用户名: 密码: 验证码:
稠油组分及乳化剂对油水界面性质影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用吸附色谱法对孤岛稠油和辽河稠油进行了极性四组分分离,并以核磁共振为基础,结合红外光谱、元素组成及平均分子量等数据,用改进的Brown-Ladner法对稠油及其组分进行结构分析,通过考察组分模拟油的油水界面张力和zeta电势,探求了稠油组分之间、乳化剂与稠油组分之间相互作用,以及稠油组分的组成结构与其界面化学性质之间的关系。
     实验选用的孤岛稠油和辽河稠油都具有密度大、粘度大、凝点高、酸值高、碱氮值高等特点。两种稠油的胶质和沥青质总含量均超过40%,胶质、沥青质的酸值、碱氮值比较高,杂原子含量较高,环状结构较多,稠油中的极性物质主要集中在胶质、沥青质组分中,两种稠油的极性物质在各组分中的分布差别较大。
     稠油及其组分组成结构的差异决定了稠油组分界面活性的不同。饱和分是界面惰性物质,芳香分基本没有界面活性,胶质、沥青质能降低空白模拟油的界面张力,是稠油中的主要界面活性物质。稠油极性组分的氢碳原子比越小,杂原子含量越高,酸值、碱氮值越高,其模拟油的油水界面张力越低,即组分的界面活性越强。对于辽河稠油和孤岛稠油的同一类极性组分,分子量越大,酸值、碱氮值越高,组分模拟油的油水界面张力越低,即组分界面活性越强。对于同种稠油的不同极性组分,芳香碳率、芳香环缩合程度越大,烷基支化度越小,界面活性越高。稠油及其极性组分在碱性条件下表现出较强的界面活性,即各极性组分中的酸性基团占有优势;水相NaCl浓度对稠油及其组分模拟油的油水界面张力影响较小,说明稠油中的界面活性组分绝大部分为油溶性物质。
     当水相为去离子水时,稠油及其组分模拟乳状液的zeta电势为负值。随着稠油组分极性增大,zeta电势绝对值升高。在强酸强碱条件下,pH值对zeta电势的影响比在中性条件附近强烈,其绝对值降低幅度大。其中,强酸环境导致体系油水界面zeta电势绝对值的降幅达到60mV。水相中盐含量的增加导致zeta电势绝对值变小。
     胶质、沥青质与饱和分、芳香分之间的相互作用强度不同。饱和分与胶质之间无明显的相互作用;饱和分的烷基支化度大,使饱和分-沥青质双组分模拟油中沥青质的溶解度降低,即饱和分和沥青质之间存在负的协同作用。芳香分的芳香度较高,对胶质、沥青质的溶解作用强;其烷基支化度小,分子体积小,易进入胶质、沥青质片状分子之间,部分拆散平面堆砌而成的聚集体,使胶质、沥青质结构单元数增多,即芳香分与胶质、沥青质都存在正的协同作用;胶质、沥青质分子之间由于分子间氢键的形成而存在协同作用。
     在乳化过程中,乳化剂与稠油组分相互作用的强弱取决于稠油组分自身的界面活性,组分界面活性越高,乳化剂降低组分模拟油界面张力的能力越强。两种稠油的饱和分、芳香分基本没有界面活性,很难吸附在界面上与乳化剂发生相互作用。稠油、胶质、沥青质与阴离子乳化剂LAS之间存在正的协同作用;稠油、胶质、沥青质与非离子乳化剂OP-10之间存在负的协同作用。在中性及弱酸弱碱环境中阴离子乳化剂LAS与稠油极性组分间表现出较强的协同作用,使油水界面张力降低至2mN·m~(-1),zeta电势绝对值升高至120mV以上;一定浓度的NaCl能够促进乳化剂与稠油组分之间的相互作用,增强乳状液的稳定性。
Gudao and Liaohe heavy crudes were isolated to polar components by adsorption chromatograph. By means of the modified Brown-Ladner’s method, the average structural parameters of heavy crudes and their polar components were calculated based on nuclear magnetic resonance spectroscopy combined with infrared spectroscopy, ultimate analysis and average molecular weight determination. In order to search for the interaction between emulsifiers and heavy crude components, the relation between composition structure and interfacial properties of components, the oil-water interfacial tension and zeta potential of components simulated oil were studied.
     Gudao and Liaohe heavy crudes with the characteristic of high density, high viscosity, high solidifying point, high acid number and basic nitrogen content are typical heavy crudes. In the series of components, resin and asphaltene have the characteristic of high content, high acid number and basic nitrogen content, more hetero atoms, more ring structure. Therefore, most of the polar substance of heavy crudes concentrated in resin and asphaltene.
     The study of interfacial activity of heavy crudes and components showed that, saturate is inertia in the interface, aromatic has no interfacial activity, resin and asphaltene are the main interfacial active agents in heavy crudes. Resin and asphaltene have following characteristic: little H/C ratio, more hetero atoms, high acid number and basic nitrogen content, all of these lead to the high interfacial activity of polar components, decreased the interfacial tension of their simulated oil. For same component of different oils, the one whose average molecular weight, acid number and basic nitrogen content are higher, has stronger interfacial activity. For different polar components of the same oil, the one with larger aromatic factors and condensation index of aromatic ring, smaller branchiness index, has stronger interfacial activity. Heavy crudes and polar components were more active in the alkalic condition, this comes to the conclusion that acidic groups are prevailing in heavy crudes and polar components. Concentration of sodium chloride in aqueous phase made only a small contribution to the interfacial tension, this suggest that most of the interfacial active agents in heavy crudes are oil-soluble.
     When water phase was pure water, the zeta potential of heavy crudes and components simulated emulsions were negative and their absolute values increased with the polarity of components in oil phase. In the strong acidic and alkalic conditions, the zeta potential of simulated emulsion has a greater decrease more than that under neutral condition. Under strong acidic environment, the zeta potential reduced by 60mV. The absolute value of zeta potential were decreased by the addition of salt.
     With a larger branchiness index, saturate decreased the solubility of asphaltene in the saturate-asphaltene simulated oil, so there was negative synergetic effect between saturate and asphaltene. With larger aromatic factor and condensation index of aromatic ring, aromatic had a larger aromaticity, it could increase the solubility of resin and asphaltene; Thanks to the low branchiness index and small molecular volume, aromatic molecule could insert into resin and asphaltene aggregate and break them, and the number of structural unit increased, so there were positive synergetic effect between aromatic and resin, aromatic and asphaltene; The synergetic effect between resin and asphaltene derived from the hydrogen-bonding energy.
     In the process of emulsify, the higher the polarity of component, the stronger the intermolecular force between component and emulsifier. The interaction between component and emulsifier lied on the interfacial activity of components, and the higher interfacial activity is, the stronger interaction is. Saturate and aromatic, which hadn’t interfacial activity, hardly adsorb on the interface, and had no chance to interact with emulsifiers. Resin and asphaltene, which had many heteroatom groups, could get to the interface and interact with emulsifier there. In the neutral, weak acidic and weak alkalic conditions, the interaction between component and anionic emulsifier was stronger, and the interfacial tension of simulated oil reduced to 2mN·m~(-1),the zeta potential increased to 120mV. The addition of salt could increase the interaction between component and anionic emulsifier, and the stability of emulsion was enhanced.
引文
[1]李佳宁,刘琼.论稠油在21世纪能源中的地位[J].油气地面工程,2000,19(4):4-6.
    [2]王云峰.表面活性剂及其在油气田中的应用[M].北京:石油工业出版社.1995.
    [3] [美]贝歇尔著,傅鹰译.乳状液理论与实践[M].北京:科学出版社,1985.
    [4]方洪波,宗华,等.热力学不稳定体系的稳定性研究[J].油田建设设计,2001,4(1):4-9.
    [5] Johnsen, Einar; Fordedal, Harald; Urdahl, Olav.A Simplified Experimental Approach for Measuring Viscosity for Water-in-crude-oil emulsions under flowing conditions. Journal of Dispersion Science & Technology, 2001, 22 (1):33-39.
    [6]李明远.原油乳状液稳定性研究V北海原油乳状液的稳定与破乳[J].石油学报(石油加工),1995,11(3):1-5.
    [7] Wasan D T.Emulsions - A Fundamental and Practical Approach.In: Sjoblom J ed.NATO ASI Series, Kluwer, 1992, 363:283-295.
    [8] Jones T. Role of asphaltene and resin in oil field emulsion [J].The Journal of Canadian Petroleum, 1978 28(4):100-101.
    [9] Johan Sj?blom, Li Mingyuan, Alfred A. Water-in-crude-oil emulsions from the Norwegian continental shelf 7. Interfacial pressure and emulsion stability Colloids and Surfaces, 66(1):55-62.
    [10]李明远,顾惕人.原油乳状液稳定性研究:Ⅱ.原油成分对原油乳状液稳定性的影响[J].石油化工,1993,22(9):580-586.
    [11] Wasan D T.Water-in-oil emulsion formation: a review of physics and mathematical model [J]. Journal of Rheology, 1979, 23(2):181-189.
    [12]李明远,顾惕人.原油乳状液稳定性研究I界面压与乳状液稳定性[J].石油学报,1992,13(增刊):157-164.
    [13] Li Ming yuan.Separation and characterization of indigenous interfacial active fraction in North Sea crude oil [D].Bergen: University of Bergen.1993.
    [14] Singh B P.Correlation between surface film pressure and stability of emulsion [J].Energy Sources, 1997, 19(8):783-788.
    [15]李明远,甄鹏.原油乳状液稳定性研究Ⅵ界面膜特性与原油乳状液稳定性[J].石油学报(石油加工)1998,14(3):1-5.
    [16]孙涛垒,彭勃,许志明,等.原油活性组分油水界面膜扩张粘弹性研究[J].物理化学学报,2002,18(2):161-165.
    [17]孙涛垒,彭勃,李明远,等.原油减渣馏分油水界面膜的扩张粘弹性研究[J].石油大学学报(自然科学版),2005,29(6):113-118.
    [18]彭勃,孙涛垒,张路,等.原油减压渣油馏分的油-水界面性质Ⅷ伊朗重质减渣馏分油-水界面膜的扩张粘弹性[J].石油学报(石油加工),2005,21(1):76-82.
    [19]彭勃,孙涛垒,张路,等.原油减压渣油馏分的油-水界面性质Ⅸ大庆减渣馏分油-水界面膜的扩张粘弹性[J].石油学报(石油加工),2005,21(2):76-80.
    [20]王宜阳,张路,孙涛垒,等.酸性模拟油的油水界面扩张粘弹性研究[J].高等学校化学学报,2003,24(11):2044-2047.
    [21] Acevedo S, Escobar G, Gutiérrez L, et al. Isolation and characterization of natural surfactants from extra heavy crude oils, asphaltenes and maltenes.Interpretation of their interfacial tension-pH behaviour in terms of ion pair formation. Fuel, 1992, 71(6):619-623.
    [22] Acevedo S., Luyrisser I. Isolation and characterization of natural surfactant present in extra heavy crude oil [J].J Disper Sci Technol, 1984, 5(1):1-18.
    [23]杨小莉,陆婉珍.有关原油乳状液稳定性的研究[J].油田化学,1998,15 (1):87-96.
    [24] Mohammad A. Khadim, Mohammad A. Sarbar. Role of asphaltene and resin in oil field emulsions [J]. Journal of Petroleum Science and Engineering, 1999, 23: 213–221.
    [25]李明远.原油乳状液稳定性研究Ⅲ北海原油界面活性组分特性[J].油田化学,1997,14(3):237-242/256.
    [26]杨小莉,陆婉珍,李明远,等.辽河原油沥青质及胶质油水界面化学性质初探[J].石油学报,1999,15(4):5-6.
    [27] Sheu E.Y., De Tar M.M.and D.A.Storm. Dielectric properties of asphaltene solutions [J].Fuel, 1994, 73(1):45-50.
    [28] David A. Storm and Eric Y. Sheu.Characterization of colloidal asphaltenic particles in heavy oil. Fuel, 1995,74(8):1140-1145.
    [29] Marc H. Schneider, A. Ballard Andrews, Sudipa Mitra-Kirtley, et al. AsphalteneMolecular Size by Fluorescence Correlation Spectroscopy Energy & Fuels 2007, 21, 2875-2882.
    [31] Dickier J P, Yen T F. The role of trace metal in petroleum [J].Anta Chem, 1969, 39(14): 1847-1857.
    [32] Fendler J H.Effect of petroleum resin on asphaltene aggregation and water in oil emulsion formation [J].J Phys Chem, 1980, 84:1485-1491.
    [33] Simon Ivar Andersen, Kulbir S. Birdi. Aggregation of asphaltenes as determined by calorimetry.Journal of Colloid and Interface Science, 1991, 142(2):497-502.
    [34] Eric Y.Sheu, Maureen M.De Tar, D.A.Storm.Interfacial properties of asphaltenes. Fuel, 1992, 71(11):1277-1281.
    [35] Harald Fordedal, Oivind Midttun, Johan Sj?blom,et al. A Multivariate Screening Analysis of W/O Emulsions in High External Electric Fields as Studied by Means of Dielectric Time Domain Spectroscopy, II: Model Emulsions Stabilized by Interfacially Active Fractions from Crude Oils.Journal of Colloid and Interface Science,1996,182(1): 117-125.
    [36] Joseph D. McLean and Peter K. Kilpatrick.Effects of Asphaltene Aggregation in Model Heptane–Toluene Mixtures on Stability of Water-in-Oil Emulsions. Journal of Colloid and Interface Science, 1997, 196(1):23-34.
    [37] Mohammed R A, Bailey A I, Lucklam P F, et al. Dewatering of crude oil emulsion 2. Interfacial properties of the asphaltic constituents of crude oil [J].Colloids and Surfaces A: Physicochem Eng Aspects, 1993, 80:237-242.
    [38] Eric Y.Sheu, Maureen M.De Tar, D.A.Storm. Interfacial properties of asphaltenes.Fuel, 1992, 71(11):1277-1281.
    [39] R.A.Mohammed, A.I.Bailey, P.F. Luckham, et al. Taylor The effect of demulsifiers on the interfacial rheology and emulsion stability of water-in-crude oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering aspects, 1994, 91(3):129-139.
    [40] Eric Y. Sheu, Maureen M. De Tar, Dave A. Storm,et al. Aggregation and kinetics of asphaltenes in organic solvents.Fuel,1992,71(3):299-302.
    [41] E. Y. Sheu, D. A. Storm, M. B. Shields. Adsorption kinetics of asphaltenes at toluene/acid solution interface.Fuel, 1995, 74(10):1475-1479.
    [42] Wasan D T. Emulsions-A Fundamental and Practical Approach. Sjoblom J ed. NATO ASi Series, Kluwer, 1992, 363:283-295.
    [43] Bernard Siffert, Claudine Bourgeois, Eugène Papirer. Structure and water-oil emulsifying properties of asphaltenes.Fuel, 1984, 63(6):834-837.
    [44] Stig Friberg, Leo Mandell and Monica Larsson.Mesomorphous phases, a factor of importance for the properties of emulsions. Journal of Colloid and Interface Science, 1969,29(1):155-156.
    [45] Kevin Moran. Roles of Interfacial Properties on the Stability of Emulsified Bitumen Droplets.Langmuir, 2007, 23, 4167-4177.
    [46] Joseph D. McLean and Peter K. Kilpatrick.Effects of Asphaltene Solvency on Stability of Water-in-Crude-Oil Emulsions. Journal of Colloid and Interface Science, 1997, 189(2):242-253.
    [47] NehalS. Ahmed, Amal MF. Formation of fluid heavy oil-in-water emulsions for pipeline transportation[J]. Fuel 78 (1999):593-600.
    [48]王大喜,赵玉玲,潘月秋,等.石油胶质结构性质的量子化学研究[J].燃料化学学报,2006,34(6):690-694.
    [49]齐邦峰,曹祖宾,陈立仁,等.紫外吸收光谱研究胜利渣油胶质、沥青质结构特性[J].2001,14(3):14-17.
    [50] Mohammed R A,Bailey A I, Lucklam P F, et al. Dewatering of crude oil emulsion 2. Interfacial properties of the asphaltic constituents of crude oil [J].Colloids and Surfaces A: Physicochem Eng Aspects, 1993, 80:237-242.
    [51]李学文,康万利.原油乳状液的稳定性与界面膜研究进展.油气田地面工程22(10):7-8.
    [52]樊西惊.胶体化学的新进展与油田化学[J].油田化学.1998,15(2):176-179.
    [53]葛际江,张贵才,李德胜.OPS和OPC系列稠油乳化降黏剂的研制[J].油田化学,2007,24(1):30-34.
    [54] David E.Tambe, Mukul M.Sharma.Factors Controlling the Stability of Colloid-Stabilized Emulsions: I. An Experimental Investigation. Journal of Colloid and Interface Science, 1993, 157(1):244-253.
    [55] Akira Tsugita, Shizume Takemoto, Kenji Mori, et al. Studies on O/W emulsionsstabilized with insoluble montmorillonite-organic complexes.Journal of Colloid and Interface Science,1983,95(2):551-560.
    [56] Nehal S, Amal MF.Formation of fluid heavy oil-in-water emulsion for pipeline transportation.Fuel, 1999, (78):593-600.
    [57] David E. Tambe and Mukul M. Sharma.Factors Controlling the Stability of Colloid-Stabilized Emulsions: I. An Experimental Investigation.Journal of Colloid and Interface Science, 1993, 157(1):244-253.
    [58]夏立新,曹国英,陆世雄,等.固体粒子稳定的乳状液的微波破乳[J].化学研究与应用,2007,19(3):304-306.
    [59] Danuta M.Sztukowski, Harvey W. Yarranton. Oilfield solids and water-in-oil emulsion stability. Journal of Colloid and Interface Science.285 (2005):821-833.
    [60] L.G.Torres, R.Iturbe, M.J. Snowden, et al. Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology. Colloids and Surfaces A: Physicochem. Eng. 302 (2007): 439-448.
    [61]李明远.原油乳状液稳定性研究V北海原油乳状液的稳定与破乳[J].石油学报(石油加工),1995,11(3):1-5.
    [62]李明远,俎永平.原油乳状液稳定性研究(蜡与原油乳状液稳定性)[J].油气田地面工程,16(2):1-4.
    [63]李明远,甄鹏.原油乳状液稳定性研究Ⅶ蜡晶对油水界面膜性质的影响[J].石油学报(石油加工),1999,15(5):1-5.
    [64]马立辉.稠油乳化降粘剂的研制[M].北京:北京工商大学,2001.
    [65]秦冰.稠油乳化降粘剂结构与性能关系的研究[D].北京:中国石油化工科学研究院,2001:5-9.
    [66]张颖.重油乳化剂的合成及其在稠油乳化中作用机理的研究[M].东营:石油大学(华东),2003.
    [67]吴本芳.辽河原油降粘研究[M].上海:华东理工大学,2001.
    [68]陈振江.稠油掺水乳化技术的开发及应用.抚顺石油学院学报[J].1997,17(4):14-17.
    [69]尉小明,刘喜林.稠油乳化降黏开采用表面活性剂的筛选[J].日用化学工业, 2002,32(4):40-42.
    [70] Gregoli.A.Low-temperature pipeline emulsion transportation enhancement [P].US 5156652, 1992, 10.20.
    [71] Nilia Romero, Antonio Cardenas Viscoelastic properties and stability of highly concentrated bitumen in water emulsions [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects 204 (2002): 271–284.
    [72] Nael Zaki, Thorsten Butz.Rheology, particle size distribution, and asphaltene deposition of viscous asphaltic crude oil-in-water emulsions for pipeline transportation [J].Petroleum science and technology, 19(3&4), 425-435(2001).
    [73]刘亚红,马文辉.稠油低温乳化降粘剂的研制[J].化学工程师,2002,6:59-61.
    [74]谭非,尉小明.超稠原油热敏性降粘剂的研制[J].浙江大学学报(理学版),2003,30(4):426-430.
    [75] Wu Di,Ai Guangzhi,Chen Yan,et al. Rheology and Stability of IOR Produced Liquid in Daqing Oilfield.SPE 57318,25-26 October 1999.
    [76] Eva Santini, Libero Liggieri, Linda Sacca, et al. Interfacial rheology of Span 80 adsorbed layers aparaffin oil–water interface and correlation with the corresponding emulsion properties. Colloids and Surfaces A: Physicochem.Accepted 22 November 2006.
    [77]范维玉,宋远明,南国枝,等.水包稠油乳状液稳定性研究Ⅰ稠油官能团组分分离及其油水界面粘度考察[J].石油学报(石油加工),2001,17 (增刊):1-8.
    [78]范维玉,宋远明,南国枝,等.水包油乳状液稳定性研究II稠油官能团组分表面膜性质探索[J].石油学报(石油加工),2001,17(4):12-17.
    [79]范维玉,陈树坤,南国枝,等.水包稠油乳状液稳定性研究Ⅲ稠油官能团组分与极性组分的油/水界面张力考察[J].石油学报(石油加工),2001,17 (5):1-6.
    [80]范维玉,宫传廷.稠油组分油水界面zeta电势及其影响因素研究[J].石油大学学报(自然科学版),2003,27(4):116-119.
    [81] David Arla, Anne Sinquin, Thierry Palermo, et al. Influence of pH and Water Content on the Type and Stability of Acidic Crude Oil Emulsions. Energy﹠Fuel, December 08,2006.
    [82] Xiao Li Yang, Vincent J.Verruto, Peter K. Kilpatrick. Dynamic Asphaltene-Resin Exchange at the Oil/Water Interface: Time-Dependent W/O Emulsion Stability for Asphaltene/Resin Model Oils. Energy﹠Fuel, January 26,2007.
    [83] Xiaoli Yang, Hassan Hamza, Jan Czarnecki.Investigation of Subfractions of Athabasca Asphaltenes and Their Role in Emulsion Stanility & EnergyFuel, 2004, 18,770-777.
    [84] Andrew P. Sullivan, Peter K. Kilpatrick.The Effects of Inorganic Solid Particles on Water and Crude Oil Emulsion Stability.Ind.Eng.Chem.Res., 2002,41,3389-3404.
    [85]夏立新,曹国英,陆世雄,等.沥青质和胶质对乳状液稳定性的影响[J].化学世界,2005,(9):521-524.
    [86] H.W.Yarranton, D.M. Sztukowski, P. Urrutia.Effect of interfacial rheology on model emulsion coalescence I.Interfacial rheology. Journal of Colloid and InterfaceScience, 2007(310):246-252.
    [87] H.W.Yarranton, P.Urrutia, D.M.Sztukowski.Effect of interfacial rheology on model emulsion coalescence II. Emulsion Coalescence. Journal of Colloid and Interface Science, 2007(310):253-259.
    [88]秦冰.稠油乳化降粘剂结构与性能关系的研究[D].北京:中国石油化工科学研究院,2001.
    [89]徐志成,安静仪,马金石,等.孤岛原油乳化活性组分剖析[J].油田化学,1999,16(2):163-166.
    [90] Speight J G. The Chemistry and Technology of Petroleum [M].New York: Marcel Dekker, 1999.
    [91] Sjoblom J, Li M Y. Water-in-crude oil emulsion from the Norwegian continental shelf 7-Interfacial pressure and emulsion stability [J]. Colloid and Surfaces, 66 (1): 1992, 55-62.
    [92]李明远,甄鹏,吴肇亮,等.原油乳状液稳定性研究Ⅵ界面膜特性与原油乳状液稳定性[J].石油学报(石油加工),1998,14(3):1-4.
    [93]彭勃,李明远,Laila Stordrange,等.原油减压渣油馏分的油-水界面性质Ⅻ减渣馏分分子参数与其模拟乳状液的稳定性[J].石油学报(石油加工),2006,22(4):66-71.
    [94]徐明进,李明远,彭勃,等.沙特原油活性组分的结构对油水界面性质的影响[J].精细化工,2007,(24)5:462-465.
    [95]李美蓉,马济飞,孙向东.超稠油中酸性组分的分离及其界面活性研究[J].石油化工高等学校学报,2006,19(3):60-63.
    [96]程亮,邹长军,杨林,等.稠油化学组成对其粘度影响的灰熵分析[J].石油化工高等学校学报,2006,19(3):6-10.
    [97] Jana Vander Kloet, Laurier L. Schramm, Bill Shelfantook.The influence of bituminous froth components on water-in-oil emulsion stability as determined by the micropipette technique. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 192:15–24.
    [98] G. Gu, Z. Xu, K. Nandakumar, et al.Influence of water-soluble and water-insoluble natural surface active components on the stability of water-in-toluene-diluted bitumen emulsion. Fuel, 2002, 81:1859-1869.
    [99]杨翠定,顾侃英,吴文辉.石油化工分析方法(RIPP试验方法)[M].北京:科学出版社,1990:39-41.
    [100] GB/T 18609-2001,原油酸值的测定(电位滴定法)[S].北京:中国标准出版社,2002.
    [101] SH/T 0251-93,石油产品碱值测定(高氯酸电位滴定法)[S].北京:中国标准出版社,1994年9月.
    [102] GB/T 2540-81,石油产品密度测量法(比重瓶法)[S].北京:中国标准出版社,1998.
    [103] GB/T 11137-89,深色石油产品运动粘度测定法和运动粘度计算法[S].北京:中国标准出版社,1998.
    [104] GB/T 510-83,石油产品凝点测定法[S].北京:中国标准出版社,1998.
    [105] Brown J K, Ladner W R.A study of the hydrogen distribution in coal-like materials by high-resolution nuclear magnetic resonance spectroscopy II.A comparision with infra-red measurement and the conversion to carbon structure[J].Fuel,1960,39:87~96.
    [106] Williams R B.Characterization of hydrocarbons in petroleum by nuclear magnetic resonance.Symposium on composition of Petroleum Oils.ASTM, Spec.Tech.Publ., 224,1958.
    [107] Bartle K D,SJA.A highoresolution proton mageticresonance study of refined tars II.High molecular weight fractions[J].Fuel,1967,46:29-46.
    [108] Ali L.H. A method for the calculation of MW of aromatic compounds and its application to petroleum fractions[J].Fuel, 1971, 50:298-307.
    [109] Bartle K D,Ladner W R,Martin T G,et al.Structural ananlysis of supercritical-gasextracts of coals[J].Fuel,1979,58:413-422.
    [110] Snape C E,Ladner W R,Bartle K D,et al.Structural Characterization of Coal Extracts by NMR.Coal Liquefaction product[M].Mew York:Wiley,1983.
    [111] Cookson D J,Smith B E.One and two-dimensional NMR methods for elucidating structural characteristics of aromatic frations from petroleum and synthetic fuels[J].Energy Fuel,1987,1:111-120.
    [112] Dickie J P,Yen T F.Macrostructures of the asphaltic fractions by various instrucmental method[J].Anal.Chem.1967,39(14):1847-1857.
    [113]高芒来,孟秀霞,孟庆民.分子沉积膜驱剂在原油/水中的分配及油水界面张力[J].石油大学学报(自然科学版),2005;29(3):124~129.
    [114]贝歇尔,傅鹰.乳状液理论与实践[M].北京:科学出版社,1978,114~133.
    [115]周祖康,顾惕人.胶体化学基础[M].北京:北京大学出版社,1993,239~248.
    [116] Hiemenz P C.Principles of Colloid and Surface Chemistry (3rded)[M].New York:Marcel Dekker,1997.
    [117] Barraza H P.The Zeta potential and surface properties of asphaltenes obtained with different crude oil/n-heptane proportions [J].Fuel, 2003, 82(8):869~874.
    [118] Jeong M W. Effect of amine and amine oxide compounds on the Zeta2potential of emulsion droplet s stabilized by phosphatidycholine [J].Colloid and Surface: Physicochemical and Engineering Aspects, 2001, 181(1-3):247~253.
    [119]彭勃,李明远,赵锁奇,等.原油减压渣油馏分的油水界面性质Ⅺ伊朗轻质减渣和大庆减渣乳状液的粒度特征[J].石油学报(石油加工),2006,22(1):66~71.
    [120]彭勃,李明远,赵锁奇,等.原油减压渣油馏分的油-水界面性质Ⅵ伊朗轻质减渣馏分的L-B性质[J].石油学报(石油加工),2004,20(4):67~73.
    [121]彭勃,李明远,赵锁奇,等.原油减压渣油馏分的油-水界面性质Ⅶ伊朗轻质减渣和大庆减渣乳状液的zeta电位[J].石油学报(石油加工),2006,22(2):103-108.
    [122] Milton J.Rosen. Purification of surfactants for studies of their fundamental surface properties [J].Journal of Colloid and Interface Science, 1981, 79(2):587~588.
    [123] Scott L Myers, Merrick L Shively.Preparation and characterization of emulsifiable glasses: Oil-in water and water-in-oil-in-water emulsions [J].Journal of Colloid and Interface Science, 1992, 149(1):271~278.
    [124]德鲁.迈尔斯[阿根廷]著.吴大诚,朱谱新,高绪珊,等译.表面、界面和胶体——原理及应用[M].北京:化学工业出版社,2005:185-187.
    [125]张天胜.表面活性剂应用技术[M].北京:化学工业出版社,2001:32~34.
    [126] Schramm L L.Pet roleum emulsion: Basic principles [A].Schramm L L.Emulsion: Fundamentals and applications in the pet roleum indust ry[C].Washington D C:American Chemical Society,1992.1~49.
    [127] Speight J G.The Chemist ry and Technology of Petroleum [M].New York: Marcel Dekke, 1999.
    [128] Sjoblom J, Li M Y.Water-in-crude oil emulsion from the Norwegian continental shelf 7——Interfacial pressure and emulsion stability[J].Colloid and Surfaces, 66(1):1992, 55~62.
    [129]沈钟,王国庭.胶体与表面化学[M].北京:化学工业出版社,1997:64-65.
    [130]李传,王继乾,石斌,等.活性剂对轮古常渣Zeta电位的影响[J].燃料化学学报,2008,36(1):55-59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700