用户名: 密码: 验证码:
小分子化合物J2缓释剂型药代动力学及药效学的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究和比较小分子化合物J2两种缓释剂型-海藻酸钠微球(Sodium alginate microspheres,SAM)及纳米混悬液(nano-suspension,NS)在体外释放情况和体内眼部药代动力学行为,观察J2-NS结膜下注射对大鼠角膜移植排斥反应的作用并验证其作用机理。
     方法:①体外释药性能研究:光学显微镜观察J2-SAM的形态及大小;激光粒度扫描仪测量J2-NS的粒径;高效液相色谱法测定J2-SAM和J2-NS的载药量以及在体外的累积释放量。②体内药代动力学研究:实验兔结膜下注射J2-SAM和J2-NS,分别于注药后1d、3d、1w、2w、3w、4w后取角膜、房水、虹膜以及外周血,使用高效液相色谱仪检测组织内的药物浓度,并使用WinNonlin药代动力学软件计算主要的药代动力学参数。③药效学研究:成年雌性Wistar大鼠为供体,SD大鼠为受体,建立同种异体穿透性角膜移植模型。手术大鼠随机分成4组:A组为SD大鼠自体角膜移植结膜下空白溶剂0.05ml注射组,16只;B组为同种异体角膜移植结膜下空白溶剂0.05ml注射组16只;C组为同种异体角膜移植结膜下空白溶剂0.05ml注射和1%CsA点眼组每日5次,16只;D组同种异体角膜移植结膜下注J2-NS 0.05mL,16只。术后记录植片排斥指数(RI),比较各组大鼠角膜植片生存时间。角膜移植后7d、14d分别对各组大鼠术眼及同侧颌下淋巴结行病理学检查。④机理研究:以成年雌性Wistar大鼠作为供体,SD大鼠作为受体,建立同种异体穿透性角膜移植模型。A组为正常SD大鼠结膜下空白溶剂0.05ml注射组,6只。手术大鼠随机分成3组:B组为SD大鼠自体角膜移植结膜下空白溶剂0.05ml注射组,6只;C组为同种异体角膜移植结膜下空白溶剂0.05ml注射组6只;D组同种异体角膜移植结膜下注射1%J2-NS纳米混悬液0.05ml,6只。各组动物分别于术后3d、1w、2w、3w,使用流式细胞仪检测外周血中T细胞亚群分布情况并比较。
     结果:①体外释药性能研究:J2-SAM和J2-NS平均粒径分别为165.61±37.943μm和170nm;载药量分别为0.12%和0.1%,两种缓释剂型在体外均有显著的缓释效果,释药量平稳,基本上没有突释,缓释时间持续30d以上;30d时累计释放分别39.19%和32.91%。②体内药代动力学研究:J2-SAM和J2-NS兔结膜下注射后,在各组织内缓慢均匀释放,在角膜药物浓度最高,在房水和虹膜内的药物浓度较低,全血中可以检测到药物浓度,在眼局部可以达到长期缓释效果。③药效学研究:A组在观察期内未发生排斥;B、C、D组生存时间分别为10.75±1.60d、16.00±3.79d和14.33±2.93d,C、D两组间比较无显著性差异,与A、B组比较均有显著性差异。角膜同种异体移植术后7d角膜基质主要由多形核白细胞浸润为主,14d时则以淋巴细胞浸润为主,D组术后角膜植片各组织层中细胞成分和新生血管均较同期B组少。角膜同种异体移植术后移植同侧的颌下淋巴结增生明显,但用药组弱于未用药组。免疫组化A组角膜未见CD4+、CD8+T细胞浸润,角膜移植术后角膜基质层可见核膜棕黄色物质沉积的T细胞,同侧颌下淋巴结内淋巴结副皮质区及滤泡间区阳性细胞增多,以B组最为明显。④机理研究:B组各时间点外周血中淋巴细胞总CD3+T淋巴细胞、CD4+T淋巴细胞、CD8+T淋巴细胞以及CD4+/CD8+T淋巴细胞无显著性差异;C组术后3d和1w总CD3+T淋巴细胞、CD4+T淋巴细胞、CD8+T淋巴细胞无显著性差异,1w和2w总CD3+T淋巴细胞、CD4+T淋巴细胞、CD8+T淋巴细胞数目增多,差异有显著性;D组中,1w和2w时CD4+T淋巴细胞和CD8+T淋巴细胞无显著增生。同一时间点横向比较:3d、1w、2w时D组总CD3+T淋巴细胞明显少于C组,有显著性差异,而在第3w时D组与C组无明显差别;CD4+T淋巴细胞在术后3d和1w时D组较C组比较数目少,但无显著性差异。CD4+/CD8+比值,在3d、1w、3w时D组与C药组比较均无显著性差异。
     结论:①J2-SAM和J2-NS粒径均匀是良好的药物载体,体外有良好的缓释效应。②结膜下单次注射J2-SAM和J2-NS可以在眼部缓慢均匀的释放,长期维持稳定的药物浓度,两者药代动力学参数无显著性差异,但J2-NS较J2-SAM更方便注药和更易控制给药剂量。③J2-NS结膜下注射有抗大鼠角膜移植排斥作用,效果与CsA相似。J2 J2-NS结膜下注射可见减轻角膜移植术后角膜植片和同侧颌下淋巴结的细胞增生,抑制免疫应答。④大鼠自体角膜移植并不引起外周血T淋巴细胞增生;当异体角膜移植排斥反应发生时,外周血中T淋巴细胞明显增多。J2通过抑制T淋巴细胞增生,抑制T细胞介导的角膜移植排斥反应。
Objective:To investigate and evaluate the pharmacokinetic behavior of two sustained-release formulations-sodium alginate microspheres(SAM) and nano-suspension (NS) of micromolecular compound J2 in vitro and in vivo; To examine the effect of nano-suspension J2 on preventing rat allograft rejection via subconjunctival injection and its influence on rat T cell subsets as well as to investigate its pharmacodynamics and mechanism.
     Method:①Release behavior in vitro:the shape and size of J2-SAM was observed with optical microscope; Laser Particle Size Analyzer was used to scan the particle size of J2-NS; the drug loading of J2-SAM and J2-NS and its cumulative release in vitro were measured by HPLC.②Pharmacokinetic study in vivo:J2-SAM and J2-NS were injected in rabbits'conjunctiva and drug concentration of the cornea, aqueous humor, iris, and peripheral blood was detected by HPLC on Id,3d, 1w,2w,3w,4w respectively after injection. The main pharmacokinetic parameters were calculated by pharmacokinetic software-WinNonlin.③Pharmacodynamic study:allogeneic penetrating keratoplasty model was established using the adult female Wistar rats as donors and SD rats as recipients. Rats were divided into 4 groups randomly(n=16). Group A:SD rats were injected 0.05ml placebo subconjunctivally after autograft. Group B:allograft rats were injected 0.05ml placebo subconjunctivally after surgery. Group C:allograft rats were injected 0.05ml placebo subconjunctivally and administered 1% CsA 5 times a day after surgery. Group D:allograft rats were injected 0.1% J2-NS 0.05ml subconjunctivally after surgery. The graft rejection index (RI) and the survival time of animals in each group were recorded. The cornea and ipsilateral submandibular lymph nodes were examined pathologically on 7d,14d respectively after surgery.④Mechanism study:allogeneic penetrating keratoplasty model was established using the adult female Wistar rats as donors and SD rats as recipients. Group A:normal SD rats were injected 0.05ml placebo subconjunctivally, n=6. Group B:autograft rats were injected 0.05ml placebo subconjunctivally after surgery, n=6. Group C:allograft rats were injected 0.05ml placebo subconjunctivally after surgery, n=6. Group D:allograft rats were injected J2-NS 0.05ml subconjunctivally after surgery, n=6. Peripheral blood T lymphocyte subsets of each group were tested and compared by Flow cytometry Technology on 3d, 1w,2w,3w after operation.
     Results:①Release behavior in vitro:the mean diameters of J2-SAM and J2-NS were 165.61±37.943μm and 170nm respectively; drug loading was 0.12% and 0.1%.Two kinds of sustained release formulation showed significant release effect, steady release and no burst in vitro. Sustained release time all maintained more than 30d and cumulative release was 39.19% and 32.91% respectively in the 30th day.②Pharmacokinetic study in vivo: J2-SAM and J2-NS were injected in rabbit subconjunctiva and the drugs were released in ocular organizations slowly. The drug concentration was higher in cornea and lower in aqueous humor and iris, it also could be detected in blood. The sustained release formulation had long-term sustained-release effect in the eye.③Pharmacodynamic study: there was no rejection happened in group A in the observation period; the survival time of group B, C, D was 10.75±1.60d,16.00±3.79d and 14.33±2.93d respectively; Group C and D showed no significant difference, but all showed significant difference with group A and B. There were mainly infiltrated by polymorphonuclear leukocytes in corneal stroma of allograft groups at 7d after operation, lymphocytes at 14d. The cellular components and angiogenesis in all layers of cornea of group D were less compared with group B at the same period. The ipsilateral lymph nodes were hyperplasia after the allograft. However, the treatment groups were weaker than untreated group B. By immunohistochemistry dye, there was no CD4+, CD8+T cell infiltration in group A and there showed brown material depositing in nuclear membrane of T cells in stroma after transplantation. There were more positive cells in paracortex and interfollicular areas of ipsilateral submandibular lymph nodes, especially in group B.④Mechanism study:There were no significant difference of the total CD3+T cells, CD4+T cells, CD8+T cells and CD4+/CD8+T cells ratio of peripheral blood lymphocytes in group B during the observed time. There were no significant difference of the total CD3+T cells, CD4+T cells, CD8+T cells in group C at 3d and 1w after operation and significant difference at 2w and 3w whose cell numbers all increased. There were no significant difference of the total CD3+T cells, CD4+T cells, CD8+T cells in group B at 1w and 2w after operation in group D. The horizontal comparison of the same time:The total CD3+T lymphocytes of group D was significantly less than group C at 3d, 1w,2w after operation whereas there was no significant difference at 3w. There were smaller numbers of CD4+T lymphocytes in group D than group C at 3d and 1w but with no significant difference. The ratio of CD4+/CD8+ had no significant difference in group D compared with group C at 3d, 1w,3w.
     Conclusion:①J2-SAM and J2-NS exhibit uniform size that can be good drug carriers and have wonderful sustained release potency in vitro.②J2-SAM and J2-NS can be released slowly in eyes and sustain long-term stable drug concentration by single subconjunctival injection. There is no significant difference of pharmacokinetic parameters between the two slow-release formulations. However, J2-NS is more convenient to inject and it is easier to control the injection dosage of J2-NS than J2-SAM.③Subconjunctival injection of J2-NS can inhibit rat corneal allograft rejection, which has similar pharmacodynamic action with CsA. It also can reduce cell proliferation and inhibit the immune response in cornea and ipsilateral submandibular lymph nodes.④Rat corneal autograft does not irritate proliferation of peripheral blood T lymphocytes whereas it increases significantly in corneal allograft rejection. J2 inhibits T lymphocyte proliferation and then inhibits the T cell-mediated corneal allograft rejection.
引文
[1]Ament JD, Todani A, Pineda R 2nd, et al. Global corneal blindness and the Boston keratoprosthesis type Ⅰ. Am J Ophthalmol.2010,149(4):537-539.
    [2]Foster A, Resnikoff S. The impact of Vision 2020 on global blindness.Eye (Lond). 2005,19(10):1133-1135.
    [3]Baddon A, Jones M, Armitage J, et al. A review of allograft ophthalmic tissue in eye surgery. Cell Tissue Bank.2010, 11(1):29-38.
    [4]Klebe S, Coster DJ, Williams KA. Rejection and acceptance of corneal allografts. Curr Opin Organ Transplant.2009,14 (1):4-9.
    [5]陈实,主编.移植病理学.北京:人民卫生出版社.2009,第一版:302-303.
    [6]Schreiber SL, Crabtree GR. The mechanism of action of cyclosporine A and FK506. Immunol Today.1992,13:136-142.
    [7]董莹,黄一飞,王丽强,等.雷帕霉素抑制大鼠角膜移植免疫排斥反应的实验研究.中华眼科杂志.2005,41(10):930-935.
    [8]Thompson P, Xu D, Brunette I, et al. Combined effect of rapamycin and cyclosporine in the prevention of rat corneal allograft rejection. Transplantation Proc.1998; 30(4): 1033-1035.
    [9]Reinhard T, Reis A, Bohringer D, et al. Systemic mycophenolate mofetil in comparison with systemic cyclosporin A in high-risk keratoplasty patients:3 years' results of a randomized prospective clinical trial. Graefes Arch Clin Exp Ophthalmol. 2001,239(5):367-372.
    [10]Thiel MA, Coster DJ, Williams KA. The potential of antibody-based immunosuppressive agents for corneal transplantation. Immunol Cell Biol.2003,81 (2):93-105.
    [11]徐筱杰,主编.计算机辅助药物分子设计.北京:化学工业出版社.2004,第1版:12.
    [12]宋云龙,陆倍倍,张万年.基于结构的计算机辅助药物设计方法学与应用研究.药学进展.2002,26(6):359-364.
    [13]Boisgerault F, Liu Y, Anosova N, et al. Role of CD4+and CD8+T cells in allorecognition:lessons from cornealtransplantation.J Immunol.2001,167(4): 1891-1899.
    [14]Li S, Gao J, Satoh T, et al. A computer screening approach to immunoglobulin superfamily structures andinteractions:discovery of small non-peptidic CD4 inhibitors as novel immunotherapeutics. Proc Natl Acad Sci U S A.1997, 94(1):73-78.
    [15]何新华,谢云德,肖鹤,等.新型CD4抑制剂J2的合成及其活性评价.中国药物化 学杂志.2009,19(4):290-292.
    [16]张磊,冯健男,崔健,等.J2小分子化合物能有效抑制小鼠急性移植物抗宿主反应的实验研究.军事医学科学院院刊.2008,32(6):519-522.
    [17]He Xiao, Jian-Nan Feng, Xin-hua He, et al. Potent inhibition of the CD4-dependent T cell response by J2, a novel nonpeptide organic ligand of CD4 D1. Molecular Immunology.2007,44:784-795.
    [18]He Xiao, Han Zhang, Zu-Yin Yu, et al. J2 prolongs the corneal allograft survival through inhibition of the CD4+T cell-mediated response in vivo. Transplant Immunology.2007,18:130-137.
    [19]Da-Jiang Wang, Han Zhang, Guo-Jiang Chen, et al. Further study on molecular biological effects of CD4 D1 inhibitor J2 on allografts following corneal transplantation in mice. Scientific Research and Essay.2010,5(1):063-070.
    [20]王大江,黄一飞,张晗等.小分子化合物J2抑制小鼠角膜移植术后排斥反应的研究.中华眼科杂志.2009,45(4):350-355.
    [21]王大江,黄一飞.张晗等小分子化合物J2对小鼠角膜移植术后植片RANTES基因表达的影响.眼视光学杂志.2008,10(3):174-177
    [22]张晗,黄一飞,王丽强.小分子免疫抑制剂J2抗移植排斥的实验研究.解放军药学学报.2006,22(2):115-118.
    [23]张晗,黄一飞,王丽强.基于CD4分子构型设计的小分子免疫抑制药J2抗移植排斥反应的作用研究.医药导报.2006,25(8):723-725.
    [24]张晗,黄一飞,王丽强.小分子化合物J2在抑制小鼠角膜移植排斥反应中作用的初步研究.中华眼科杂志.2007,43(7):608-612.
    [25]王大江,黄一飞,张晗.小分子化合物J2对小鼠淋巴细胞的影响.解放军药学学报.2007,23(2):81-84.
    [26]马世堂,刘培勋,徐阳,等.难溶性药物增溶研究进展.医药导报.2009,28(8):1052-1054.
    [27]Arto Urtti. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev.2006,58:1131-1135.
    [28]Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery:impacts of membranes and barriers. Expert Opin Drug Deliv.2008,5(5):567-581.
    [29]Park J, Bungay PM, Lutz RJ, et al. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release.2005,105:279-295.
    [30]Gaudana R, Jwala J, Boddu SH, et al. Recent Perspectives in Ocular Drug Delivery. Pharm Res.2009,26:1197-1216.
    [31]Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discovery Today.2008,13:144-151.
    [32]Sawant KK, Dodiya SS. Recent advances and patents on solid lipid nanoparticles. Recent. Pat Drug Deliv Formul.2008,2(2):120-135.
    [33]Saati S, Lo R, Li PY, et al. Mini drug pump for ophthalmic use.Trans Am Ophthalmol Sic.2009,107:60-70.
    [1]仲静洁,王东凯,张翠霞,等.海藻酸钠在药物制剂中的研究进展.中国新药杂志.2007,16(8):591-594.
    [2]魏靖明,张志斌,冯华,等.海藻酸钠作为药物载体材料的研究进展.化工新型材.2007,35(8):20-22.
    [3]Balasubramaniam J, Rao VU, Vasudha M, et al. Sodium alginate microspheres of metformin HCl:formulation and in vitro evaluation. Curr Drug Deliv.2007,4(3): 249-256.
    [4]Rajinikanth PS, Sankar C, Mishra B. Sodium alginate microspheres of metoprolol tartrate for intranasal systemic delivery:development and evaluation. Drug Deliv. 2003,10(1):21-28.
    [5]纪昌学,冯晓波,张勇,等.海藻酸钠微球在部分性脾栓塞术中的应用评价.临床放射学杂志.2007,26(1):53-56.
    [6]孙伟.海藻酸钠微球栓塞剂在肿瘤治疗中的应用现状.癌症进展杂志.2009,7(1):52-55.
    [7]Liu W, Griffith M, Li F. Alginate microsphere-collagen composite hydrogel for ocular drug delivery and implantation. J Mater Sci Mater Med.2008,19(11): 3365-3371.
    [8]王凤翔,何守志,李新建,等.眼用海藻酸钠-维甲酸微球药物代谢动力学的实验研究.中华眼科杂志.2006,42(9):814-817.
    [9]高艳丽,刘赛,王科科,等.纳米粒载体研究进展.现代生物医学进展.2009,9,1373-1376.
    [10]马世堂,刘培勋,徐阳,等.难溶性药物增溶研究进展.医药导报.2009, 28(8):1052-1054.
    [11]钱帅,张建军,高缘,等.纳米混悬剂研究进展.药学进展.2007,31(1):9-14.
    [12]Gaudana R, Jwala J, Boddu SH, et al. Recent perspectives in ocular drug delivery. Pharm Res.2009,26(5):1197-1216.
    [13]Sahoo SK, Dilnawaz F, Krishnakumar S.Nanotechnology in ocular drug delivery. Drug Discov Today.2008,13(3-4):144-151.
    [14]Kassem MA, Abdel Rahman AA, Ghorab MM, et al. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs.Int J Pharm. 2007,340(1-2):126-133.
    [15]王胜峰,姚瑶,丁劲松.药物纳米混悬剂的形成与维持方法研究进展.解放军医学杂志.2009,34(10):1257-1259.
    [1]陈祖基.重视眼部给药系统的研究.中华眼科杂志.2006,42(4):292-295.
    [2]Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv,2006, 3:275-287.
    [3]Arto Urtti. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev,2006,58:1131-1135.
    [4]Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharmacol Physiol,2000,27:558-562.
    [5]Short BG. Safety evaluation of ocular drug delivery formulations:techniques and practical considerations. Toxicol Pathol,2008,36:49-62.
    [6]Leblanc B, Jezequel S, Davies T, et al. Binding of drugs to eye melanin is not predictive of ocular toxicity. Reg Toxicol Pharmacol,1998,28:124-132.
    [7]Sinha DP, Cartwright ME, Johnson RC. Incidental mononuclear cell infiltrate in the uvea of cynomolgus monkeys. Toxicol Pathol,2006,34,148-151.
    [8]赵香兰,主编.临床药代动力学.郑州大学出版社,2002,第1版:118-118.
    [9]《化学药物临床药代动力学研究技术指导原则》课题研究组.化学药物临床药代动力学研究技术指导原则.2005年.
    [10]Theng J, Zhou L, Tan D, et al. Distribution of cyclosporin A in the cornea after topical or oral administration. J Ocul Pharmacol Ther,2002,18:83-88.
    [11]Komei Okabe, Hideya Kimura, Junko Okabe.Effect of Benzalkonium Chloride on Transscleral Drug Delivery.Investigative Ophthalmology & Visual Science,2005, 46:703-708.
    [12]Kamran Hosseini,Dani Matsushima,Juanita Johnson,et al.Pharmacokinetic Study of Dexamethasone Disodium Phosphate using Intravitreal, Subconjunctival, and Intravenous Delivery Routes in Rabbits. J Ocul Pharmacol Ther,2008,24:301-308.
    [13]张俊杰,高长风,王丽娅.更昔洛韦原位胶化滴眼液兔眼部药物动力学及生物利用度研究.中华眼科杂志.2006,42(7):637-641.
    [14]Hosoya K, Lee VH, Kim KJ. Roles of the conjunctiva in ocular drug delivery:a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm.2005,60(2):227-240.
    [15]He Xiao, Jian-Nan Feng, Xin-hua He, et al. Potent inhibition of the CD4-dependent T cell response by J2, a novel nonpeptide organic ligand of CD4 D1. Molecular Immunology.2007,44:784-795.
    [1]Patel SV, Diehl NN, Hodge DO, et al. Donor risk factors for graft failure in a 20-year study of penetrating keratoplasty. Arch Ophthalmol.2010,128(4):418-425.
    [2]Volker-Dieben HJ, Schreuder GM, Claas FH, et al. Histocompatibility and corneal transplantation. Dev Ophthalmol.2003,36:22-41.
    [3]Holland EJ,Olsen TW,Chan CC,et al. Kinetics of corneal transplant rejection in the rat penetrating keratoplasty model. Comea.1994,13:317-323.
    [4]Shi W, Gao H, Xie L, Wang S. Sustained intraocular rapamycin delivery effectively prevents high-risk corneal allograft rejection and neovascularization in rabbits. Invest Ophthalmol Vis Sci.2006,47(8):3339-3344.
    [5]Dastjerdi MH, Saban DR, Okanobo A,et al.Effects of Topical and Subconjunctival Bevacizumab (Avastin) in High-Risk Corneal Transplant Survival. Invest Ophthalmol Vis Sci.2010,51(5):2411-2417.
    [6]Tavandzi U, Prochazka R, Usvald D, et al.A new model of corneal transplantation in the miniature pig:efficacy of immunosuppressive treatment. Transplantation.2007, 83(10):1401-1403.
    [7]Gebhardt BM, Shi W. Experimental corneal allograft rejection. Immunol Res.2002; 25(1):1-26.
    [8]Treseler PA, Sanfilippo F. The expression of major histocompatibility complex and leukocyte antigens by cells in the rat cornea. Transplantation.1986,41(2):248-252.
    [9]Holland EJ, Chan CC, Wetzig RP, et al. Clinical and immunohistologic studies of corneal rejection in the rat penetrating keratoplasty model. Cornea. 1991,10(5):374-80
    [10]杨朝忠,耿燕,姚晓明,主编.北京:军事医学科学出版社,.2008,第一版:245-249.
    [11]Larkin DF, Calder VL, Lightman SL. Identification and characterization of cells infiltrating the graft and aqueous humour in rat corneal allograft rejection. Clin Exp Immunol.1997,107(2):381-91.
    [12]赵勇,主编.移植免疫耐受.北京:中国医药科技出版社.2005,第一版:2.
    [13]Plskova J, Duncan L, Holan V. et al. The immune response to corneal allograft requires a site-specific draining lymph node. Transplantation.2002,73(2):210-215.
    [14]Hoffmann F, Zhang EP, Mueller A, Schulte F, et al. Contribution of lymphatic drainage system in corneal allograft rejection in mice. Graefes Arch Clin Exp Ophthalmol.2001,239(11):850-858.
    [15]Cursiefen C, Chen L, Dana MR, et al. Corneal lymphangiogenesis:evidence, mechanisms, and implications for corneal transplant immunology.Cornea.2003, 22(3):273-281.
    [16]Liu Y, Hamrah P, Zhang Q, et al. Draining lymph nodes of corneal transplant hosts exhibit evidence for donor major histocompatibility complex (MHC) class Ⅱ-positive dendritic cells derived from MHC class Ⅱ-negative grafts.J Exp Med.2002, 195(2):259-268.
    [17]Plskova J, Duncan L, Holan V, et al. The immune response to corneal allograft requires a site-specific draining lymph node. Transplantation.2002,73(2):210-215.
    [18]Yamagami S, Dana MR, Tsuru T. Draining lymph nodes play an essential role in alloimmunity generated in response to high-risk corneal transplantation. Cornea. 2002,21(4):405-409.
    [1]赵勇,主编.移植免疫耐受.北京:中国医药科技出版社.2005年,第一版:2-11.
    [2]杨朝忠,耿燕,姚晓明,主编.眼表移植学.北京:军事医学科学出版社.2008年,第一版:138-141.
    [3]Larkin DF, Calder VL, Lightman SL. Identification and characterization of cells infiltrating the graft and aqueous humour in rat corneal allograft rejection. Clin Exp Immunol 1997,107:381-391
    [4]陈实,主编.移植免疫学.武汉:湖北科学技术出版社,1998年:第一版:78-91.
    [5]Streilein JW, Arancibia-Caracamo C, Osawa H. The role of minor histocompatibility alloantigens in penetrating keratoplasty. Dev Ophthalmol.2003,36:74-88.
    [6]Boisgerault F, Liu Y, Anosova N, Ehrlich E. Role of CD4+and CD8+T cells in allorecognition:lessons from corneal transplantation. J Immunol.2001,167(4): 1891-1899.
    [7]Pleyer U, Milani JK, Dukes A, et al. Effect of topically applied anti-CD4 monoclonal antibodies on orthotopic corneal allografts in a rat model. Invest Ophthalmol Vis Sci. 1995,36(1):52-61.
    [8]Pindjakova J, Vitova A, Krulova M, et al. Corneal rat-to-mouse xenotransplantation and the effects of anti-CD4 or anti-CD8 treatment on cytokine and nitric oxide production Transpl Int.2005,18(7):854-862.
    [9]Yamada J, Kurimoto I, Streilein W. Role of CD4+T cells in immunobiology of orthotopic corneal transplants in mice. Invest Ophthalmol Vis Sci.1999,40: 2614-2621.
    [10]史伟云,谢立信.CD4和CD8基因敲除鼠行穿透性角膜移植术后免疫排斥特征的研究.中华眼科杂志.2005,41:350-354.
    [11]刘彤,王鹏志,朱理玮,等.大鼠小肠移植后外周血T淋巴细胞亚群的变化.中华器官移植杂志.1996,17(1):15-17.
    [12]吴京,王小宁.角膜移植排斥反应的实验研究Ⅱ-T淋巴细胞亚群及T-CEC的变化.眼科新进展.1997,17(3):137-139.
    [13]Creemers P, Brink J, Wainwright H, et al. Evaluation of peripheral blood CD4 and CD8 lymphocyte subsets, CD69 expression and histologic rejection grade as diagnostic markers for the presence of cardiac allograft rejection. Transpl Immunol. 2002,10(4):285-292.
    [14]Volker-Dieben HJ, Claas FH, Schreuder GM, et al. Beneficial effect of HLA-DR matching on the survival of corneal allografts. Transplantation.2000,70:640-648.
    [15]Sheldon S, Poulton K. HLA typing and its influence on organ transplantation. Methods Mol Biol.2006,333:157-174.
    [16]Reinhard T, Bohringer D, Enczmann J, et al. Improvement of graft prognosis in penetrating normal-risk keratoplasty by HLA class I and II matching. Eye (Lond). 2004,18(3):269-277.
    [1]Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv,2006, 3:275-287.
    [2]Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev,2006,58:1131-1135.
    [3]Short BG. Safety evaluation of ocular drug delivery formulations:techniques and practical considerations. Toxicol Pathol,2008,36:49-62.
    [4]Barar J, Javadzadeh AR, Omidi Y. Ocular novel drug delivery:impacts of membranes and barriers. Expert Opin Drug Deliv,2008,5,567-581.
    [5]Loftsson T, Sigurdsson HH, Konradsdottir F, et al. Topical drug delivery to the posterior segment of the eye:anatomical and physiological considerations. Pharmazie, 2008,63:171-179.
    [6]Kim SH, Lutz RJ, Wang NS, et al. Transport barriers in transscleral drug delivery for retinal diseases. Ophthalmic Res.2007,39:244-254.
    [7]Park J, Bungay PM, Lutz RJ, et al. Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release,2005,105:279-295.
    [8]Gaudana R, Jwala J, Boddu SH, et al. Recent Perspectives in Ocular Drug Delivery. Pharm Res,2009,26:1197-1216.
    [9]Sahoo SK, Dilnawaz F, Krishnakumar S. Nanotechnology in ocular drug delivery. Drug Discovery Today,2008,13:144-151.
    [10]Leblanc B, Jezequel S, Davies T, et al. Binding of drugs to eye melanin is not predictive of ocular toxicity. Reg Toxicol Pharmacol,1998,28:124-132.
    [11]Sinha DP,Cartwright ME,Johnson RC. Incidental mononuclear cell infiltrate in the uvea of cynomolgus monkeys. Toxicol Pathol,2006,34,148-151.
    [12]Horcajada JP, Atienza R, Sarasa M, et al. Pharmacokinetics of linezolid in human non-inflamed vitreous after systemic administration. J Antimicrob Chemother,2009, 63:550-552.
    [13]Krohne TU, Eter N, Holz FG, et al. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol,2008,146:508-512.
    [14]Theng J, Zhou L, Tan D, et al. Distribution of cyclosporin A in the cornea after topical or oral administration. J Ocul Pharmacol Ther,2002,18:83-88.
    [15]陈祖基重视眼部给药系统的研究.中华眼科杂志,2006,42:292-295.
    [16]Janoria KG, Boddu SH, Wang Z,et al. Vitreal pharmacokinetics of biotinylated ganciclovir:role of sodium-dependent multivitamin transporter expressed on retina. J Ocul Pharmacol Ther,2009,25:39-49.
    [17]Fu J, Feng X, Yuan H,et al. Study of ocular pharmacokinetics of in situ gel system for S(-)-satropane evaluated by microdialysis. Pharm Biomed Anal,2008,48:840-843.
    [18]Macha S, Mitra AK. Ocular pharmacokinetics of cephalosporins using microdialysis. Ocul Pharmacol Ther,2001,17:485-498.
    [19]Hosseini K, Matsushima D, Johnson J, et al. Pharmacokinetic Study of Dexamethasone Disodium Phosphate using Intravitreal, Subconjunctival, and Intravenous Delivery Routes in Rabbits. J Ocul Pharmacol Ther,2008,24:301-308.
    [20]张俊杰,高长凤,王丽娅.更昔洛韦原位胶化滴眼液兔眼部药物动力学及生物利用度研究.中华眼科杂志,2006,42:637-641.
    [21]Fujita E, Teramura Y, Mitsugi K,et al. Absorption, distribution, and excretion of 14C-labeled tacrolimus (FK506) after a single or repeated ocular instillation in rabbits. J Ocul Pharmacol Ther,2008,24:333-343.
    [22]Krohne TU, Eter N, Holz FG,et al. Intraocular pharmacokinetics of bevacizumab after a single intravitreal injection in humans. Am J Ophthalmol.2008,146:508-512.
    [23]Sjoquist B, Stjernschantz J. Ocular and systemic pharmacokinetics of latanoprost in humans. Surv Ophthalmol,2002,47:S6-12.
    [24]费文雷,陈家祺,钟诗龙,等.FK506及其纳米粒的房水药代动力学的实验研究.中华眼科杂志,2006,42:305-308.
    [25]Szymanski-Exner A, Stowe NT, Salem K, et al. Noninvasive monitoring of local drug release using X-ray computed tomography:optimization and in vitro/in vivo validation. J Pharm Sci,2003,92:289-296.
    [26]Massoud TF, Paulmurugan R, De A, et al. Reporter gene imaging of protein-protein interactions in living subjects. Curr Opin Biotechnol,2007,18:31-37.
    [27]Richardson JC, Bowtell RW, Mader K,et al. Pharmaceutical applications of magnetic resonance imaging (MRI). Adv Drug Deliv Rev,2005,57:1191-1209.
    [28]Kim H, Lizak MJ, Tansey G, et al. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann Biomed Eng,2005, 33:150-164.
    [29]Li SK, Lizak MJ, Jeong EK. MRI in ocular drug delivery. NMR Biomed,2008, 21:941-956.
    [30]Erckens RJ, Jongsma FH,Wicksted JP, et al. Raman spectroscopy in ophthalmology: from experimental tool to applications in vivo. Lasers Med Sci,2001,16:236-252.
    [31]La Via WV,Lambert JL, Pelletier MJ, et al. Measurement of amphotericin B concentration by resonant Raman spectroscopy-a novel technique that may be useful for non-invasive monitoring. Med Mycol.2006,44:169-174.
    [32].Sharma SK, New trends in telescopic remote Raman spectroscopic instrumentation. spectrochim Acta AMol Biomol Spectrosc.2007,68:1008-1022.
    [33]Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci, 2003,44:3562-3569.
    [34]黄晓晖,史军,李俊,等.药代动力学和药效动力学中数学建模与模拟的基本原理(1).中国临床药理学与治疗学,2007,12:82-89.
    [35]Zhu H,Chauhan A. Tear dynamics model. Curr Eye Res,2007,32:177-197.
    [36]Amrite AC, Edelhauser HF, Kompella UB. Modeling of corneal and retinal pharmacokinetics after periocular drug administration. Invest Ophthalmol Vis Sci, 2008,49:320-332.
    [37]Zhang W, Prausnitz MR, Edwards A. Model of transient drug diffusion across cornea. J. Controlled Release,2004,99:241-258.
    [38]Jiang J, Geroski DH, Edelhauser HF,et al. Measurement and prediction of lateral diffusion within human sclera. Invest Ophthalmol Vis Sci,2006,47:3011-3016.
    [39]Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye:prospects of pharmacokinetic modeling. Adv Drug Deliv Rev,2006,58:1164-1181.
    [40]Tojo K, Isowaki A. Pharmacokinetic model for in vivo/in vitro correlation of intravitreal drug delivery. Adv. Drug Delivery Rev,2001,52:17-24.
    [41]Tojo K.A pharmacokinetic model for ocular drug delivery. Chem Pharm Bull,2004, 52:1290-1294.
    [42]Sakanaka K, Kawazu K, Tomonari M,et al. Ocular pharmacokinetic/pharmacodynamic modeling for multiple anti-glaucoma drugs. Biol Pharm Bull,2008,31:1590-1595.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700