asbchin S, Andres Y, Gerente C,et al. Biosorption of Cu(Ⅱ) from aqueous solution by Fucus serratus:Surface characterization and sorption mechanisms. Bioresource Technology,2008,99:6150-6155
    [194]Gerente C,Mesnil P C du, Andres Y, et al.Removal of metal ions from aqueous solution on low cost natural polysaccharides Sorption mechanism approach. Reactive & Functional Polymers,2000,46:135-144
    [195]Yu B, Zhang Y, Shukla A, et al.The removal of heavy metal from aqueous solutions by sawdust adsorption-removal of copper. Journal of Hazardous Materials,2000,B80:33-42
    [196]Meena A K, Kadirvelu K, Mishra G K, et al.Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica). Journal of Hazardous Materials,2008,150:604-611
    [197]Manunza B, Deiana S,Pintore M, et al. Interaction of Ca2+ and Na+ ions with polygalacturonate chains:a molecular dynamics study. Glycoconjugate Journal, 1998,15:297-300
    [198]Yoo S H, Fishman M L, Savary B J, et al. Monovalent salt-induced gelation of enzymatically deesterified pectin. J Agric Food Chem,2003,51:7410-7417
    [199]魏秀莉,孙宁云,吴宝剑,等.氯化钙对吲哚美辛果胶骨架片体外释放的影响.中国药学杂志,2006,41(23):1804-1808
    [200]Unlu N, Ersoz M. Adsorption characteristics of heavy metal ions onto a low cost biopolymeric sorbent from aqueous solutions. Journal of Hazardous Materials,2006,136(2):272-280
    [201]Agrawal A, Sahu K K. Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. Journal of Hazardous Materials,2006,137(2): 915-924
    [202]Mata Y N, Blazquez M L, Ballester A, et al. Sugar-beet pulp pectin gels as biosorbent for heavy metals:Preparation and determination of biosorption and desorption characteristics.Chemical Engineering Journal,2009,150:289-301
    [203]Kojima K, Yoshikuni M, Suzuki T. Tributylborane-initiated grafting of methyl methacrylate onto chitin. Journal of Applied Polymer Science, 1979,24(7):1587-1593
    [204]由英才,张保龙,林志明,等.淀粉/甲基丙烯酸甲酯接枝共聚及生物降解性能研究.高分子材料科学与工程,1994,(1):33-37
    [205]王存国,何丽霞,董献国,等.富含纤维素类农作物秆与丙烯酸接枝共聚制备高倍率吸水树脂.高等学校化学学报,2007,28(9):1787-1790
    [206]Hossain S K M, Ananthraman N, Das M. Municipal wastewater treatment: Synthetic polyelect rolytes & graft polyelectrolyte onto starch. Chemical Engineering World,2004,39(5):64-69
    [207]Abdel-aal S E,Gad Y H,Dessouki A M. Use of rice straw and radiation-modified maize starch/ acrylonitrile in the treatment of wastewater. Journal of Hazardous Materials,2006,129(3):204-215
    [208]Rayford W E, Wing R E, Doane W M,Carboxyl-containing starch graft polymer:Preparation and use in heavy metal removal.Journal of Applied Polymer Science,1979,24(1):105-113
    [209]周国平,罗士平,孙英.聚合物去除电镀废水中铬和镉离子.水处理技术,2003,29(3):177-179
    [210]Okieimen E F, Ebhoaye J E. Grafting acrylonitrile and acrylic acid monomers on cellulosic materials. Journal of Applied Polymer Science,1986, 31(5):1275-1280
    [211]Okieimen E F, Ebhoaye J E. Adsorption behavior of heavy metal ions on cellulose graft copolymers.Journal of Applied Polymer Science,1986, 32(5):4971-4976
    [212]赵艳锋.纤维素的改性技术及进展.天津化工,2006,20(2):11-14
    [213]Dizhbite T, Zakis G, Kizima A. Lignin-a useful bioresource for the production of sorption-active materials. Bioresource Technology,1999,67:221-228
    [214]Hitoshi K, Yasumichi S.Introduction of amidoxime groups into cellulose and its ability to adsorb metal ions. Journal of Applied Polymer Science,1995, 56(2):147-151
    [215]Shigeo N, Masato A. Preparation of hydrazinodexycellulose and carboxyalkyl hydrazinodeoxycelluloses and their adsorption behavior toward heavy metal ions. Journal of Polymer Science Part A:Polymer Chemistry,1997, 35(16):3359-3363
    [216]Faraj A A, Mansor B A, Nor A I, et al. Optimized conditions for the grafting reaction of poly (methyl acrylate) onto rubberwood fiber. Polymer International, 2004,53:386-391
    [217]Misra B N, Dogra R, Kaur I, et al. Grafting onto cellulose Ⅳ. Effect of complexing agents on Fenton's reagen (iron (2+)-hydrogen peroxide)-initiated grafting of poly (vinyl acetate).J Polym Sci, Polym Chem Ed,1979, 17:1861-1863
    [218]李扬杰,罗洁,龙国志.碱木素及其改性产物制备重金属吸附剂的研究.环境科学与技术,2008,31(5):38-41
    [219]吴壁耀,邵兰英,张建民,等.聚合物接枝改性炭黑粒子表面性质研究.高分子材料科学与工程,1997,13(5):104-108
    [220]孙燕慧,丘昆元,冯新德.聚醚氨酯的氧化及其接枝共聚合的研究.高分子通报,1983,(2):81-87
    [221]刘燕平,吴济宏,陈小燕.丙烯酸甲酯与竹原纤维的接枝共聚及表征.丝绸,2007,10:24-27
    [222]付海英,虞鸣,李林繁,等.SBS辐射接枝共聚研究Ⅲ:星型SBS接枝改性.辐射研究与辐射工艺学报,2005,23(4):223-228
    [223]Gopal V, Elango K P. Equilibrium, kinetic and thermodynamic studies of adsorption of fluoride onto plaster of Paris. Hazardous Materials,2007,141(1): 98-105
    [224]李朝丽,周立祥,黄棕壤.不同粒级组分对镉的吸附动力学与热力学研究.环境科学,2008,29(5):1406-1411
    [225]An H K, Park B Y, Kim D S.Crab Shell for the Removal of Heavy Metals from Aqueous Solution. Water Res.2001,35:3551-3556
    [226]Vaughan T, Seo C W, Marshall W E. Removal of selected metal ions from aqueous solution using modified cornbobs. Bioresour Technol,2001, 78:133-139
    [227]Kweon D-K, Choi J-K, Kim E-K, et al. Adsorption of divalent metal ions by succinylated and oxidized corn starches. Carbohydr Polym,2001,46:171-177
    [228]Sheng P X, Ting Y-P, Chen J P. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass:characterization of biosorptive capacity and investigation of mechanisms. Journal of Colloid and Interface Science,2004, 275:131-14
    [229]蔡佳亮,黄艺,郑维爽.生物吸附剂对废水重金属污染物的吸附过程和影响因子研究进展.农业环境科学学报,2008,27(4):1297-1305
    [230]Dhakal R P, Ghimire K N, Inoue K, et al. Acidic polysaccharide gels for selective adsorption of lead (Ⅱ) ion. Separation and Purification Technology, 2005,42:219-225
    [231]李克斌,刘维屏,邵颖.重金属离子在腐殖酸上吸附的研究.环境污染与防治,1997,19(1):9-11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700