用户名: 密码: 验证码:
瓜环作为药物载体的研究及雷公藤化学成分的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瓜环是超分子化学中继冠醚、环糊精、杯芳烃之后备受瞩目的一类人工合成新型笼状大环主体分子。其在分子识别、超分子催化以及分子组装等领域得到了广泛的研究,但作为药物载体方面的研究还鲜见有报道,本论文致力于瓜环作为药物载体的基础性研究,选择两种作用机理不同的抗癌药物喜树碱、苯丁酸氮芥和消炎药物5-氨基水杨酸为模型药物,考察瓜环在药物载体方面的应用潜力。
     1.对瓜环同系物、衍生物的合成、分子识别、超分子催化、分子组装、实际应用等领域的新研究进行了较为详尽的综述。
     2.瓜环(Cucurbit(n)urils,CB[n](n=6,7,8))的合成和分离纯化。首次利用高效液相色谱法(HPLC)研究瓜环与客体间的相互作用。结果表明HPLC法作为考察瓜环与客体相互作用的一种新尝试,具有直观、可靠的优点,特别是利用主客体配合物的容量因子k′_(G·Q)值及客体表观容量因子的变化研究主客体的相互作用模式是其特色。
     3.瓜环作为抗癌药物喜树碱(Camptothecin,CPT)载体的研究
     (1)急毒实验和体外细胞毒性实验表明瓜环的毒性小,使用安全,可作为一种潜在的药物新载体。
     (2)研究了瓜环在溶液中与喜树碱的两种存在形式(闭环内酯形式和开环羧酸盐形式)的相互作用。结果七、八元瓜环可与喜树碱闭环内酯形式形成2∶1的主客体配合物并利用JOB法计算了总的稳定常数,而只观察到八元瓜环与喜树碱的开环羧酸盐形式形成1∶1的主客体配合物。
     (3)利用相溶解度法考察了主客体配合物的形成对难溶化合物喜树碱的增溶作用,结果表明七元瓜环可使喜树碱的溶解度提高近70倍,而八元瓜环可提高近8倍。
     (4)红外(FTIR)、X-ray粉末衍射(XRD)、差热(DTA)的分析证实CB[n](n=7,8)与CPT形成了主客体包合物,并结合~1H NMR技术提出了可能的包结模式,即CPT分子的喹啉环进入瓜环的空腔形成部分包结配合物。
     (5)包合物在不同pH介质中释放行为表明药物释放受介质的影响很大,在pH=2.0缓冲介质中,CB[n]-CPT固体包合物对CPT的溶出速度改善得最明显、其次是在纯水介质中,最差的是在pH=7.4缓冲介质中。
     (6)利用HPLC法考察了CB[n]-CPT固体包合物在模拟生理pH条件下对喜树碱内酯环的保护作用。结果表明瓜环包合物中的CPT在5h内有超过60%的保持其闭环形式,而单纯的CPT只有36%的比率,说明CB[n]对CPT的内酯环有一定的保护作用,可使其免受溶液的影响而转变成开环羧酸盐形式。(7)采用MTT法对CB[n]-CPT固态包合物进行了体外细胞毒活性测试,结果包合作用对喜树碱的抗癌活性影响不大。
     4.瓜环作为抗癌药物苯丁酸氮芥(Chlorambucil,CHB)载体的研究
     (1)利用荧光光谱法研究了在不同pH值条件下七、八元瓜环与苯丁酸氮芥的相互作用,并以β环糊精作对照。结果表明在酸性,弱酸性条件下,七、八元瓜环均与苯丁酸氮芥形成1∶1的包结配合物,而β环糊精还可在弱碱性条件下与苯丁酸氮芥形成1∶1的包结配合物。
     (2)三种载体与标示客体CHB的固体包合物经红外(FTIR)、差示扫描量热(DSC)、热重(TG)、~1H NMR的表征证实了固体包合物的形成;瓜环包合物的形成对CHB的热稳定性有所提高,但β-CD包合物对CHB的热稳定性没有改善作用。纯水介质中体外释放行为的研究表明包合作用能较好地改善苯丁酸氮芥的溶解度和溶出速度。
     (3)利用紫外光谱和~1H NMR技术研究了固体包合物与鸟苷的动力学反应,结果显示三种载体的包合作用都能使鸟苷与苯丁酸氮芥的反应速度降低2~3倍,这将可能导致降低苯丁酸氮芥的毒副作用。体外细胞毒活性测试表明包合作用对苯丁酸氮芥的细胞毒活性有一定的影响。
     5.七元瓜环作为5-氨基水杨酸(5-aminosalicylic acid,5-ASA)结肠给药载可行性考察
     (1)利用荧光光谱法和HPLC法考察了CB[7]和5-ASA在不同pH条件下的相互作用,结果表明在pH<6.0时,CB[7]与5-氨基水杨酸可形成1∶1的包合物,而在pH>6.0时未观察到两者之间有明显的相互作用。
     (2)热力学的研究表明包合反应的ΔG、ΔH、ΔS为负值,表明此种相互作用的主要驱动力是焓,疏水作用、范德华力和氢键等,包合反应是一个自发进行的过程。
     (3)结合人体胃,肠道的生理pH特征,利用~1H NMR技术进一步验证了CB[7]-5-ASA固体包合物在不同pH值的存在形式,得出当pH<6.0,5-ASA以包合物的形式存在,而当pH>6.0,5-ASA则以游离的药物分子形式存在的相同结论,说明CB[7]与5-ASA之间的相互作用依赖于体系的pH值。CB[7]有可能作为5-氨基水杨酸结肠给药的一种潜在载体。
     本论文还从雷公藤根皮95%乙醇提取物中分离、鉴定了17种化合物并首次建立了贵州产3种毛茛属植物石龙芮(Ranunculus sceleratus),毛茛(R.japonicus),禺毛茛(R.cantoniensis)的全草及不同部位中小麦黄素含量测定的HPLC方法和总黄酮含量测定的分光光度法。
Cucurbituril(CB),as a type of novel synthetic acceptor,has attracted considerable attentions of chemists.Studies in the field of their molecular recognition, supramolecular catalysis and molecular assembly have been widely carried out. However,the study for cucurbituril as the drug carrier is not sufficient,few papers have been reported.In present thesis,using Camptothecin,Chlorambucil and 5-aminosalicylic acid with different mechanism as model drugs,the potential utilization of CB[n]in the drug delivery were investigated.
     1.The recent research progress of cucurbituril including synthesis of cucurbituril and their derivatives,their molecular recognition,supramolecular catalysis,molecular assembly and application was reviewed.
     2.The synthesis and separation of CB[n](n=6,7,8) have been studied,and the interaction between cucurbituril and guests has been firstly studied by HPLC method. The results reveal that the new attempt has the characteristic of credibility and direct-viewing,and the conclusions from HPLC method are consistent with that of absorption spectroscopy and ~1H NMR technique.Interaction model of host and guest by using the value of k′_(G·Q) and apparent K is also its feature.
     3.Study on cucurbituril as anti-cancer drug camptothecin(CPT) carrier
     (1) The experiments on cucurbti[n]uril(n=6,7,8) of acute toxicity and vitro cytotoxicity provided the evidences to be safe as potential carriers.
     (2) The interaction between cucurbit(n)uril(n=7,8)(CB[n]) with two forms namely lactone modality and carboxylate modality of anticancer drug camptothecin (CPT) was studied.The results revealed that the combination between CB[n]with the lactone form of CPT was observed by electronic absorption spectroscopy, fluorescence spectroscopy and ~1H NMR technique in the acid solution(pH=2) and the total stability constantsβwere also obtained by Job plot with a host:guest ratio of 2:1;while in the phosphate buffer solution(pH=7.4),only CB[8]bound the carboxylate form of CPT in ratio 1:1,but no obvious interaction between CB[7]and the carboxylate form of CPT was observed.
     (3) The solubility of CPT was enhanced up to about 70 times and 8 times due to the formation of interaction complexes with CB[7]and CB[8]respectively by using phase solubility method.
     (4) Inclusion complexes of a slightly water soluble camptothecin(CPT) with cucurbit[n=7,8]uril prepared by co-evaporation method were characterized by Fourier transformation-infrared spectroscopy,differential thermal analysis,Power X-ray diffraction and ~1H NMR technique.The possible inclusion model was proposed that the quinoline ring of CPT was encapsulated into the cavity of the title CB[n]s.
     (5) The behavior of controllable drug release from CPT,CB[n]-CPT physical mixtures and inclusion complexes were investigated at buffer solutions with different pH values.The results revealed that the release rate for CB[n]-CPT inclusion complexes was the fastest at pH2.0,then in water,the least release rate was at pH7.4, which indicating that the rate of drug release can be effectively controlled by altering the pH values of the environment.
     (6) The potential of CB[7]or CB[8]for stabilizing lactone modality of CPT was also investigated by using HPLC method in simulated physiological environment (phosphate buffer solution,pH=7.4 at 37℃).The results revealed that more than 60%CPT in presence of CB[7]or CB[8]remained in its lactone form for 5 h compared to only 36%CPT in absence of CB[7]or CB[8],indicating that CB[n] have a certain ability to protect the lactone form of CPT from influence of solvent to change into the carboxylate form.
     (7) A preliminary in vitro assay by using MTT method revealed that the anticancer activity of CPT was not affected remarkably by the inclusion interaction.
     4.Study on cucurbituril as anti-cancer drug chlorambucil(CHB) carrier
     (1) The interaction between cucurbit[n]uril(n=7,8) with chlorambucil at different values of pH was researched by using fluorescence spectroscopy andβ-CD was as contrapose.Cucurbit[n]uril(n=7,8) could bind chlorambucil in a ratio 1:1 at pH 2.0,4.0,6.0 buffer solution,however 1:1 formation of complexes withβ-CD were obtained in acid solution and weak basic solution.
     (2) The formation and physicochemical characterization of solid inclusion complexes were investigated by Fourier transformation-infrared spectroscopy(FTIR), differential scanning calorimetry(DSC),thermal gravity(TG) and ~1H NMR experiments.The results showed that the thermal stability of CHB was increased by cucurbit[n]uril(n=7,8) inclusion complexes,while no obvious reform was observed forβ-CD complex.The in vitro dissolution studies indicated that the dissolution rates were remarkably increased in inclusion complexes,compared with the physical mixture and drug alone.
     (3) The dynamics of solid inclusion complexes toward guanosine was studied by UV spectroscopy and ~1H NMR technique.The results revealed that the formation of mixtures could slow the rate of reaction by at least 2~3-fold and result in reducing the unwanted side effects of chlorambucil.A preliminary in vitro assay using various tumor cell lines(HL-60,Hela,Siha) revealed no decrease or moderate decrease in activity by encapsulation of three carriees.
     5.Investigation of CB[7]as 5- aminosalicylic acid(5-ASA) for Colon-specific drug delivery
     (1) The interaction between cucurbit(7)uril(CB[7]) and 5-aminosalicylic acid (5-ASA) at different values of pH was studied by fluorescence spectroscopy and HPLC method.The results revealed that CB[7]bound 5-ASA with a ratio of 1:1 at pH<6.0,while no obvious interaction between CB[7]and 5-ASA was observed at pH>6.0.
     (2) The thermodynamic parameters for the CB[7]-5-ASA complex were determined in temperature-dependent binding studies.From the temperature dependence of equilibrium constants,ΔG、ΔH andΔS have been negative in sign, indicating an enthalpic driving force for complexation and an energetically favored reaction.
     (3) According to the gastric and intestinal pH values,the forms of complexes in different buffer solutions were further confirmed by ~1H NMR technique.The results showed that the inclusion complex of CB[7]-5-ASA was dominant in acidic aqueous solution,while free 5-ASA drug molecules were released at pH>6.0 due to the decomposition of the inclusion complex,indicating that the interaction between CB[7] with 5-ASA was dependent on the values of pH.CB[7]could be used as a potential 5-ASA colon-specific drug delivery.
     In present thesis,95%ethanolic extract from Tripterygium wilfordi was examined and 17 compounds were purified and identified.Moreover,the contents of tricin in total plant and in different plant parts from three kinds of Ranunculus plants namely R.sceleratus,R.japonicus and R.cantoniensis in Guizhou were first determined by HPLC method,and the contents of total flavones were also analyzed by UV-spectrophotometer.
引文
1.Pedersen C J.The Discovery of Crown Ethers.Angew.Chem.Int.Ed.Engl.,1988,27(8):1021-1027
    2.Cram D J.The Design of Molecular Host,Guest and Their Complexes.Angew.Chem.Int.Ed.Engl.,1988,27(8):1009-1020
    3.Lehn J M.Supramolecular chemistry-Scope and Perspective.Molecules,Supramolecules and Molecular Derives.Angew.Chem.Int.Ed.Engl.,1988,27(1):89-112
    4.Lehn J-M.超分子化学-概念和展望(沈兴海等译),北京大学出版社,2002
    5.Bradshaw J S,Izatt R M,Bordunov A V,et al.Comprehensive Supramolecular Chemistry(Ed:Gokel G W),Oxford:Pergamon,1996,1:35-95
    6.Szejtli J,Schmid G,Jicsinszky L,et al.Comprehensive Supramolecular Chemistry(Ed:Szejtli J,Osa T),Oxford:Pergamon,1996,3:1-626
    7.Pochini A,Ungaro R.Comprehensive Supramolecular Chemistry(Ed:Vogtle F).Oxford:Pergamon,1996,2:103-142
    8.韩宝航,刘育.葫芦脲:分子识别与组装.有机化学,2003,23(2):139-149
    9.Lee J W,Samal S,Selvapalam N.Cucurbituril Homologues and Derivatives:New Opportunities in Supremolecular Chemistry.Acc.Chem.Res.,2003,36(8):621-630
    10.Mock W L.Comprehensive Supramolecular Chemistry(Ed:Vogtle),Oxford:Pergamon,1996,2:477-493
    11.Freeman W A,Mock W L,Shih N-Y.Cucurbituril.J.Am.Chem.Soc.,1981,103(24):7367-7368
    12.Kim J,Jung I S,Kim S Y.New Cucurbituril Homologues:Syntheses,Isolation, Characterization and X-ray Crystal Structure of Cucurbit[n]uril(n=5,7,and 8).J.Am.Chem.Soc.,2000,122(3):540-541
    13.Day A I,Arold A P,Blanch R J.Cucurbiturils and method for synthesis.PCT Int.Appl.WO 200068232 A1 16 Nov 2000,112pp
    14.Day A I,Blanch R J,Coe A.The Effects of Alkali Metal Cations on Product Distributions in Cucurbit[n]uril Synthesis.J.Incl.Phenom.Macrocyclic Chem.,2002,43:247-250
    15.Isaaes L,Park S-K,Liu S,Ko Y H,Selvapalam N,Kim Y,Kim H,Zavalij P Y,Kim G-H,Lee H-S and Kim K.The Inverted Cucurbit[n]uril Family.J.Am.Chem.Soc.,2005,127(51):18000-18001
    16.Mock W L,Shih N-Y.Structure and selectivity in host-guest complexes ofcucurbituril.J.Org.Chem.,1986,51(23):4440-4446
    17.Kim J,Ahn Y,Park K M,Kim Y,Ko Y H,Oh D H,Kim K.Carbohydrate Wheels:Cucurbituril-based Carbohydrate clusters.Angew.Chem.Inter.Ed.,2007,46(39):7393-7395
    18.Lagona J,Mukhopadhyay P,Chakrabarti S,Isaacs L.The Cueurbit[n]uril Family.Angew.Chem.Int.Ed.,2005,44(31):4844-4870
    19.Kim S Y,Jung I S,Lee E.Macrocycles within Macrocycles:Cyclen,Cyclam and Their Transition Metal Complexes Encapsulated in Ccucubi[8]turil.Angew.Chem.Int.Ed.Engl.,2001,40(11):2119-2121
    20.Jeon W S,Moon K,Park S H,Chun H,Ko Y H,Lee J Y,Lee E S,Samal S,Selvapalam N,Rekharsky M V,Sindelar V,Sobransingh Y,Inoue Y,Kaifer A E,Kim K.Complexation of Ferrocene Derivatives by the Cucurbit[7]uril Host:A Comparative Study of the Cucurbituril and Cyciodextrin Host Families.J.Am.Chem.Soc.,2005(37),127:12984-12989
    21.Liu S,Zavalij P Y,Isaacs L.Cucurbit[10]uril.J.Am.Chem.Soc.,2005(48),127:16798-16801
    22.刘思敏.含苷脲结构单元大环化合物的合成及性质研究.博士论文.武汉大学,2004
    23.Mock W L,Irra T A,Wepsiec J P.Cucloadidition Induced by Cucurbituril.A Case of Pauling Principle Catalysis.J.Org.Chem.,1983,48(20):3619-3620
    24.Mock W L,Irra T A,Wepsiec J P,Catalysis by Cucurbituril.The Significance of Bound-Substrate Destabilization for Induced Triazole Formation.J.Org.Chem.,1989,54(22):5302-5308
    25.Tuncel D,Steinke J H G.Catalytically self-threading polyrotaxanes.Chem.Commu.,1999,(16):1509-1510
    26.Krasia T C,Steinke J H G.Formation of oligotriazoles catalysed by cucurbituril.Chem.Commun.,2002,(1):22-23
    27.Jon S Y,Ko Y H,Park S H.A facial,stereoselective[2+2]photoreaction mediated by cucurbit[8]uril.Chem.Commun.,2001,(19):1938-1939
    28.Pattabiraman M,Natarajan A,Kaliappan R,Mague J T,Ramamurthy V.Template directed photodimerization of trans-1,2-bis(n-pyridyl)ethylenes and stibazoles in water.Chem.Commun.,2005,(36):4542-4543
    29.Jun S I,Lee J W,Sakamoto S.Rotaxane-based Molecular Switch with Fluorescence Signaling.Tetrahedron Lett.,2000,41:471-475
    30.Lee J W,Kim Kyungpil,Kim Kimoon.A Kinetically Controlled Molecular Switch Based on Bistable[2]-Rotaxane.Chem.Commun.,2001,(11):1042-1043
    31.Choi S,Park S H,Ziganshina AY.A Stable cis-stilbene Derivative Encapsulated in Cucurbit[7]uril.Chem.Commun.,2003,(17):2176-2177
    32.Jeon W S,Kim H-J,Lee C.Control of the Stoichiometry in Host-guest Complexation by Redox Chemistry of Guests:Inclusion of Methyl-viologen in Cucurbit[8]uril.Chem.Commun.,2002,(17):1828-1829
    33.Jeon W S,Ziganshina A Y,Lee J W.A[2]Pseudorotaxane-Based Molecular Machine:Reversible Formation of a Molecular Loop Driven by Electrochemical and Photochemical Stimuli.Angew.Chem.Int.Ed.,2003,42(34):4097-4100
    34.Kim H-J,Heo J,Jeon W S.Selective Inclusion of a Hetero-Guest pair in a Molecular Host:Formation of Stable Charge-Transfer Complexes in Cucurbit[8]udl.Angew.Chem.Int.Ed.,2001,40(18):1526-1529
    35. Lee J W, Kim K, Choi S-W. Unprecedented Host-induced Intramolecular Charged-transfer Complex Formation. Chem. Commun., 2002,(22):2692-2693
    
    36. Park K-M, Whang D, Lee E. Transition Metal Ion Directed Supramolecular Assembly of One- and Two-Dimensional Polyrotaxanes Incorporating Cucurbituril. Chem. Eur. J.,2002,8:498-508
    
    37. Lee E, Heo J, Kim K. A Three-Dimensional Polyrotaxane Network. Angew. Chem. Int. Ed.,2000,39(15): 2699-2701
    
    38. Park K-M, Kim S-Y, Heo J. Designed Self-Assembly of Molecular Necklaces. J. Am. Chem.Soc., 2002,124(10): 2140-2147
    
    39. Kim K. Mechanically Interlocked Structures Incorporating Cucurbituril. Chem. Soc. Rev.,2002,31(1):96-107
    
    40. Ko Y H, Kim K, Kang J-K. Designed Self-Assembly of Molecular Necklaces Using Host-Stabilized Charge-Transfer Interactions. J. Am. Chem. Soc, 2004,126(7): 1932-1933
    
    41. Tuncel D, Steinke J H G Catalytic Self-Threading: A New Route for the Synthesis of Polyrotaxanes. Macromolecules., 2004,37:288-302
    
    42. Tunch D, Steinke J H G The Synthesis of [2],[3] and [4] Rotaxanes and Semirotaxanes.Chem. Commun., 2002,(5):496~497
    
    43. He X, Li G, Chen H. A New Cucurbituril-based Metallo-rotaxane. Inorg. Chem. Commun.,2002, (6):633-636
    
    44. Jansen K, Buschmann H-J, Wego A. Cucurbit[5]uril, Decamethylcucurbit[5]uril and Curcurbit[6]uril. Synthesis .Solubility and Amine Complex Formation. J. Incl. Phenom.Macrocyclic Chem., 2001,39:357-363
    
    45. Wego A, Jansen K, Buschmann H-J. Synthesis of Cucurbit[5]uril-Spermine-[2]Rotaxanes. J. Incl. Phenom. Macrocycl. Chem. 2002,43:201-205
    
    46. Lee J W, Ko Y H, Park S H. Novel Pseudorotaxane-Terminated Dendrimers: Supramolecular Modification of Dedrimer Periphery. Angew. Chem. Int. Ed. Engl., 2001,40(4):746-749
    
    47. One W, Kaifer A E. Molecular Encapsulation by Cucurbit[7]uril of the Apical 4,4'-Bipyridinium Residue in the Newkome-Type Denreimers.Angew.Chem.lnt.Ed.,2003,42(19):2164-2167
    48.Choi S,Lee J W,Ko Y H,Kim K.Pseudopolyrotaxanes Made to Order:Cucurbituril Threaded on Polyvioiogen.Macromolecules.,2002,35:3526-3531
    49.Isobe H,Tomita N,Lee J W.Termary Complexes Between DNA,Polyamine and Cucurbituril.Angew.Chem.Int.Ed.,2000,39(23):4257-4260
    50.Lim Y-B,Kim T,Lee J W.Self-Assembled Ternary Complex of Cationic Dendrimer,Cucurbituril and DNA:Noncovalent Strategy in Developing Gene Delivery Carrier.Bioconjugate Chem.,2002,13:1181-1185
    51.Kim K,Jeon W S,Kang J-K.A Pseudorotaxane on Gold:Formation of Self-Assembled Monolayers,Reversible Dethreading and Rethreading of the Ring and Ion-Gating Behavior.Angew.Chem.Int.Ed.,2003,42(20):2293-2296
    52.Kim K,Kim D,Lee J W,Ko Y H,Kim K.Growth of Poly(pseudorotaxane) on Gold using Host-stabilized Charge-transfer Interaction.Chem.Commun.,2004,(7):848-849
    53.Jeon Y J,Kim S-Y,Ko Y H,Sakamoto S,Yamaguchi K,Kim K.Novel molecular drug carrier:encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug.Org.Biomol.Chem.,2005,3,2122-2125
    54.Wheate N J,Day A I,Blanch R J,Arnold A P,Culliname C,Collins J G.Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment.Chem.Commun.,2004,(12):1424-1426
    55.Mohanty J,Nau W M..Ultrastable Rhodamine with Cucurbituril.Angew.Chem.Int.Ed.2005,44(24):3750-3754
    56.严琨,刘思敏,吴晓军,吴成泰.大环化学和超分子化学研究进展.西北大学出版社,2002,300-301
    57.严琨.葫环联脲金属加合物和包合物的初步研究.硕士论文.武汉大学,2003
    58.侯昭升.准(聚)轮烷的合成及性质研究-葫芦脲[6]与(聚)阳离子电解质的超分子组装. 博士论文,山东大学,2005
    59.Ong W,Kaifer M G,Kaifer A E.Curcubit[7]uril:A Very Effective Host for Viologens and Their Cation Radicals.Org.Lett.,2002,4(10):1791-1794
    60.Ong W,Kaifer A E.Salt Effects on the Apparent Stability of the Cucurbit[7]uril-Methyl Viologen Inclusion Complex.J.Org.Chem.,2004,69(4):1383-1385
    61.Hwang I,Jeon W S,Kim H-J,Kim D,Kim H,Selvapalam N,Fujita N,Shikai S,Kim K.Cucurbit[7]uril:A Simple Macrocyclic,Ph-Triggered Hydrogelator Exhibiting Guest-Induced Stimuli-Responsive Behavior.Angew.Chem.Int.Ed.2006,46(1-2):210-213
    62.Flinn A,Hough G C,Stoddart J F,Williams D J.Decamethylcucurbit[5]uril.Angew.Chem.Int.Ed.Engl.,1992,31(11),1475-1477
    63.Sammal S,Sinha M K,Keinan E.Facile Purification of Rare Cucurbiturils by Affinity Chromatography.Org.Lett.,2004,6(8):1225-1228
    64.Zhao J,Kim H-J,Oh J,Kim S-Y,Lee J W,Sakamoto S,Yamaguchi K,Kim K.Cucurbit[n]uril Derivatives Soluble in Water and Organic Solvents.Angew.Chem.Int.Ed.,2001,40(22):4233-4235
    65.Isobe H,Sato S,Nakamura E.Synthesis of Disubstituted Cucurbit[6]uril and Its Rotaxane Derivative.Org.Lett.,2002,4(8):1287-1289
    66.赵云洁,薛赛凤,祝黔江,陶朱,张建新,魏赞斌,龙腊生,胡茂林,肖洪平,Day AI.对称四取代六元瓜环的和成及其2,2-联吡啶主客体化合物.科学通报.,2004,49(11):1046-1051
    67.Kim K,Lee J W,Oh D H,Ju J.PCT,W0051087777,2005
    68.Burnett C A,Witt D,Fettinger J C.Acyclic Congener of Cucurbituril:Synthesis and Recognition Properties.J.Org.Chem.,2003,68(16):6184-6191
    69.Wu A,Chakraborty A,Witt D.Methylene-Bridged Glycoluril Dimers:Synthesis Methods.J.Org.Chem.,2002,67(16):5817-5830
    70.Chakraborty A,Wu A,Witt D.Diastereoselective Formation of Glycoluril Dimers:Isomerization Mechanism and Implications for Cucurbit[n]uril Synthesis.J.Am.Chem.Soc., 2002,124(28):8297-8306
    
    71. Lagona J, Fettinger J C, Isaacs L. Cucurbit[n]uril Analogues. Org. Lett.,2003,5(20):3745-3747
    
    72. Jon SY , Selvapalam N, Oh D H. Facial Synthesis of Cucurbit[n]uril Deribatives via Direct Functionalization : Expanding Utilization of Cucurbit[n]uril. J. Am. Chem. Soc.,2003,125(34):10186-10187
    
    73. Jeon Y J, Kim H, Jon S, Selvapalam N, Oh D H, Seo I, Park C-S, Jung S R, Koh D-S, Kim K.Artificial Ion Channel Formed by Cucurbit[n]uril Derivatives with a Carbonyl Group Fringed Portal Reminiscent of the Selectivity Filter of K~+ Channels. J. Am. Chem. Soc.2004,126(49): 15944-15945
    
    74. Lee H-K, Park K M, Jeon Y J, Kim D, Oh D H, Kim H S, Park C K, Kim K. Vesicle Formed by Amphiphilc Cucurbit[6]uril; Versatile, Noncovalent Modification of the Vesicle Surface,and Multivalent Binding of Sugar-Decorated Vesicles to Lectin. J. Am. Chem. Soc.,2005,127(14),5006-5007
    
    75. Kim K, Selvapalam N, Ko Y H, Park K M, Kim D, Kim J. Functionalized cucurbiturils and their applications. Chem. Soc. Rev., 2007,36:267-279
    
    76. Jon S Y, Selvapalam N, Oh D H, Kang J-K, Kim S-Y, Jeon Y J, Lee J W, Kim K. Facile Synthesis of Cucurbit[n]uril Derivatives via Direct Functionalization: Expanding Utilization of Cucurbit[n]uril. J. Am. Chem. Soc., 2003,125(34):10186-10187
    
    77. Liu S M, Xu L, Wu C T, Feng Y Q. Preparation and characterization of perhydroxyl-cucurbit[6]uril bonded silica stationary phase for hydrophilic-interaction chromatography. Talanta., 2004,64(4),929~934
    
    78. Day A I, Arnold A P, Blanch R J. Controlling Factors in the Synthesis of Cucurbituril and Its Homologues. J. Org. Chem., 2001,66(24):8094-8100
    
    79. Day A I, Blanch R J, Arnold A P. A Cucurbituril-based Gyroscaneaa: A New supramolecular Form. Angew. Chew. Int. Ed., 2002,41(2):275-277
    80.申永强,薛赛凤,赵云洁.笼状化合物-瓜环与六次甲基四胺自组装结构的NMR研究.科学通报.,2003,48(22):2333-2337
    81.Kim J,Jung I S,Kim S Y.New Cucurbituril Homologues:Synthesis,Isolation,Characterization and X-ray Crystal Sttuctures of Cucurbit[n]uril(n=5,7,and 8).J.Am.Chem.Soc.,2000,122(3):540-541
    82.Blanch R J,Sleeman A J,White T J.Cucurbit[7]udl and o-Carborane Self-Assemble to Form a Molecular Ball Bearing.Nano Lett.,2002,2:147-149
    83.Liu J-X,Tao Z,Xue S-F,Zhu Q-J,Zhang J-X.Investigation of Host-guest Compounds of Cueurbit[n=5~8]uril with Some Piperazine Derivatives.Wuji Huaxue Xuebao.,2004,20(2):139-146
    84.Schill G C,Rotaxanes and Knots.New York,Academic Press,1971
    85.Jeon Y J,Bharadwaj P K,Choi S W.Supramolecular Amphiphiles:Spontaneoues Formation of Vesicles Triggered by Formation of a Charge-Transfer Complex in a Host.Angew.Chem.Int.Ed.,2002,41(23):4474-4476
    86.Kellersberger K A,Anderson J D,Ward S M.Encapsulation of N_2,O_2,Methanol,or Acetonitrile by Decamethylcucurbit[5]uril(NH_4~+)_2 Complexes in the Gas Phase:Influence of the Guest on "Lid" Tightness.J.Am.Chem.Soc.,2003,123(37):11316-11317
    87.Miyahara Y,Abe K,Inazu T."Molecular" Molecular Sieves:Lid-Free Decamethylcucurbit[5]uril Absorbs and Desorbs Gases Selectively.Angew.Chem.Int.Ed.,2002,41(16):3020-3023
    88.Kim D,Kim E,Kim J,Park K M,Back K,Jung M,Ko Y H,Sung W,Kim H-S,Suh H,Park C G,Na O-S,Lee D-k,Kim K.Direct Synthesis of Polymer Nanocapsules with a Noncovalently Tailorable Surface.Angew.Chem.Inter.Ed.,2007,46(19):3471-3474
    1. Freeman W A, Mock W L, Shih N-Y. Cucurbituril. J. Am. Chem. Soc.,1981,103(24):7367-7368
    
    2. Mock W L. Comprehensive Supramolecular Chemistry(Ed: Vogtle), Oxford:Pergamon,1996,2:477-493
    
    3. Kim J, Jung I S, Kim S Y. New Cucurbituril Homologues: Syntheses, Isolation,Characterization and X-ray Crystal Structure of Cucurbit[n]uril(n=5,7,and 8). J. Am. Chem.Soc.,2000,122(3):540-541
    
    4. Day A I, Arold A P, Blanch R J. Cucurbiturils and method for synthesis. PCT Int. Appl. WO 200068232 Al 16 Nov 2000,112pp
    
    5. Gerasko O A,Samsonenko D G,Fedin V P. Russ. Chem. Rev., 2002,71,741
    
    6. Wheate N J. Aust. J. Chem., 2006,59,354.
    
    7. Ong W, Kaifer M G, Kaifer A E. Cucurbit[7]uril: A very effective host for viologens and their cation radicals. Org. Lett. 2002,4(10), 1791-1794
    
    8. Mohanty J, Bhasikuttan A C, Nau W M, Pal H . Host-Guest Complexation of Neutral Red with Macrocyclic Host Molecules : Contrasting pK_a Shifts and Binding Affinities for Cucurbit[7]uril and β-Cyclodextrin. J. Phys. Chem. B., 2006,110(10), 5132-5138.
    
    9. Lagona J, Wugner B D, Isaccs L. Molecular-Recognition Properties of a Water -Soluble Cucurbit[6]urilAnalogur.J. Org. Chem., 2006,71(3), 1181-1190.
    
    10. Mori T, Ko Y H, Kim K, Inoue Y. Circular Dichrosim of Intra-and Intermolecular Charge-Transfer Complexes . Enhancement of Anisotropy Factors by Dimer Formation and by Confinement. J. Org. Chem., 2006, 71(8), 3232-3247.
    
    11. Marquez C, Pischel U W, Nau W M . Selective Fluorescence Quenching of 2,3-Diazabicyclo[2.2.2]oct-2-ene by Nucleotides.Org. Lett. 2003,5(21), 3911-3914.
    
    12. Saleh N, Al-Rawashdeh N A F. Fluorescence Enhancement of Carbendazim Funjicide in Cucurbit[6]uril.J. Fluoresc. 2006,16,487-493
    13.Jeon W S,Moon K,Park S Y,Chun H,Ko Y H,Lee J Y,Lee E S,Samal S,Selvaplam N,Rekharsky M V,Sindelar V,Sobransigh D,Inoue Y,Kaifer A E,Kim K.Complexation of Ferrocene Derivatives by the Cucurbit[7]uril Host:A Comparative Study of the Cucurbituril and Cyclodextrin Host Families.J.Am.Chem.Soc.,2005,127(37),12984-12989
    14.马培华,董俊,向双春,薛赛凤,祝黔江,陶朱,张坚信,周欣.双探针课题于瓜环主客体配合物的研究.中国科学B辑化学.,2004,34(2),133-142
    15.Tao Z,Zhang G Y,Luo X Q,Xue S F,Zhu Q J,Wei Z B,Long L S.C-H…Π interactions in the [Co(N-(2-aminomethylpyridyl)ethylenedianine)(2-aminomethylpyridine)Cl]~(2+)system:syntheses,2DNMR,X-ray structures and energy minimizations.Inorg.Chim.Acta 2004,357(4),953-964
    16.Mitkina T V,Sokolov M N,Naumov D Y,Kuratieva N V,Gersko O A,Fedin V P.Jorgensen Complex within a Molecular Container:Selective Encapsulation of trans-[Co(en)_2Cl_2]~+ into Cucurbit[8]uril and Influence of Inclusion on Guest's Properties.Inorg.Chem.2006,45(17),6950-6955
    17.Heitmann L M,Taylar A B,Hart P J.Sequence-Specific Recognition and Cooperative Dimedzation of N-Terminal Aromatic Poptides in Aqueous Solution by a Synthetic Host.J.Am.Chem.Soc.2006,128(38),12574-12581
    18.Osaka I,Kondou M,Selvapalam N,Samal S,Kim K,Rekharsky M V,Inoue Y.J.Mass Spectrom.2006,41,202
    19.Mainicheva E A,Gerasko O A,Sheludyalova L A,Naumov D Y,Naumova M I.Russ.Chem.Bull.2006,55,267
    20.Buschmann H J,Zielesny A,Sxhollrmeyer E.J.Inclusion Phenonom.Macrocyclic Chem.2006,54,181
    21.Tihamer H,Yoshio O.J.Liq.Chromatogr.Relat.Technol.1993,16,843
    22.Seidel V,Poglits E.Simultaneous determination of ochratoxin A and zearalenone in maize by reversed-phase high-performance liquid chromatography with fluorescence detectio. J.Chromatogr.1993,635(2),227-235
    23.Freeman W A,Mock W L,Shin N Y.Cucurbituril.J.Am.Chem.Soc.,1981,103(24),7367-7368
    24.Uekanma K,Hirayama F,Nasu S.Chem.Pharm.Bull.,1978,26,3477
    25.Horvth C,Melander W,Melander J.Enzymatic determination of phosphate in conjunction with high-performance liquid chromatography.J.Chromatogr.,1983,262,265-276
    26.Sybilska D,Lipkowski J,Wojcikoxaki J.α-Cyclodextrin as selective agent for the separationof o-,m- and p-nitrobanzoic acids by reversed -phase high-performance liquid chromatography.J.Chromatogr.1982,253,95-100
    27.曾启华,王娅,祝黔江,薛赛凤,牟兰,陶朱.七、八元瓜环对萘二铵异构体相互作用的考察.化学学报.2006,64(10),1085-1092
    1.Wall M E,Wani M C,Cook C E.Plant Antitumor Agents.I.The Isolation and Structure of Camptothecin,a Novel Alkaloidal Leukemia and Tumor Inhibitor from Camptotheca acuminatal J.Am.Chem.Soc.,1966,88,3888
    2.Whitacre C M,Zborowska E,Willson J K.Clin.Cancer.,Res.1999,5,665.
    3.Fletcher T M,Sun D,Salazar M.Effect of DNA Secondary Structure on Human Telomerase Activity.Biochemistry.,1998,37(16),5536-5541.
    4.Panayotis P,Zhiyong H,Devasis C.Drug Future.1999,24,1311.
    5.Daoud S S,Fetouh M I,Giovaneua B C.Anti-cancer.Drug.1995,6,83.
    6.Greenwald R B,Pendri A,Conover C,Gilbert C,Yang R,Xia J.Drug Delivery System.2.Camptothecin 20-o-Poly(enylene glycol) Ester Transport Forms.J.Med.Chem.1996,39(10),1938-1940
    7.Mallery S R,ShenderovaA,Pei P.Anticaneer.Res.2001,21,1713.
    8.Alston D R,Lilley T H,Stoddart J F.The binding of cyclobutane-l,l-dicarboxylatodiamineplatinum(Ⅱ) by α-cyclodextrin in aqueous solution.J.Chem.Soc.Chem.Commun.,1985,p.1600-1602
    9.Alston D R,Stawin A M,Stoddart J F,Williams D J.The X-ray crystal structure of a 1:1adduct between α-cyclodextrin and eyclobutane-l,l-diearboxylatodiammineplationum(Ⅱ),J.Chem.Soc.Chem.Commun.,1985,p.1602-1604
    10.Wheate N J,Buck D B,Day A I,Collins J G.Cucurbit[n]uril binding of platinum anticancer complexes.Dalton T.,2006,P 451-458.
    11.Elemans JA,Rowan A.W,Nolte A.E,R.J.M.Self-assembled Architectures from Glycoluril.Ind.Eng.Chem.Res.,2000,39,3419-3428.
    12.Cintas P.Cucurbituril:Supramolecular perspectives for an old ligand.J.Incl.Phenom.,Molec.Reco.Chem.,1994,17,205-220.
    13.Uekama K,Hirayama F,Irie T.Cyclodextrin Drug Carder Systems.,Chem.Rev.1998,982045-2076
    14.Jeon Y J,Kim S Y,Ko Y H,Sakamoto S,Yamagchi K,Kim K.Novel molecular drug carder:encapsulation of oxaliplatin in cucurbit[7]uril and its effects on stability and reactivity of the drug.Org.Biomol.Chem.,2005,3,2122-2125.
    15.Wheate N J,Day A I,Blanch R J,Arnold A P.Cullinance C,Collins J G.Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment.Chem.Commun.,2004,p.1424-1425.
    16.Jun S W,Kim M-S,Kim J-S,Park H J,Lee S,Woo J-S,Hwang,S-J.Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodrxtrin inclusion complex using supercritical antisolvent(ASA) process.European Journal of Pharmaceutics and Biopharmaceutics.,2007,66,413-421
    17.Hertzberg R P,Caranfa M J,Holden K G,Jakas D R,Gallagher G,Mattern M.R,Mong S-M,Bartus J.O'L,Johnson R K,Kingsbury W D,Modification of the Hydroxy Lactone Ring of Camptotheein:Inhibition of Mammalian Topoisomerase Ⅰ and Biological Activity.J.Med.Chem.,1959,32,715-720
    18.李玉艳,李志裕,王化,尤启冬.拓扑异构酶与抗癌药.药学进展.,1996,20(3),138-142
    19.Kingsburg W D,Boehm J C,Jakas D R.Med.Chem.,1991,34,98.
    20.徐春艳,黄明智,薛传薪.10-羟基喜书碱的合成计光谱表征.光谱与光谱分析.2005,25(11),1772-1774
    21.Wagner D,Stojanovie N,Day A.I,Blanch R J.Host Properties of Cucurbit[7]uril:Fluorescence Enhancement of Anilinonaphthalene Sulfonates.J.Phys.Chem.B.,2003,107,10741-10745.
    22.Saleh N,Al-Rawashdeh N A F.Fluorescence Enhancement of Carbendazim Funjicide in Cucurbit[6]uril.J.Fluorese.,2006,16,487-493
    23.冯光柱,卢奎,李和平.紫外-可见光谱研究β-环糊精与β-胡萝卜素的包结作用.光谱与光谱分析.,2004,24(9),1099-1102
    24.王辉,梅明华,解宏智,防喻,张晓宏,吴世康.二甲氨基查耳酮修饰的β-环糊精在不同溶剂中的光物理行为.物理化学学报.2002,18(6),495-499
    25.Higuehi T,Connors K A.Adv.Anal.Chem.Instrum.,1965,4,117.
    26.Szejeli J,Hungary C B.Compr.Supermol.Chem.,1996,3,196.
    27.Shen Y-L,Ying W,Yang S-H,Wu L-M.Determations of the inclusion complex between gossypol and β-cyclodextrin.Spectroehim.Aeta A.2006,65,169-172
    28.Liu L-X,Zhu S-Y.A study on the supramolecular structure of inclusion complex of β-cyclodextrin with prazosin hydrochloride.Carbohyd.Polym.,2007,68,472-476
    29.Giordano F,Novak C,Moyano J R.Thermal analysis of cyclodextrins and their inclusion compounds.Therm.Acta.,2001,380,123-151
    30.Kingsbury W D,Boehm J C,Jakas D R,Holden K G,Hecht S M,Gallagher G,Caranfa M J,McCabe F L,Faucette L F,Johnson R K,Hertzberg R P.Synthesis of Water-Soluble (Aminoalkyl)camptothecin Analogues:Inhibition of Topoisomerase Ⅰ and Antitumor Activity.J.Med.Chem.,1991,34,98-107.
    31.Buschmann H-J,Cleve E,Jansen E,Wego A,Schollmeyer E.The determination of complex stabilities between different cyclodextrins and dibenzo-18-crown-6,cucurbit[6]uril,decamethylcucurbit[5]uril,cucurbit[5]uril,p-tert-butylcalix[4]arene and p-tert-butylcalix[6]arene in aqueous solutions using a spectrophotometric method.Mat.Sci.Eng C.,2001,14,35-39
    32.曾启华,王娅,祝黔江,薛赛凤,牟兰,陶朱.七、八元瓜环对萘二铵异构体相互作用的考察.化学学报.2006,64(10),1085-1092
    33.Sindelar V,Silvi S,Kaifer A E.Switching a molecular shuttle on and off:simple,Ph-controlled peseudorotaxanes based on cucurbit[7].Chem.Commun.2006,pp 2185-2187
    34.Lerchen H-G,Baumgarten J,Bruch K V D,Lehmann T E,Sperzel M,Kempka G,Fiebig H-H.Design and Optimization of 20-O-Linked Camptothecin Glycoconjugates as Anticancer Agents.J.Med.Chem.,2001,44,4186-4195
    35.Buschmann H-J,Schollmeyer E,Mutihac L.The formation of amino acid and dipetide complexes with α-cyclodextrin and cucurbit[6]uril in aqueous solution studied by titration calorimetry.Thermochim.Acta.,2003,399(1/2),203-209
    36.Rajendrakumar K.,Madhusudan S.,Pralhad T.Cyclodextrin complexes of valdecoxib:properties and anti-inflammatory activity in rat.Eur.J.Pharm.Biopharm.2005,60,39-46
    1.尤启冬主编.药物化学.化学工业出版社,北京,2003,p510
    2.Ehrsson H,Eksborg S,Wallin I,Nilsson S.Degration of chiorambucil in aqueous solution.J.Pharm.Sci.,1980,69(9),1091-1093
    3.Owen W R,Stewart P J.Kinetic and mechanism of chlorambucil hydrolysis.J.Pharm.Sci.,1979,68(8),992-995
    4.Liu yu,Kang Shizhao.Molecular recognition of supramolecular systems(ⅹⅹⅹⅤ)-Synthesis of novel β-cyclodextrin derivative bearing pyddinio group and its chiral discrimination of amino acids.SCINENCE IN CHINA(series B).,2001,44(3),260-267
    5.Wagner B D,Stojanovic N,Day A I,Blanch R J.Host Properties of Cucurbit[7]uril:Fluorescence Enhancement of Anilinonaphthalene Sulfonates.J.Phys.Chem.B.,2003,107,10741-10745
    6. Ong W, Gomez-Kaifer M, Kaifer A E. A very effective host for viologens and their cation radicals.Org. Lett. 2002,4(10), 1791-1794
    
    7. Buschmann H-J, Schollmeyer E, Mutihac L. The formation of amino acid and dipetide complexes with a-cyclodextrin and cucurbit[6]uril in aqueous solution studied by titration calorimetry. Thermochim. Acta., 2003,399(1/2), 203-209
    
    8. Jeon W S, Moon K, Park S H, Chun H, Ko Y H, Lee J Y, Lee E S, Samal S, Selvapalam N,Rekharsky M V, Sindelar V, Kim K. Complexation of Ferrocene Derivatives by the Cucurbit[7]uril Host: A Comparative Study of the Cucurbituril and Cyclodextrin Host Families. J. Am. Chem. Soc.,2005, 127(37), 12984-12989
    
    9. Kim K, Selvapalam N, Ko Y H, Park K M, Kim D, Kim J. Functionalized cucurbiturils and their applications. Chem. Soc. Rev. 2007,36,267-279
    
    10. Clas S, Dalton C R, Hancock B C. Differential scanning calorimetry:application in drug development. Res. Focus., 1999,2,311-320
    
    11. Ruiz M A, Reyes I, Parera A, Gallardo V. Determination of stability of omeprazole by means of differential scanning calorimetry. J. Therm. Cal., 1998,51,29-35
    
    12. Pinto L M A, Fraceto L F, Santana M H A, Perrinhez S O, Paula E D. Physico-chemical charactrization of benzocaine-P-cyclodextin inclusion complexes. J. Pharm. Biom. Anal. 2005.39,956-963
    
    13. Ning L, Zhang Y H, Wu Y N, Xiong X L, Zhang Y H. Inclusion complex of trimethoprim with P-cyclodextrin . J.Pharm. Biom. Anal., 2005,39,824-829
    
    14. Yap K L, Liu X, Thenmozhiyal J C, Ho P C. Characterization of the 13-cis-reteinoic acid/cyclodextrin inclusion complexes by phase solubility, photostability ,physiochemical and computational analysis. Eur. J. Pharm. Sci., 2005,25,49-56
    
    15. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. The Cucurbit[n]uril Family. Angew.Chem. Int. Ed., 2005,44,4844-4870
    
    16. Liu L X, Zhu S Y. Preparation and characterization of inclusion complexes of prazosin hydrochloride with P-cyclodextrin and hydroxypropyl-β-cyclodextrin. J. Pharm. Biom. Anal.. 2006,40,122-127
    17.Wheate N J,Day A I,Blanch R J,Arnold A P,Cullinane C,Collons J G.Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment.Chem.Commun.,2004,1424-1425
    18.Figueiras A,Carvalho R A,Ribeiro L,Torres-Labandeira J J,Veiga F J B.Solid-state characterization and dissolution profiles of the inclusion complexes of omeprazole with native and chemically modified β-cyclodextrin.Eurpopean Joumal of Pharmaceutics and Biopharmceutics.,2007,67,531-539
    19.Jun S W J,Kim M S,Kim J S,Park H J,Sibeum L,Woo J S,Hwang S J.Preparation and characterization of simvastatin/hydroxypropyl-β-cyclodextrin inclusion complex using supercritical antisolvent(SAA) process.European Journal of Pharmaceutics and Biopharmaceutics.,2007,66,413-421
    20.Lee J W,Samal S,SelvapalamN,Kim H-J,Kim K.Cucurbitufil Homologues and Derivatives:New Opportunities in Supramolecular Chemistry.Acc.Chem.Res.2003,36,621-630
    21.杨藻宸主编.药理学总论.人民卫生出版社出版,1986,pp111
    22.丛航,扬帆,陶朱,张建新.二氯化二(N-甲基-N'-苄基-乙二胺)(二水)合镍的合成及其与瓜环相互作用的研究.无机化学学报.,2005,21(3),349-356
    1.周宇,蒋雪涛,周建标,邹豪.5-氨基水杨酸肠溶定时释放片的制备和溶出度研究.中国药学杂志.,2001,36(10),673-677
    2.徐彦,齐宪荣.5-氨基水杨酸结肠定位给药Ph与时间同时控释小丸的制备与体外释放.中国新药杂志.,2004,13(2),129-133
    3.Dhaneshwar S S,Galrola N,Kandpal M,Bhatt L,Vadnerkar G,Kadam S S.Synthesis kinetic studies and pharmacological evaluation of mutual azo prodrug of 5-aminoslicyclic acid with ophenylalanine for colon specfic drug delivery in inflammatory bowel disease.Bioorg.Med.Chem.Lett.,2007,17(7),1897-1902
    4.French D L,Mauger J W.Evaluation of the Physicochemical Properties and Dissolution Characteristics of Mesalamine:Relevance to Controlled Intestinal Drug Delivery.Pharm.Res.,1993, 10(9),1285-1290
    5.Laursen L S,Stocholm M,Bukhave K.Gut.,1990,31,1273
    6.邱雪兰,杨明,谢兴亮.口服结肠靶向给药系统中的辅料.中国药业.,2005,14(1),21-22
    7.Buschmann H-J,Cleve E,Jansen K,Wego A,Schollmeyer E.The determination of complex stabilities between different cyclodextrins and dibenzo-18-crown-6,cucurbit[6]uril,decamethyleucurbit[5]uril,cucurbit[5]uril,p-tert-butylcalix[4]areneand p-tert-butylcalix[6]arene in aqueous solutions using a spectrophotometric method,Mat.Sci.EngC.,2001,14,35-39
    8.Freeman W A,Mock W L,Shih N Y.Cucurbituril,J.Am.Chem.Soc.,1981,103,7367-7368
    9.Kim J,Jung I S,Kim S Y,Lee E,Kang J K,Sakamoto S,Yamaguchi K,Kim K.New Cueurbituril Homologues:Syntheses,Isolation,Characterization,and X-ray Crystal Structures of Cucurbit[n]uril(n=5,7,and 8),J.Am.Chem.Sot.,2000,122,540-541
    10.Day A I,Blanek R J,Arnold A P,Lorenzo S,Lewis G R,Dance I.A Cucurbituril-Based Gyroscane:A New Supramolecular Form,Angew.Chem.Int.Ed.,2002,41,275-277
    11.Zhao J,Kim H J,Oh J,Kim S Y,Lee J,Sakamoto W S,Yamaguchi K,Kim K.Cucurbit[n]uril Derivatives Soluble in Water and Organic Solvents.Angew.Chem.Int.Ed.,2001,40,4233-4235.
    12.曾启华,王娅,祝黔江,薛赛凤,牟兰,陶朱.七、八元瓜环对萘二胺异构体相互作用的考察.化学学报,2006,64(10),1085-1092
    13.Sindelar V,Silvi S,Kaifer A E.Switching a molecular shuttle on and off:simple,Ph-controlled peseudorotaxanes based on cucurbit[7].Chem.Commun.2006,pp 2185-2187
    14.Wagner B D,Stojanovic N,Day A I,Blanch R J.Host Properties of Cucurbit[7]uril:Fluorescence Enhancement of Anilinonaphthalene Sulfonates.J.Phys.Chem.B.,2003,107,10741-10745.
    15.Ong W,Gomez-Kaifer M,Kaifer A E.A very effective host for viologens and their cation radicals.Org.Lett.2002,4(10),1791
    16.Saleh N,Al-Rawashdeh N A F.Fluorescence Enhancement of Carbendazim Funjicide in Cucurbit[6]uril.J.Fluoresc.,2006,16,487-493
    17.闫金红,张翠萍,杨频.羟丙基-β-环湖精与丹参酮Ⅱ A包合作用的研究.化学学报,2006,64(7),652-656
    18.Wu T-H,Yen F-L,Lin L-T,Tsai T-R,Lin C-C,Cham T-M.Preparation,physiochemical characterzation,and antioxidant effects ofquercetin nanoparticles.Intemation Journal of Pharmaceutics.,2008,346,160-168
    19.Kingsbury W D,Boehm J.C,Jakas D R,Holden K G,Hecht S M,Gallagher G,Caranfa M J,McCabe F L,Faucette L F,Johnson R K,Hertzberg R P.J.Med.Chem.1991,34,98.
    20.Rawat S,Jain S K.Solubility enhancement of celecoxib using β-cyclodextrin inclusion complexes.European Journal of Pharmaceutics and Biopharmaceutics.2004,57,263-267
    1.中国科学院植物研究所,全国高等植物图鉴,第二册,科学出版社,1982,2686
    2.王翠娣,郭玉璞.雷公藤的有效成分、药理作用吉临床应用.中国中西医结合杂志,1993,13(8):507-509
    3.Duan H D,Takaishi Y,Imakura Y,Jia Y,Li D,Cosentino M,Lee K-H.Sesquiterpene Alkaloids from Tripterygium hypoglaucum and Triptergium wilfordii:A New Class of Potent Anti-HIV Agents.J.Nat.Prod.,2000,63(3):357-361
    4.Wang X-W.Drugs of the Future.,1999,24(9):991-995
    5.张永红,张建钢,何荔,魏小宁,汪汉卿.大叶盘果菊化学成分的研究.天然产物研究与开发.,2007,19:229-231
    6.董彩霞,史社坡,武可泗,屠鹏飞.棉团铁线莲化学成分研究.中国中药杂志.,2006,31(20):1697-1698
    7.张宪民,武大刚,周激文,潘汝能,刘黎文,彭林,骆毅.昆明山海棠根的齐墩果烷型三萜成分.云南植物研究.,1993,15(1):92-96
    8.杨光忠.中药雷公藤多苷和红丝线化学成分的研究.博士论文,中科院上海药物研究所,2004,p61
    9.马鹏程,吕筱余,杨晶晶,郑启泰.雷公藤中16-羟基雷公藤内酯醇的分离与鉴定.药学学报.,1991,26(10):759-763
    10.马鹏程,吕筱余,王莉莉.雷腾氯内酯醇的半合成研究-雷公藤内酯醇和雷公藤内酯酮的结构改造.中国药科大学学报.,1992,23(3):135-139
    11.Kupchan S M.J.Am.Chem.Soc.1972,94:7194
    12.苗抗立,张小康,董颖.雷公藤根皮三萜成分研究.天然产物研究与开发.,2000,12(4):1-7
    13.邓福孝,周炳南,宋国强,胡昌奇.雷公藤化学成分的研究.药学学报.,1982,17(2):146-150
    14.于东防,胡邦豪.雷酚内酯的结构修正.药学学报.,1990,25(12):929-931
    15.傅萌萌,周小贤,谢狄霖,邓福孝.雷酚萜甲醚和雷酚萜的2D NMR研究.波普学杂志. 1994,11(2):165-170
    16.张宪民,王传芬,吴大刚.昆明山海棠根的松香烷型二萜化合物.云南植物研究.,1992,14(3):319-322
    17.邓福孝,曹剑虹,夏志林,林旭,王小逸.雷公藤倍半萜生物碱的研究.植物学报.,1987,29(5):523-526
    18.吴大刚,柳林,陈昆昌.昆明山海棠的生物碱.雷公藤次碱.云南植物研究.,1981,3:471-473
    19.徐力红,苗抗立,黄丽瑛.雷公藤生物碱的分离鉴定.中国药房.,1995,6(4):2-3
    20.何直升,洪山海,李亚,沙怀,于显国.新生物碱雷公藤碱戊的结构.化学学报.,1985,43(6):593-596
    21.何直升,李亚,放圣鼎,洪山海.雷公藤碱乙、碱庚和碱己的结构.化学学报.,1987,45:510-513
    22.张崇璞,张永刚,陈云,马鹏程,于德泉,杨晶晶.雷公藤总甙中三萜成分的研究.中国医学科学院学报.1989,11(5):322-325
    23.Duan H Q,Kawazoe K,Bando M,Kido M,Takaishi Y.DI-AND TRITERPENOIDS FROM TRIPTERYGIUM HYPOGLAUCUM.Phytochemistry.,1997,46(3):535-543
    24.Morota T,Yang C-X,Sasaki H,Qin W-Z,Sugama K,Miao K-L,Yoshino T,Xu L-H,Maruno M,Yang B-H.TRITERPENES FROM TRIPTERIGIUM WILFORDII.Phytochemistry.1995,39(5):1153-1157
    1.谢宗万.全国中草药汇编.第二版.北京:人民卫生出版社,1996:201-202.
    2.郭学敏,周卓轮,洪永福.毛莨属植物化学成分研究概况.中草药.1995,26(10):550-5510
    3.吴征谧,周太炎,肖培根.新华本草纲要.第一册上海科学技术出版社,1988:131-133.
    4.Tsukamoto H,Hisada S,Nishibe S,Roux D G,Rourke J P.Coumarins from Olea africana and Olea capensis.Phytochemistry.1984,23(3):699-700.
    5.Tsukamoto H,Hisada S,Nishibe S.Chem.Pharm.Bull.1985,33(1):396-399.
    6.郭学敏,周卓轮,洪永福.猫爪草化学成分的研究.药学学报.1995,30(12):931-934.
    7.林文翰,王天欣,蔡孟森等.斩龙剑中新苯丙素甙的结构鉴定.药学学报.1995,30(10):752-756.
    8.刘卫建,胡晓斌,杨培全.西藏产茅膏菜化学成分的研究.华西药学杂志.1992,7(4):201-202.
    9.Ma J Y,Wang Z T,X u L S.J.Chin.Pharm.Univ.1995,29(2):94-96.
    10.Yong J,John N S,Cecil C S.J.Agri.Food.Chem.1998,46(9):3785-3788.
    11.Jean C,Dellamonica Q,Besson E,Skrzypczakowa L,Budzianowski J,Mabry T J.C-galactosylflavones from Polygonatum multiflorum.Phytoehemistry.1977,16(12):1999-2001
    12.王旭红,秦民坚,邓霞.毛茛属药用植物研究概况.现代中药研究与实践,2003,7(6):57-59
    13.潘云雪,周长新,张水利.扬子毛茛中的化学成分研究.Journal of Chinese Pharmaceutical Sciences.2004,13(2):92-96
    14.国家医药管理局中草药情报中心.植物药有效成分手册.人民卫生出版社.1986:1073
    15.李兰芳,张文彦,张魁.不同生长期白羊草中总黄酮及小麦黄素的含量测定.中国中药杂志.2000,25(5):272-275
    16.毕和平,韩昌日,舒霍明,李川宝.海南毛莨径、叶中总黄酮含量的测定.广东化工.2005,12:30-32.
    17.孙立立,谢鸿霞,孙敬勇,杨书斌,于文强.比色法测定山楂中总黄酮的含量.中成药.2001,23(10):748-750.
    18.廖声华,田秋霖,路平.AL桑色素二元络合物的荧光光度法测定银杏叶中的黄酮含量.数理医药学杂志.2004,17(1):58-60
    19.葛明菊,李钧敏,张利龙.大血藤叶片黄酮类化合物的HPLC分析.浙江中医学院学报.2002,26(6):71-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700