用户名: 密码: 验证码:
时移非正交多载波调制技术的性能分析及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着移动通信和因特网的融合,数字通信技术得到了前所未有的发展,人们对通信的多样化和便捷性提出了越来越高的要求。虽然为应对当代社会对通信技术不断提高的要求,各种新技术层出不穷,但调制技术的发展却相对缓慢。其中,正交频分复用技术(OFDM)作为一项多载波调制技术,相对于其他调制方法在数据传输效率上具有明显优势,已被多种通信标准所采用,但实际应用中在某些技术性能上受到了限制,最明显的就是对频率偏移敏感和高的峰值均值功率比。
     时移非正交多载波调制技术(TS-NMT)是一种具有全新思想的多载波调制技术。TS-NMT与OFDM同属于多载波调制,最大的不同是TS-NMT时域上的每一个子载波的起点有一个离开符号起点的延迟,这个延迟被称为时移,时移进一步造成频域上不同频率的子信道不再正交。这给TS-NMT带来了一系列优秀的特性,同时也带来了信号处理的新问题。我们的前期研究工作已经从理论上证明了非正交调制在传输效率上优于正交调制,并且计算机仿真和物理有线及无线信道的实验也证明TS-NMT比OFDM具有更高的效率和其它优良特性。但单纯的实验验证是不够的,考虑OFDM已经成为当前数字通信中的主流调制技术,有必要从理论上对TS-NMT和OFDM的多种性能做定量的分析对比,这正是本文工作的第一个重点。理论上的定量分析比较,将为TS-NMT替代OFDM走向实用奠定坚实的理论基础。本文另一个重点是根据TS-NMT的优良特性探讨如何将其应用于实际。具体工作包括:
     (1)对TS-NMT调制和解调过程中的相关问题和解决方案进行了分析和研究,包括子载波间干扰(Inter Sub-Symbol Intefrence, ISSI)和病态性的分析及解决方法。在分析TS-NMT波形结构特点的基础上,总结出TS-NMT具有时域和频域紧性的特点。所谓时域紧性指的是,TS-NMT利用时移特性,将多个单载波的多个符号的波形“挤压”在一个符号中,提高了时域的效率;所谓频域紧性指的是,子信道的非正交性可以让各个子信道更紧密的排列,大大压缩占用带宽。时频域的紧性特点是形成TS-NMT优良特性的基础。从Nyquist提出数字通信的理想系统至今已经80多年,数字通信基本是以在Fourier分析基础上发展起来的正交分析法为主要工具。为了给非正交调制提供更多的理论依据,本论文讨论了用分数频傅立叶级数(FFFS)分解的方法对信号进行合成和分解,实验证明FFFS比传统的正交傅立叶级数(FS)在压缩带宽、逼近项数、与原函数逼近度、Gibbs现象等方面比正交分解具有更好的性能。这也从另一侧面为非正交调制提供了理论支持。
     (2)对TS-NMT和OFDM的性能进行了理论上的定量分析对比:①利用星座图分析法推导出TS-NMT与OFDM两者单子信道的频谱效率之比ηNS/O的公式及相应曲线,当TS-NMT单子信道的子波数在4-60时,有1<ηNS/O≤5;根据TS-NMT频域紧性的特点,得到ΔfN<Δfo(ΔfN和Δfo分别为TS-NMT与OFDM的子信道频率间隔),从而得出TS-NMT的信号带宽可大大压缩的结论,频谱效率之比加倍提高;②根据TS-NMT的时移特性造成各子波同向相加的概率降低的特点,验证了TS-NMT合成波的最大幅度随子载波数的增长速度远远低于OFDM,从而得出在峰值均值功率比(PAPR)方面TS-NMT比OFDM具有先天优势的结论;③提出将信号由频移造成的误差转换成等效噪声功率的方法,理论和实验结果表明TS-NMT在抗频偏能力上优于OFDM;④在频谱效率分析的基础上,进一步利用星座图分析法证明了TS-NMT的功率消耗小于OFDM.
     (3)高效利用传感器节点的有限电池能源是无线传感器网络(Wireless Sensor Network,WSN)的关键技术之一。本论文基于对TS-NMT的功耗性能的理论分析及比OFDM低功耗的特点,提出将其应用于无线传感器网络的思想,并在理论推导及同等实验条件下,验证了TS-NMT单位比特功耗低于QPSK,TS-NMT在WSN的节能方面具有一定的应用前景。
     (4)本文对TS-NMT在VDSL线路进行了应用仿真,搭建了VDSL传输线路的仿真环境——信道模型和噪声模型,将TS-NMT和DMT在同等实验条件下置于VDSL仿真环境中进行实验比较。实验结果表明,TS-NMT在VDSL线路上的传输性能优于DMT(OFDM在VDSL应用中的另一名称)。验证了TS-NMT的实用可行性及优于OFDM的特性。利用TS-NMT的频域紧性的特点,提出一种通过压缩占用带宽将用户分组的方法,减少了self-FEXT串扰,从而达到提高比特传输率的目的。
In recent years, digital communication technology has received rapid development with the integration of mobile communications and internet, but the better performance of communication system is still required. Although various new technologies have emerged to meet the requirements, the development of modulation methods is slower. OFDM has obvious advantages in data transmission efficiency as a multi-carrier modulation technique compared with other modulation methods, which has been used in a variety of communication standards. However, the OFDM system has two major drawbacks:high Peak to Average Power Ratio (PAPR) and sensitivity to frequency shift, which limit performances of OFDM.
     TS-NMT is a novel multi-carrier modulation technology. Both TS-NMT and OFDM are multi-carrier modulation technologies. The main difference between them is that each sub-carrier has a time delay to the starting point of the symbol, which is called Time-Shift. As a result of the Time-Shift, the different frequcncy sub-channels are no longer orthogonal, which provides some excellent performances to TS-NMT and also leads to new signal processing problems. Recent researches have proved that the superiority of TS-NMT to traditional orthogonal methods in transmission efficiency. Computer simulations and physical wired and wirelss experiments have proved that TS-NMT is superior to OFDM in transmission efficiency and other performances. OFDM has become the major modulation technology, so the theoretical and experimental analysis and comparison between TS-NMT and OFDM are necessary. The main contributions are the quantitative analysis and comparison between TS-NMT and OFDM and the applications of TS-NMT. The main work is as follows:
     (1) The relevant issues and resolutions during modulation and demodulation are analyzed, such as the Inter Sub-Symbol Intefrence (ISSI) and ill-conditionality in the equation group of TS-NMT. Based on the wave structure of TS-NMT, the characteristics of time domain and frequency domain compactness are proposed. Due to the Time-Shif character of TS-NMT, many symbols of the single carrier modulation are compacted into one symbol in time domain. Due to the non-orthogonality character of TS-NMT, sub-channels of TS-NMT are closer in frequency domain to reduce the bandewidth greatly. The non-orthogonal idea has been used in general signal processing. The method of Fourier Series with fractional frequency intervals (FFFS) for the decomposition of signals is proposed, and experiments show that FFFS can provide better performance than FS.
     (2) The quantitative analysis and comparison between TS-NMT and OFDM are made and listed as follows:①According to the principle of constellation diagram analysis, the formulaηNS.o of the spectrum efficiency ratio of the sub-channel is derived. When the number of the sub-carriers in one sub-channel is 4~60,ηNS o is between one and five. Based on the frequency domain compactness,ΔfN is smaller thanΔfo, whereΔfN andΔfo are the frequency intervals of TS-NMT and OFDM respectively. The bandwidth of TS-NMT could be compressed to improve the spectrum efficiency.②Based on the low probability of adding sub-carriers in the same phase, the maximum amplitude of TS-NMT signal increases slower than the number of sub-carriers. TS-NMT can provide better PAPR than OFDM.③The method of converting the error caused by frequency shift to equivalent noise power is proposed. The theoretical and experimental results prove that TS-NMT has better capability of tolerating frequency shift.④Based on the analysis of spectrum efficiency, it can be proven that, the energy consumption of TS-NMT is less than OFDM according to the constellation diagram analysis.
     (3) One of the key technologies of WSN is how to improve the efficiency of limited battery power in a single node. Based on the theoretical analysis of energy performance and lower power consumption characteristics of TS-NMT, the idea of applying TS-NMT to WSN is proposed. The theoretical analysis and experiments results prove that TS-NMT is superior to QPSK and the power consumption of one bit is lower. The result proves the practicability of TS-NMT applying to WSN.
     (4) Finally, computer simulations of TS-NMT in VDSL loop are made. The simulation environment, including the channel model and noise model, is established. The simulation comparison between TS-NMT and DMT is made in the same experimental conditions. Experimental results show that, the transmission performance of TS-NMT is better than DMT in VDSL loop. The result also proves the practicability of TS-NMT. Based on the characteristic of frequency domain compactness of TS-NMT, the users are divided into groups to reduce the self-FEXT noise for high bit rate transmission.
引文
[1]H. Nyquist. Certain factors affecting telegraph speed. Bell Syst. Tech. J.,1924,3:324-346.
    [2]Hartley, R.V. Transmission of information. Bell Syst. Tech. J.,1928,7:535.
    [3]C.E.Shannon.A mathematical theory of communication. Bell Syst. Tech. J.,1948,27:379-423.
    [4]C.E.Shannon. Communication in the presence of noise. Proc. IRE,1949,37:10-21.
    [5]Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. J.,1950,29: 147-160.
    [6]Muller D.E. Application of Boolean algebra to switching circuit design and to error detection. IRE Trans. Comput.,1954,3:6-12.
    [7]Reed. I.S. A Class of multiple-error correcting codes and the decoding scheme. IRE Trans. Inform.,1954,4(4):38-49.
    [8]Reed I.S., Solomon G.. Polynomial codes over certain finite fields. SIAM J.,1960,8:300-304.
    [9]Forney G.D., Jr. Concatenated codes. Cambridge: MIT Press,1966.
    [10]Forney G.D., Jr. Generalized minimum distance decoding. IEEE Trans, Inform. Theory,1966, 12:125-131.
    [11]Wozencraft J.M., Reiffen B. Sequential decoding. MIT Press, Cambridge, MA.1961.
    [12]Ungerboeck G. Channel coding with multilevel/phase signals. IEEE Trans. Inform. Theory, 1982,28:55-67.
    [13]Forney G.D., Jr., Gallager R.G., Lang G.R, et al. Efficient modulation for band-limited channels. IEEE J. Selected Areas Commun.,1984,2:632-647.
    [14]Wei L.F. Trellis-coded modulation with multi-dimensional coonstellations. IEEE Trans. Inform. Theory,1987,33:483-501.
    [15]Ziv J., Lempel A. AUniversal Algorithm for sequential data compression. IEEE Trans. Inform. Theory,1977,23:337-343.
    [16]Berrou C., Glavieux A., Thitimajshima P.. Near Shannon limit error-correcting coding and decoding: Turbo codes. Proc. IEEE Int.Conf.Commun.,1993:1064-1070.
    [17]徐皓峰,曾庆济.光接入网的多种实现技术.计算机工程,2003,29(4):1-3.
    [18]周军.挖掘双绞线的潜力.电信技术,2008,4:102-103.
    [19]Paulraj, A.J.Gore, D.A.Nabar, R.U. An overview of MIMO communications-a key to gigabit wireless communication. Proceedings of the IEEE Digital Object Identifier,2004,92(2):198-218.
    [20]G. L.Stuber, J. R.Barry, S.W. McLaughlin.Broadband MIMO-OFDM wireless communications. Proceedings of IEEE,2004,92(2):271-294.
    [21]Volker Kuhn. Wireless communications over MIMO channels. New York:John Wiley and Sons,2006.
    [22]王艺,赵明,周世东,等.儿种多天线系统的信道容量比较.电子学报,2002,30(6):787-790.
    [23]A. Paulraj, T. Kailath. Increasing capacity in wireless broadcast systems using distributed transmission/directional reception. US Patent 5345599.1994.
    [24]V.Tarokh, N. Seshadri, A.R. Calderbank. Space-time cods for high data rate wireless communication: performance criterion and code construction. IEEE Trans.on I.T.,1998,44(2): 744-765.
    [25]S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Jounal on selected areas in communications,1998,16(8):1451-1458.
    [26]V.Tarokh, H.Jafarkhani, A.R. Calderbank. Space-time block coding for wireless communications: performance results. IEEE Jounal on selected areas in communications,1999, 17(3):451-460.
    [27]V.Tarokh, H.Jafarkhani, A.R. Calderbank. Space-time block cods from orthogonal designs. IEEE Transaction on Information Theory,1999,45(5):1456-1467.
    [28]V.Tarokh, N. Seshadri, A.R. Calderbank. Space-time cods for high data rate wireless communication: performance criterion and code construction. IEEE Trans.on I.T.,1998,44(2): 744-765.
    [29]Tohn G. Proakis. Digital Communication (Fourth Edition).Beijing: Publishing House of Electronics Industry,2001.
    [30]樊昌信,张甫,徐炳祥,等.通信原理.北京:北京国防工业出版社,2001.
    [31]曹祁生.基于非正交思想的数字通信调制方法的研究:(博士学位论文).大连:大连海事大学,2009.
    [32]B.Sklar.数字通信:基础与应用.北京:电子工业出版社,2002.
    [33]李庆扬,易大义.数值分析.北京:清华大学出版社,施普林格出版社,2001.
    [34]张贤达.矩阵分析与应应用.北京:清华大学出版社,2004.
    [35]于寅.高等工程数学.武汉:华中理工大学出版社,1995.
    [36]王志中,邵苇敏.方程病态程度的估计-病态准则.上海交通大学学报,1987,4(4):59-64.
    [37]王文博,郑侃.宽带无线通信OFDM技术.北京:人民邮电出版社,2003.
    [38]朱春燕.非交多重调制的相关理论和技术研究:(硕士学位论文).大连:大连海事大学,2009.
    [39]A.V.oppenheim. Signal and System (Second Eddition). Prentice Hall:Prentice Hall,1996.
    [40]曲长文,何友,刘卫华,等.框架理论与应用.北京:国防工业出版社,2009.
    [41]Gabor D. Theory of communication. J.IEE,1946,93(3):429-457.
    [42]R.J. Duffin and A.C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc.1952,72:341-366.
    [43]I. Daubechies, A. Grossmann, Y. Meyer. Painless nonorthogonal expansions. Journal of Mathematical Physics,1986,27:1271-1283.
    [44]Deguang Han and David R. Larson. Frames, bases and group representations. Mem. Amer. Math Soc.,2000.
    [45]I. Daubechies. Ten Lectures on Wavelets. CBMS-NSF Regional conference series in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia,1992.
    [46]P. G.Casazza. The art of frame theory, Taiwanese J. Math.,2000,4:129-201.
    [47]O. Christensen, T. K. Jensen. An introduction to the theory of bases, frames, and wavelets. Tech. Univ. of Denmark,2000.
    [48]R.Li, G.Stette. Time-Limited Orthogonal Multicarrier Modulation Schemes. IEEE Transactions on Communications,1995,43:1269-1272.
    [49]G.Robert. Information Theory and Reliable Communication. New York: John Wiley and Sons, 1968.
    [50]J E Mazo, H J Landau. On the minimum distance problem for faster-than-Nyquist signaling. IEEE Transactions on Information Theory,1988, IT-34:1420-1427.
    [51]J E Mazo. Faster-than-Nyquist signaling. Bell Syst. Tech. J.,1975,54:1451-1462.
    [52]D Hajela. On computing the minimum distance for faster-than-Nyquist signaling. IEEE Transactions on Information Theory,1990,36:289-295.
    [53]F Rusek, J B Anderson. Non binary and precoded faster than Nyquist signaling. IEEE Transactions on Communications,2008,56(5):808-817.
    [54]Fredrik Rusek, John B Anderson. Multistream faster than Nyquist signaling. IEEE Transactions on Communications,2009,57(5):1329-1340.
    [55]韩芳明.无线数字通信:一种时频观点:(博士学位论文).西安:西安电子科技大学,2006.
    [56]R.J.Duffin, A.C.Schaeffer. A class of nonharmonic Fourier series, Transaction of American Mathematics Society,1952,72:341-366.
    [57]Grip N. Hilbert space of frames and bases, a comparison of Gabor and wavelet frames and applications to multicarrier digital communications:(Licentiate thesis). Sweden:Lulea University of Technology,2000.
    [58]王竞,李道本.频率域序列检测的多载波系统.北京邮电大学学报,2007,30(5):24-27.
    [59]王键,杨讯,张曦林,等.基于离散傅立叶变换的重叠频分复用通信系统.电波科学学报,2008,23(1):17-22.
    [60]柳重湛.正交函数及其应用.北京:国防工业出版社,1982.
    [61]Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Processing,1994,42(11):3084-3091.
    [62]刘李祥,谢剑英,王明中.利用框架理论对信号进行重建.通信技术,2002,4:1-2,5.
    [63]R. J. Duffin, A.C. Schaeffer. A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 1952,72:341-366.
    [64]E.Sengul, B.Can and N.Aker. Capacity analysis of a PMR system with DAB downlink. Eighth IEEE International Symposium on Computers and Communication,2003:1153-1158.
    [65]C.C.Wang, J.M.Huang, H.C.Cheng. A 2K/8K mode small-area FFT processor for OFDM demodulation of DVB-T receivers. IEEE Transactions on Consumer Electronics,2005:28-32.
    [66]L.X.Rong, K.Pahlavan, M.L.Aho. Indoor geolocation using OFDM signals in HIPERLAN/2 wirelesss LANs. The 11th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,2000:1449-1453.
    [67]Sampath H., Talwar S., Tellado J., et al. A Fourth-Generation MIMO-OFDM Broadband Wireless System: Design, Performance, and Field Trial Results. IEEE Communications Magazine, 2002:143-149.
    [68]Xiaodong Li, L J Cimini. Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters,1998,2(5):131-133.
    [69]Liang De-qun, Liang Wei-hua, Sun Chang-nian. The Phase-offset Overlapped Wave Technique. Jounal of Electronics (China),2003,20(2):121-127.
    [70]H. Nyquist. Certain factors affecting telegraph speed. Bell Syst. Tech. J.1924,3:324-346.
    [71]J.E.Mazo. Faster-than-Nyquist signaling. Bell Syst. Tech. J.,1975,54:1451-1462.
    [72]D. Hajela. On computing the minimum distance for faster-than-Nyquist signaling. IEEE Transactions on Information Theory,1990,36:289-295.
    [73]J. E. Mazo and H. J. Landau. On the minimum distance problem for faster-than-Nyquist signaling. IEEE Transactions on Information Theory,1988,34:1420-1427.
    [74]F.Rusek and J.B.Anderson. Non Binary and Precoded Faster Than Nyquist Signaling. IEEE Transactions on Communications.2008,56(5):808-817.
    [75]F.Rusek and J.B.Anderson. Multistream Faster than Nyquist Signaling. IEEE Transactions on Communications.2009,57(5):1329-1340.
    [76]曹志刚,钱亚生.现代通信原理.北京:清华大学出版社.1999:309-312.
    [77]Y. Kyeongcheol, C. Seok-I1. Peak-to-average power control in OFDM using standard arrays of linear block codes. IEEE Communications Letters,2003,7(4):174-176.
    [78]K. J. Parsons and P. B. Kenington. The efficiency of a feedforward amplifier with delay loss. IEEE Transactions on Vehicular Technology,1994,43(2):407-412.
    [79]J. K. Caves. Adaptation behavior of a feedforward amplifier linearizer. IEEE Transactions on Vehicular Technology,1995,44(1):31-39.
    [80]S. Boyd. Multitone signals with low crest factor. IEEE Trans. Circuits Syst.,1986, 33(10):1018-1022.
    [81]Xiaodong Li, L J Cimini. Effects of clipping and filtering on the performance of OFDM. IEEE Communications Letters,1998,2(5):131-133.
    [82]Armstrong J. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. IEEE Electronics Letters,2002,38(5):246-247.
    [83]Richard van Nee, Ramjee Prasad. OFDM Wireless Multimedia Communications.London, Artech House,2000.
    [84]J. Armstrong. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering. Electronics Letters,2002,38(5):246-247.
    [85]N. Dinur, D. Wulich. Peak to average power ratio in amplitude clipped high order OFDM. IEEE Military Communications Conference,1998,2:684-687.
    [86]H. Ochiai, H. Imai. Performance analysis of deliberately clipped OFDM signals. IEEE Transactions on Communications,2002,50(1):89-101.
    [87]H. Chen, G. J. Pottie. An orthogonal projection-based approach for PAR reduction in OFDM. IEEE Communication Letter,2002,6(5):169-171.
    [88]F. Yu, K. G. Seog, K. C. Chung. A new scheme for PAPR reduction in OFDM systems with ICI self-cancellation. The 56th IEEE Vehicular Technology Conference,2002,3:1418-1421.
    [89]C. Tellambura. Improvede Phase Factor Computation for the PAR Reduction of an OFDM Signal Using PTS. IEEE Commun. Lett.,2001,5(4):135-137.
    [90]S.H. Han, J. H. Lee. PAPR Reduction of OFDM Signals Using a reduced complexity PTS technique. IEEE Sig. Proc. Lett.,2004,11(11):887-890.
    [91]D. Dardari, V. Tralli, A. Vaccari. A novel low complexity technique to reduce non-linear distortion effects in OFDM Systems. In Proc. IEEE International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Boston, USA,1998:795-800.
    [92]H. Schmidt, K. Kammeyer. Reducing the peak to average power ratio of multicarrier signals by adaptive subcarrier selection. In Proc. IEEE International Conference on Universal Personal Communications (ICUPC), Florence, Italy,1998:933-937.
    [93]E. Lawrey, C. J. Kikker. Peak to average power ratio reduction of OFDM signals using peak reduction carriers. In Proc. IEEE 5th International Symposium on Signal Processing and its Applications (ISSPA), Brisbane, Australia,1999:737-740.
    [94]J. Tellado, J. M. Cioffi. Efficient algorithms for reducing PAR in multicarrier systems. In Proc. IEEE International Symposium on Information Theory (ISIT), Cambridge, USA,1998:191-191.
    [95]J.Tellado. Peak to average power ratio reduction for multicarrier modulation. Standford University,1999.
    [96]C.-S. Hwang. A peak power reduction method for multicarrier transmission. IEEE International Conference on Communications,2001,5:1496-1500.
    [97]N.Reisi, M. Ahmadian. Reducing the Complexity of Tone Injection Scheme by Suboptimum Algorithms. International Colloquium on Computing, Communication, Control and Management, 2008,1:27-31.
    [98]J.J.van de Beek, M.Sandell, M.Isaksson, et al. Low-complex frame synchronization in OFDM systems. IEEE International Conference on Universal Personal Communications,1995,982-986.
    [99]H.Liu, U.Tureli. A High-Efficiency Carrier Estimator for OFDM Communications. IEEE Communications Letters,1998,2(4):104-106.
    [100]U.Tureli, H.Liu, M.D.Zoltowski. OFDM Blind Carrier Offset Estimation:ESPRIT. IEEE Transactions on Communications,2000,48(9):1459-1461.
    [101]A.Paulraj, R.Nabar, D.Gore.空时无线通信导论.北京:清华大学出版社,2005.
    [102]Dennis J. Rauschmayer. ADSL/VDSL原理.北京:人民邮电出版社,2001.
    [103]I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E.Cayirci. Wireless sensor networks:A survey. Computer Networks,2002,38(4):393-422.
    [104]Edgar H. Callaway. Wireless Sensor Networks:Architectures and Protocols. CRC Press, 2004.
    [105]K. Martinez, J. Hart, R. Ong. Sensor network applications. IEEE Computer,2004, 37(8):50-66.
    [106]孙利民,李建中,陈渝,等.无线传感器网络.北京:清华大学出版社,2005.
    [107]Estrin D, Govindan R, Heidemann J, Kumar S. Next century challenges: Scalable coordinate in sensor network. Proceedings of the Fifth Annual International Conference on MobileComputing and Networks (MobiCOM'99). Washington, USA,1999:263-270.
    [108]Vieira M A M, Coelho C N Jr, Silva D C Jr, et al. Survey on wireless sensor networkdevices. Emerging Technologies and Factory Automation,2003,1:537-544.
    [109]Sinha A, Chandrakasan A. Dynamic power management in wireless sensor networks. Design & Test of Computers,2001,18(2):62-74.
    [110]Karlof C, Wagner D. Secure Routing in Sensor Networks:Attacks and Countermeasures. At the 1st IEEE International Workshop on Sensor Network Protocols and Applications, May,2003.
    [111]Tubaishat M, Madria S.Sensor Networks: An Overview. IEEE Potentials,2003.
    [112]Agre J, Clare L. An integrated architecture for cooperative sensing networks. IEEE Computer Magazine,2000,33(5):106-108.
    [113]Estrin D, Govindan R, Heidemann J. Next century challenges:scalable coordination in sensor networks. Proceedings of the Fifth Annual International Conference on Mobile Computing and Networks (MobiCOM'99). Washington, USA,1999:263-270.
    [114]Agre J, Clare L. An integrated architecture for cooperative sensing networks. IEEE Computer Magazine,2000,33(5):106-108.
    [115]IEEE 802.15.4-2006/2003.
    [116]Raghavendra Cauligi S., Sivalingam Krishna M., Znati Taieb. Wireless Sensor Networks, Part II:Network Protocols. London: Kluwer Academic Publishers,2004.
    [117]G. Pottie, W. Kaiser. Wireless integrated network sensors. Communication of the ACM, 2000,43(5):51-58.
    [118]C. Schurgers, V. Tsiatsis, S Ganeriwal, et al. Optimizing sensor networks in the energy-latency-density design space. IEEE Transaction on Mobile Computing,2002, 1(1):70-80.
    [119]A. Chandrakasan, R. Amirtharajah, S. H. Cho, et al. Design considerations for distributed microsensor systems. Proc. of the IEEE Custom Integrated Circuits Conference (CICC),1999: 279-286.
    [120]Rebecca Braynard, Adam Silberstein, Carla Ellis. Extending Network Lifetime Using an Automatically Tuned Energy-Aware MAC Protocol. Proceedings of the 2006 EWSN, Zurich,2006: 244-259.
    [121]Rabaey, Jan M., Pedram, Massoud (Eds.). Low Power Design Methodologies. Springer, 1995.
    [122]Pedram, Massoud, Rabaey, Jan M. Power Aware Design Methodologies. Springer,2002.
    [123]Chunlong Guo, Lizhi Charlie Zhong, Jan. M. Rabaey. Low Power Distributed MAC for Ad Hoc Sensor Radio Networks. Global Telecommunications Conference (GLOBECOM'01),2001.
    [124]Shan Liang, Yunjian Tang, Qin Zhu. Passive Wake-up Scheme for Wireless Sensor Networks. ICIC Express Letters,2008,2(2):149-154.
    [125]Shah R, Rabaey J. Energy aware routing for low energy ad hoc sensor networks. In: Proc.of the IEEE Wireless Communications and Networking Conf. Orlando:IEEE Communications Society, 2002:350-355.
    [126]S. Cui, A. J. Goldsmith, A. Bahai. Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Jounal on Selected Areas in Communications,2004,22(6): 1089-1098.
    [127]S. K. Jayaweera. Virtual MIMO-based cooperative communication for energy-constrained resource-constrained wireless sensor networks. IEEE Trans. Wireless Commun, May 2006,5(5): 984-989.
    [128]Simic. L., Berber. S.M., Sowerby. K.W.. Sowerby, Energy-efficiency of cooperative diversity techniques in resource-constrained wireless sensor networks.in Proc.18th Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC'07), Athens.2007.
    [129]B. Sklar. Rayleigh fading channels in mobile digital communication systems part Ⅱ: Mitigation. IEEE Communications Magazine,1997,35(9):148-155.
    [130]罗涛,乐光新.多天线无线通信原理与应用.北京:北京邮电大学出版社,2005.
    [131]Shengping Qin, Peide Liu, Xin Zhang, et al. Channel estimation with timing offset based on PSD&LS estimation for wireless OFDM systems. Intelligent Signal Processing and Communication Systems,2007:248-251.
    [132]Shin C, Heath R W, Powers E J. Blind channel cstimation for MIMO-OFDM systems. IEEE Transactions on Vehicular Technology.2007,56(2):670-685.
    [133]T. S. Rappaport. Wireless communications:principles and practice(影印版).北京:电子工业出版社,1998.
    [134]S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on selected areas in communications 1998,16(8):1451-1458.
    [135]V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time block coding for wireless communications:performance results. IEEE Journal on selected areas in communications,1999, 17(3):451-460.
    [136]Michel C.Jeruchim, Philip Balaban, K. Sam Shanmugan.周希元,陈卫东,毕见鑫译.通信系统仿真—建模、方法和技术.北京:国防工业出版社,2004.
    [137]曹祁生,梁德群.突破正交约束的调制技术研究.中国科学,2007,37(8):1-8.
    [138]曹祁生,梁德群.非正交多重调制的研究.电子学报,2006,34(1):19-23.
    [139]周竹青,孙云涛,梁德群,等.NOMM通信系统的线路仿真及串音模型分析.大连海事大学学报,2005,31(1):84-87.
    [140]刘播雨.移相重叠码系统重要性能指标的研究:(硕士学位论文).大连:大连海事大学,2004.
    [141]S.V.Ahamed, V.B.Lawrence. Design and Engineering of Intelligent Communication Systems. London:Kluwer Academic Publishers,1997.
    [142]ANSI Working Group. T1E1.412003—002R3, Draft proposed American National Standard, spectrum management for loop transmission systems, Issue 2. New Orleans, LA,2003.
    [143]VDSL Alliance, K.Jacobsen, Ed. VDSL alliance SDMT VDSL draft standard proposal. ANSI Contribution,1998, TlE1.4:98-265.
    [144]VDSL Coalition, V. Oksman, Ed. VDSL Draft Specification. ANSI cont. T1E1.4/1998-O45T1,1998.
    [145]P. Spruyt, S. Braet. Solving the issue of radio interference when deplying digital subscriber lines. Proc. Network and Opt. Comm. Conf.1997:98-105.
    [146]VDSL system requirements report. ANSI Contribution, T1E1.4/1997-016,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700