用户名: 密码: 验证码:
螺旋油楔滑动轴承空穴特性的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速、超高速工况下,润滑油膜极易产生破裂,从而形成空穴。空穴的产生对滑动轴承工作性能的影响越来越成为人们普遍关注的问题。其中空穴的边界是研究焦点之一,油膜破裂边界和油膜再形成边界的确定是保证轴承在理想条件下运转的必要条件。基于这个出发点,以螺旋油楔滑动轴承为对象,采用理论与实验相结合的方法,研究了螺旋油楔滑动轴承的空穴特性,为高速滑动轴承的设计与应用奠定基础。
     (1)以满足流量平衡的油膜破裂边界和再形成边界为基础,建立了将完整油膜区和空穴区统一起来的通用方程,并导出了通用方程的差分求解公式。
     (2)理论研究了螺旋油楔滑动轴承的油膜破裂区形状、油膜破裂位置、油膜再形成位置以及油膜破裂面积,揭示了油腔螺旋角、转速、供油压力以及偏心率对汕膜空穴特性的影响规律。油腔螺旋角和偏心率是影响油膜破裂位置的两个至关重要的因素;转速、供油压力的改变对油膜破裂位置没有明显的影响。油膜再形成位置、汕膜破裂面积受油腔螺旋角、转速、供油压力和偏心率的影响较大。
     (3)为了便于观察轴承空穴,对原有的高精度滑动轴承实验台进行了改进。实验中轴承材料为有机玻璃。对螺旋油楔滑动轴承的空穴特性进行了试验研究。采集了不同转速、供油压力下的油膜破裂区图像;测量了轴承端泄量、出油孔流量及平均温升;对实验结果进行处理,得到了油膜再形成位置及破裂面积与转速和供油压力的试验关系式,发现了油膜破裂位置不受转速和供油压力的影响。并与普通三腔滑动轴承的油膜破裂区域进行了试验对比,揭示了各自的空穴区特点。
     (4)将本文推导的质量守恒边界与实验拟合边界分别进行了比较:采用两种边界所计算的油膜破裂位置差距不大;一个油腔的油膜再形成位置与实验比较接近,另两个油腔有一定的误差,主要是两个油腔位于实验台底部,测量时的误差所导致。油膜破裂面积的理论值与实验值误差较小。
     (5)以质量守恒边界和实验拟合边界为基础,研究了不同结构和工作参数下,边界条件对轴承动静特性的影响规律,揭示了这种轴承的独有特性。结果显示:轴承油腔结构对轴承的静、动态特性的影响较为明显。采用两种边界所得结果有一定的误差,是由于数据测量和边界拟合的误差所致。
     (6)研究了螺旋油楔滑动轴承的流体热动力。根据实验观察,油膜空穴区流体由两部分组成:油膜破裂与再形成之间的条形流以及粘附在轴颈表面的层流。因此,空穴区采用气液两相流共同存在的状态,即蒸汽和润滑油的混合物。空穴区的物理参数以两相流的平均特性来替代。完整油膜区采用润滑油的物理参数。将广义雷诺方程、油膜能量方程及轴瓦热传导方程联立,分析了油腔螺旋角以及供油压力、供油温度对轴承内表面温度的影响规律。结果显示:油腔螺旋角、供油温度对轴承内表面温度的影响比较大;供油压力的影响较小。
Under high speed and super-high speed conditions, the oil film is easy to crack and becomes cavitation. The existence of cavitation has a great effect on the work characteristics of journal bearing which brings out more and more attention. The boundary of cavitation is the best important, the decision of rupture boundary and reformation boundary of oil film is nessary to keep bearing working in a desirable conditon. Based on this, the cavitation characteristics of a spiral oil wedge journal bearing have been investigated theoretically and experimentally with a view to design and application of high speed journal bearings.
     Firstly, based on the rupture boundary and reformation boundary of oil film which is satisfied with the flowrate balance, the common equation which integrates the oil film region and cavitation region is established, and deduced the formulas by means of finite differential method.
     Secondly, the rupture region shapes of oil film, rupture locations of oil film, reformation locations of oil film and rupture area of spiral oil wedge journal bearing are studied theoretically, And the influences of spiral angle of oil wedge, rotating speed and supply pressure on cavitation characteristics are investigated. The results show that spiral angle and eccentricity ratio have great influences on rupture location of oil film; the change of rotating speed and supply pressure has not an effect on rupture location; and rotating speed, supply pressure and eccentricity ratio have a great influenc on reformation location of oil film and rupture area of oil film.
     Thirdly, the original journal bearing experiment table is improved in order to observe the cavitation. The material of journal bearing is synthetic glass. Then takes some pictures of spiral oil wedge journal bearings under different rotating speeds and supply pressures and measures the oil flowrate of the journal bearings and outlet holes of spiral oil wedge journal bearing and temperature rise of the lubricant. Finally, obtains the relations of reformation location of oil film and rupture area of oil film with the rotating speed of the shaft and supply pressure and finds that rotating speed and supply pressure have not an effect on rupture location of oil film. And compared with common three wedge journal bearing in the experiment, and reveals the cavitation characteristic of each.
     The experimental fitting boundary is compared with JFO boundary and shows the rupture location of oil film under two boundarys is almost identical, the reformation location of one oil wedge is the same with experiment result and the reformation of the other has a great gap, the main reason is that two oil wedge locates the bottom of experiment table and has some errors in the measurement. The error between the theoretical result and the experimental result of rupture area of oil film is more less.
     Based on JFO boundary and experimental fitting boundary, the effects of the bearing configuration and work parameters on the bearing performances are researches and reveals unique characteristic of the bearing. The results show the configuration of oil wedge of spiral oil wedge journal bearing has a great influence on the static and dynamic performances, there are some errors between JFO boundary and experimental fitting boundary that are caused by measurement and fitting of boundary condition.
     Finally, thermohydrodynamic analysis of spiral oil wedge journal bearing is carried out. Based on the experiment, the lubricant flow in the cavitated region consists of two parts:narrow oil streamers extending over the gap and between the film rupture and reformation boundaries. There is a two-phase flow in the cavities region, it is assumed that a homogenous mixture of vapor and lubricant exists in the cavitated zone and the physical parameters are substituted with a mean physical properties.of two phase flow. In uncavitated part the physical parameters of lubricant is with oil. Using finite differetial method, the generalized Reynolds equation, energy equation of oil film and heat conduction equation of the bush are solved. Then the effects of spiral angle of oil wedge, supply pressure and supply oil temperature on the bush inner surface temperature distribution of spiral oil wedge journal bearing arc investigated. And the results indicate that spiral angle and supply oil temperature have a great effect on the bush inner surface temperature, but contrarily, supply pressure has a little effect.
     This work is supported by the National Basic Research Program of China(973 Program)(No.2009CB724404)
引文
1 王春好.新型动静压轴承设计和性能分析[D].北京:北京工业大学硕士学位论文,2007:1-2.
    2 路甬祥.中国制造科技的现状与发展[J].中国科学基金,2006,(5):2-3.
    3 姜涛.WMB型液体动静压轴承在精密机床上的应用[J].制造技术与机床,1997,(5):38.
    4 袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,2003:30-40.
    5 郭力,李波.液体动静压混合轴承原理与应用[J].磨床与磨削.2000,(2):64-65
    6 苏荭.基于质量守恒边界条件的油膜空穴研究[D].上海大学硕士学位论文.2003:1-2
    7 孙大成.润滑力学讲义[M].北京:中国友谊出版社.1991:1-20
    8 安琦.滑动轴承中气蚀磨损现象研究现状评述[J].中国机械工程.2002,13(3):263-266
    9 B. Tower. First Report on Friction Experiments[C]. Proc, Inst, Mech, Engrs. 1883,36-58
    10 张青雷.油膜形成和破裂边界对轴承性能影响的研究[D].西安交通大学博士学位论文.2000:3-6
    11 张直明,张言羊,谢友柏,等.滑动轴承的润滑流体动力润滑理论[M].北京:高等教育出版社.1986:31
    12 孙恭寿,冯明.液体动静压混合轴承设计[M].北京:世界图书出版公司.1993:11-22
    13 陈伯贤,裘祖干,张慧生.流体润滑理论及其应用[M].北京:机械工业出版社.1991:1-20
    14 A. Sommerfeld. Zur Hydrodynamischen Theorie der Schmiermittelreibung[J]. Z Math u Physik.1904,50:97-105
    15 W. J. Harrison. The Hydrodynamic Theory of Lubrication with Special Reference to Air as a Lubrication[J]. Trans Camb Phil Soc.1913,22(3):39-46
    16 L. Rayleigh. Notes on the Theory of Lubrication[J]. Phil Mag.1918,35(1): 36-43
    17 G. B. Du Bois, F. W. Ocvirk. Analytical Derivation and Experimental Evaluation of Short Bearing Applications for Full Journal Bearing[C]. NASA Tech. Rep.1953:1157-1172
    18 O. Pinkus. Solution of Reynolds Equation for Finite Journal Bearing[J]. ASME Trans.1958,57(5):323-330
    19 J. M. Redecliffe, J. H. Vohr. Hydrostatic Bearings for Cryogenic Rocket Engine Turbopumps[J]. ASME Journal of Lubrication Technology.1969,7:557-575
    20 H. Elord, C. W. Ng. A Theory for Turbulent Fluid Films and its Application to Bearing[J]. ASME Journal of Lubrication Technology.1967,7:89-90
    21 Li Wanglong, Wang Chengi, Lue Jangi. Surface Roughness Effects in Journal Bearings with Non-newtonian Lubricants [J]. Tribology Transactions.1996, 39(4):819-826
    22 王晓力,温诗著,桂长林.基于平均流动模型的广义雷诺方程[J].润滑与密封.1998,3:16-18
    23 陈学科,裘祖干.幂律流体的平均流动模型在粗糙径向滑动轴承中的应用[J].复旦学报(自然科学版).1995,34(6):671-676
    24 裘祖干,张长松.动载径向粗糙轴承分析[J].内燃机学报.1993,11(2):159-164
    25 张朝,裘祖干.粗糙度和流体的非牛顿特性对内燃机滑动轴承性能的影响[J].内燃机工程.1995,16(1):69-76
    26 张朝.高速重载径向滑动轴承的热弹流润滑TEHD研究和粗度与非牛顿流变学对动载滑动轴承影响研究[D].上海大学博士学位论文.1997:1-10
    27 H. J. Pecken, G. Knoll. On the Numerical Determination of Flow Factors[J]. ASME Jourml of Tribology.1997,119:259-26
    28 S. K. Rhow, H. G. Elrod. The Effect on Beaing Load-Carrying Capacity of Two-Sided S(?)ed Renghness[J]./SME Jo(?)al of Lub(?)cation Technology. 1974,94(1):554-560
    29 J. Prakash. On the Lubrication of Ro(?)h Rollers[J]. ASME Journal of Lubrication Technology.1984,106:324-330
    30 A. Dyson, A. R. Wilson. Film Thickness in Elastohydrodynamic Lubrication by Silicone Fluids[C]. Proceedings of the Institution of Mechanical Engineers, Part 3B.1966,180:97-112
    31 W. Hirst, A. J. Moore. Non-Newtonian Behaviour in Elastohydrodynamic Lubrication[C]. Proceedings of the Royal Society, London, Series A.1974,337: 101-121
    32 H. Eyring. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates[J]. Journal of Chemical Physics.1936,4:283-291
    33 T. Ree, H. Eyring. Theory of Non-Newtonian Flow. I, Solid Plastic System; II, Solution System of High Polymers[J]. Journal of Applied Physics.1955,26: 793-809
    34 P. Yang, S. Wen. A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication[J]. ASME Journal of Tribology.1990,112: 631-636
    35 P. Yang, S. Wen. The Behavior of Non-Newtonian Thermal EHL Line Contacts at Dynamic Loads[J]. ASME Journal of Tribology.1992,114:81-85
    36 H. S. Hsiao, B. J. Hamrock. A Complete Solution for Thermal Elastohydrodynamic Lubrication of Line Contacts Using Circular Non-Newtonian Fluid Model[J]. ASME Journal of Tribology.1992,114: 540-552
    37 H. Kim, F. Sadeghi. Non-Newtonian Elastohydrodynamic Lubrication of Point Contact[J]. ASME Journal of Tribology.1991,113:703-711
    38 J. Liu. Thermal Non-Newtonian Elastohydrodynamic Lubrication of Point Contacts[D]. University of Leeds, Ph.D. Thesis.1994:1-30
    39 O. Pinkus, B. Sternlicht. The Maximum Temperature Profile in Journal Bearings[J]. Transaction of the ASME.1957,2:337-341
    40 O. Pinkus, D. J. Wilcock. Thermal Effects in Fluid Film Bearings[J]. Mech. Eng..1980,4:1-23
    41 H. Mchallion, F. Yousif, T. Lloyd. The Anaiysis of Thermal Effects in a Full Journal Bearing[J]. Journal of Lubrication Technology.1970,10:578-587
    42 R. Boncompain, J. Frene. A Study of the Thermohydrodynamic Performance of a Plain Journal Bearing with Comparison Between Theroy and Experiment. Trans[J]. ASME, J. Lubr. Technol.1983,105:422-428
    43 K. Hatakenaka, M. Tanaka. Thermohydrodynamic Performance of Journal Bearings with Partial Reverse Flow and Finger-type Cavitation[C]. Proc Instn Mech Engrs Part J:Engineering Tribology.2002,216:315-325
    44 R. S. Paranjpe, Han Taeyoung. A Study of the Thermohydrodynamic Performance of Steadily Loaded Journal Bearing[J]. Tribology Transactions. 1994,37(4):679-690
    45 K. Mistry, S. Biswas, K. Athre. Study of Thermal Profile and Cavitation in a Circular Journal Bearing[J]. Wear.1992,159:79-89
    46 M. M. Khonasari, J. Y. Jang, M. Fillon. On the Generalization of Thermohydrodynamic Analyses for Journal Bearings[J]. Trans. ASME, J. Tribol..1996,118:571-580
    47 T. Han, R. S. Paranjpe. A Finite Volume Analysis of the Thermohydrodynamic Performance of Finite Journal Bearings[J]. Trans. ASME, J. Tribology.1990, 112:557-566
    48 D. Dowson, C. A. March. A thermohydrodynamic analysis of journal bearings[C]. In:Proc. Inst. Mech. Eng,1967,181:117
    49 J. Ferron, J. Frene, R. Boncompain. A study of the thermohydrodynamic performance of a plain journal bearing comparison between theory and experiment[J]. ASME J. Lubr. Technol.,1970.
    50 K. P. Oh, P. K. Goenka. The elastohydrodynamic solution of a journal bearing under dynamic loading[J]. ASME Journal of Tribology,1985,107:389-395
    51 B. Fantino. Viscosity effects on the dynamic characteristics of an elastic engine[C]. SAE 85207(SP-640)
    52 B. Fantino. Comparison of dynamic behavior of elastic connecting-rod bearing in both petrol and diesel engines[J]. ASME Journal of Tribology,1985,107(1): 87-91
    53 T. W. Bates. Oil film thickness in a elastic connecting rod bearing:comparison between theory and experiment[J]. STLE Tribology Transactions,1990,33(2): 254-266
    54 H. Xu. A new approach to the solution of elastohydrodynamic lubrication of crankshaft bearings[C]. Proceedings of the Institute of Mechanical Engineers, 1990,204(C):187-197
    55 T. Gamier. Three-dimensional EHD behavior of the engine block/crankshaft assembly for a four cylinder inline automotive engine[J]. ASME Journal of Tribology,1999,121(4):721-730
    56 P. Maspeyrot. Comparison between aligned and misaligned bearings under dynamic loading in both quasi-static and dynamic misalignment[C]. Proceedings of the Leeds-Ly on Symposium on Tribology.1990:19-26
    57 M. Lahmar. Comparison of the dynamic behaviour of two misaligned crankshaft bearing[C]. Proceedings of the Institute of Mechanical Engineers(Jouranal of Automobile Engineering).2000,214(D8):991-997
    58 孙军.曲轴.轴承系统摩擦学、刚度和强度的耦合研究[D].合肥工业大学博士学位论文.2005:1-10
    59 武弘毅.浅谈液体动静压轴承[J].机械工人(冷加工).2003,5:20-22
    60 唐军威.动静压轴承中的关键技术研究[J].化学工程与装备.2009,6:60-62
    61 樊红朝,杨建玺,崔勤建.动压油膜轴承研究现状与应用[J].轴承.2003,2:1-3
    62 王凤才,袁小阳,朱均.变阶梯结构自适应径向滑动轴承的研究[J].摩擦学学报.2000,120(3):197-201
    63 王凤才,张锁怀,徐华,等.随动耦合变阶梯径向滑动轴承动力特性及稳定性的研究[J].摩擦学学报.2000,120(6):460-464
    64 苏红,毛军,蔡琳.一种复合式滑动轴承的实验研究[J].北方交通大学学报.2003,27(4):11-13
    65 陈淑江,路长厚.新型螺旋油楔动静压滑动轴承的油腔结构研究[J].润滑与密封.2006,10:15-18
    66 戴攀,张亚宾,徐华.新型高速铣床主轴水润滑动静压轴承结构及性能研究[J].润滑与密封.2009,34(2):11-14
    67 A. Harnoy. M. M. Khons(?)i. Hydro-Roll:a Novel Bearing Design with Superior Thermal Characteristics[J]. Tribology Transactions.1996,39(2):455-461
    68 Yoshio Kumada, Katsuyuki Hashzume, Yoshitsugu Kimura. Performance of Plain Bearings with Circumferential Microgrooves[J]. TLE Tribology Transaction.1995,1(39):81-86
    69 Kenji Watanabe, Jyunichi Natsume, Katsuyuki Hashizume, et al. Theoretical Analysis of Bearings Performnce of Microgrooved Bearing[J]. JASE Review. 2000,21:29-34
    70 G. Bhushan, S. S. Rattan, N. P. Mehta. Stability Analysis of Four-Lobe Pressure-Dam Bearings[J]. Tribology Letters.2002,13(1):1-10
    71 G. Bhushan, S. S. Rattan, N. P. Mehta. Effect of L/D Ratio on the Performance of a Four-Lobe Pressure Dam Bearing[J]. Word Acaademy of Science, Engineering and Technology.2007,32:108-112
    72 D. Vijayaraghavan. New Concepts in Numerical Prediction of Cavitation in Bearings[D]. University of Toledo, Ph.D thesis.1989:20-30
    73 L. K. R. Gtlmbel. Verleich der Ergebrusse der Rectinerischen Behandling des Lagerschmierangsproblem mir Neueren Veisuchsergebrussen[J]. Monatsbl. Berliner Bez. Ver. Dtsch. Ing..1921,9:125-128
    74 H. W. Swift. The Stability of Lubricating Films in Journal Bearings[J]. Journal of Institution of Civil Engineers.1931,233:267-288
    75 W. Stieber. Das Schwimmlager Hydrodynamische Theorie des Gleitlagers[M]. Berlin:Ver Dtsch. Ing..1933:15-25
    76 A. Z. Szeri. Tribology Friction, Lubrication and Wear[M]. Hemisphere Publishing Corp., McGraw-Hill.1980:100-120
    77 L. Floberg. Experimental Investigation of Cavitation Regions in Journal Bearings[J]. Transactions of Chalmers University of Technology, Guthenberg, Sweden.1961,238:56-70
    78 L. Floberg. Infinite Journal Bearing Considering Vaporization[J]. Transactions of Chalmers University of Technology, Guthenberg, Sweden.1957,189:80-90
    79 K. O. Olsson. Cavitation in Dynamically Loaded Bearing[J]. Transactions of Chalmers University of Technology, Guthenberg, Sweden.1965,308:1-120
    80 L. Floberg. On Hydrodynamic Lubrication with Special Reference to Sub-Cavity Pressures and Number of Streamers in Cavitation Regions[J]. Acta Polytechnic Scan. Mechanical Engineering Series, ME.1965,19:1-117
    81 L. Floberg. Cavitation Boundary Conditions with regard to the Number of Streamers and Tensile Strength of the Liquid. First Leeds-Lyons Symposium on Cavitation and Related Phenomena in Lubrication[M]. Mechanical Engineering Publication Ltd..1975:31-35
    82 B. Jakobsson, L. Floberg. The Finite Journal Bearing Considering Vaporization[M]. Chalmers Tekniska Hoegskolas Handlingar.1957,190:1-116
    83 C. H. T. Pan. Dynamic Analysis of Rupture in Thin Fluid Films.1-A Noninertial Theory[J]. ASME Trans., J. of Lubri. of Tech..1983,105:96-104
    84 D. Vijayaraghavan, D. E. Brewe. Frequency Effects on a Journal Bearing for Periodic Loading[J]. ASME Trans, J. of Trib..1992,114(2):1047-115
    85 徐文熙,徐文灿.粘性流体力学[M].北京:北京理工大学出版社1989:20-25
    86 徐小峰,崔升,张文,等.再附着边界条件下无限长轴承非线性油膜力的计算[J].复旦学报(自然科学版).1999,38(2):177-180
    87 沈心敏,闻英梅,孙希桐.摩擦学基础[M].北京:北京航空航天大学出版社.1991:119
    88 平克斯0,斯得因李希特B.流体动力润滑理论[M].北京:机械工业出版社.1978:1-400
    89 F. J. Glauss. Solid lubrications and self lubricating solids[M]. London: Academic Press.1972,1-150
    90 Alexandrov, Ettels. The journal of mechanical engineering science[C]. Proc Inst Mech Engrs.1977,199(2):58
    91 钟一谔,何衍宗,王正.转子动力学[M].北京:清华大学出版社.1987,1-130
    92 O. Reynolds. On the Theory of Lubrication and its Application to Beauchamp Tower's Experiments, Including an Experimental Determination of the Viscosity of Olive Oil[J]. Philos, Trans. R. Sco. London ser.1886, A177: 157-233
    93 H. G. Eloid, M. L. Adams. A Computer Program for Cavitation and Starvation Problems[C]. In:Cavitation and Related Phenomena in Lubrication, New York. 1974:37-41
    94 H. G. Elord. A Cavitation Algorithm [J]. Trans. Of the ASME.1981,103(3): 350-354
    95 苏荭.滑动轴承油膜空穴压力理论确定研究[J].机械工程师.2007,5:88-89
    96 苏荭,王小静,张直明.动载工况下滑动轴承油膜边界历史迁移问题[J].机械工程学报,2006,42(4):8-12
    97 王小静,苏荭,陈晓阳,等.动载径向滑动轴承油膜空穴研究[J].太原重型机械学院学报.2004,25(9):33-36
    98 潘菁菁,苏荭,王小静,等.基于质量守恒边界条件的动载滑动轴承性能分析[J].润滑与密封.2005,(2):41-43
    99 D. Vijayaraghavan, T. G. Keith. Development and Evaluation of Cavitation Algorithm[J]. Tribology Transactions.1989,32(2):225-233
    100 D. Vijayaraghavan. An Efficient Numerical Procedure for Thermohydrodynamic Analysis of Cavitating Bearing[J]. Trans. ASME, J. Tribol.. 1996,118,555-563
    101 A. Kumar, J. F. Booker. A Finite Element Cavitation Algorithm: Application/Validation[J]. ASME Trans., J. of Trib..1991,113:255-261
    102 A. Kumar, J. F. Booker. A Finite Element Cavitation Algorithm [J]. ASME Trans., J. of Trib..1991,113:276-286
    103 Q. Yu, T. G. Keith. A Boundary Element Cavitation Algorithm[J]. STLE Tribol. Trans..1994,37(2):217-226
    104 S. A. Gandjalikhan Nassab, B. Maneshian. Thermodydrodynamic Analysis of Cavitating Journal Bearings Using Three Different Cavitation Model[C]. Proc. ImechE.2007,1216:315-325
    105 B. Vincent, P. Maspeyrot, J. Frene. Cavitation in Dynamically Loaded Journal Bearings Using Mobility Method[J].Wear.1996,193:155-162
    106 D. Vijayaraghavan, D. E. Brewe, T. G. Keith. Effect of Out-of-roundness on the Performance of a Diesel Engine Connecting-rod Bearing[J]. ASME J. Tribol. 1993,115; 538-543
    107 B. Vincent, P. Maspeyrot, J. Frene. Cavitation in Journal Bearing Using Multigrid Techniques[C]. ASME PETDIV PUBL PD, ASME, NEW YOUK, NY, (USA).1996,76(4):195-200
    108 安琦,经树栋,周银省,等.汕气两相流对滑动轴承油膜破裂位置的影响[J].机械科学与技术.1998,17(2):233-234
    109 J. A. Cole, C. J. Huges. Oil Flow and Film Extent in Complete Journal Bearing[C]. Proc Inst Mech Eng.1956,170:499-510
    110 孙美丽,张直明.360°动、静载荷滑动轴承油膜分布实验台的设计及实验研究[J].上海大学学报(自然科学版).1997,5(3):500-507
    111 J. A. Cole, C. J. Huges. Visual Study of Film Extent in Dynamically Loaded Complete Journal Bearings [C]. IME Conference on Lubrication and Wear. London,1957:147
    112 B. Auksmann. Experimental Investigation of Oil Film Behaviour In Short Journal Bearings[D]. California Institute of Technology Pasadena, Ph.D. Thesis. 1959
    113 J. A. Cole. Low Pressure Regions Occurring in the Hydrodynamic Films of Journal Bearings[J]. Scientific Lubrication.1951,3:1-10
    114 房超峰.动载滑动轴承瞬态全油膜迁移的研究[D].上海大学硕士论文.2007:1-5
    115 D. C. Sun, D. E. Brewe. A High Speed Photography Study of Cavitation in a Dynamically Loaded Journal Bearing[J]. Journal of Tribology, Trans ASME. 1991,113:287-294
    116 B. O. Jacobson, B. J. Hamrock. High-speed Motion Picture Camera Experiments of Cavitation in Dynamically Loadlly Journal Bearings[C]. Proceeded for the Lubrication Conference of Mechanical Engineers. Washington, D.C.1982:270
    117 D. W. Parkins, R. M. Miller. Cavitation in an Oscillatory Oil Squeeze Film[J]. ASME Trans, Jour, of Trib..1984.106:360-366
    118 D. E. Brewe. Theoretical Modeling of the Vapor Cavitation in Dynamically Loaded Journal Bearings[J]. Jour, of Trib..1986,108(3):628-638
    119 D. C. Sun, D. E. Brewe. Simultaneous Pressure Measurement and High-Speed Photography Study of Cavitation in a Dynamically Loaded Journal Bearing[J]. ASME Trans., J. of Trib..1993,115(1):88-95
    120 J. D. Knight, P. Ghadimi. Analysis and Observation of Cavities in a Journal Bearing Considering Flow Continuity[J]. Tribology Transactions.2001,44(1): 88-96
    121 J. D. Knight, A. J. Niewiarowski. Effects of Two Film Rupture Models on the Thermal Analysis of a Journal Bearing[J]. Journal of Tribology.1990,112(2): 183-188
    122 J. D. Knight, L. E. Barrett. Analysis of Axially Grooved Journal Bearings with Heat Transfer Effects[J]. ASLE Transactions.30(3):316-323
    123 J. D. Knight, P. Ghadimi. Effects of Modified Effective Length Models of the Rupture Zone on the Analysis of a Fluid Journal Bearing[J], Trib. Trans.1992, 35(1):29-36
    124 H. Heshmat. The Mechanism of Cavitation in Hydrodynamic Lubrication[J]. Tribol. Trans..1991,34:177-186
    125 H. Heshmat. Experimental Studies in Cavitation, In:Current Research in Cavitation Fluid Films[M]. STLE Special Publications, SP 28.1988:4-8
    126 T. Kawase, T. Someya. An investigation into the oil film pressure distribution in dynamically loaded journal bearing[M]. Elsevier Science Publishers,1985: 1-10
    127 Chen Xiaoyang, Sun Meili, Wang Wen, et al. Experimental Investigation of Time-dependent cavitation in an Oscillatory Squeeze Film[M]. Science in China Ser.G.Physics, Mechanics & Astromy.2004,47:107-112
    128 孙美丽.360°滑动轴承静载和动载油膜气穴分布的研究[D].上海大学硕士论文.1995:1-6
    129 孙美丽,韩兆兵,张直明.大扰动情况下滑动轴承内瞬态汕膜分布研究[J].润滑与密封.1997,(5):7-9
    130 陈淑江.螺旋油楔滑动轴承润滑机理的理论与实验研究[D].山东大学博士论文.2007:120-129
    131 王学锋,郭峰,杨沛然.弹流润滑气穴现象的实验观察[J].自然科学进展.2006,16(8):1056-1060
    132 O.R.朗格,W.斯泰因希尔珀.滑动轴承[M].北京:机械工业出版社,1986:14-18
    133 富彦丽.径向滑动轴承瞬态热弹性流体动力润滑性能的研究[D].西安交通大学博士论之.2003:14
    134 T. Syverud. Experimental investigation of the temperature fade in the cavitation zone of full journal bearings[J]. Tribology International,2001,34(12):859-870
    135 R. Boncompain, M. Fillon, J. Frene. Analysis of thermal effects in hydrodynamic bearings. Trans[J]. ASME, J. Tribology.1986,108:219-234
    136 王晓力,朱克勤.应力偶对滑动轴承热流体动力学特性的影响[J].清华大学学报(自然科学版).2002,42(2):239-242
    137 王晓力,刘伟.微极流体润滑条件下能量方程的推导及应用[J].北京理工大学学报.2005,25(5):380-384
    138 D. Dowson, J. Hudson, B. Hunter, et al. An experimental investigation of the thermal equilibrium of steadily loaded journal bearings[C]. Proc. ImechE, 1996-1997,101:70-80
    139 M. K. I. EI-Deihi, D. T. Gethin. A thermohydrodynamic analysis of a twin axial groove bearing under different loading directions and comparison with experimen[J]. Tribology,1992,114(2):304-310
    1. Floberg, L., Cavitation in Lubricating Oil Films, Cavitations in Real Liquids, in Proc. ofSymp. on Cavitation in Real Liquids, GM Research,1962, Davies, R., ED., Elsevier, pp.138-146.
    2. Hong Su, Xiaojing Wang, Zhiming Zhang. A Comparison Between Two Boundary Conditions of Journal Bearings, Lubrication Engineering,2002, (5), pp.3-5.
    3. Hong Su, Xiaojing Wang, Zhiming Zhang. History Moving of Cavitation for Dynamically Loaded Journal Bearing, Chinese Journal of Mechanical Engineering, 2006,42(4), pp.8-12.
    4. Elrod, H. G., A Cavitation Algorithm, Jour, of Lubr. Tech.,1982,103(3), pp, 350-354
    5. Sheng Cui, Pengqing Qiu, Wen Zhang. Comparing Between Two Numerical Procedure Methods Pressure Distribution of Journal Bearings, Chinese Journal of Applied Mechanics,1999,16(4), pp.119-122.
    6. Chang-hou Lu, Xing Ai, Jianfeng Li. Analysis and Research on Spiral Oil Wedge Hydrodynamic Bearing for Precise Machine Tool Spindles, International Journal of Machine Tools & Manufacture,1998,38 (3), pp.197-203.
    7. Shujiang Chen, Changhou Lu. The Analysis of Structure on a Novel Spiral Oil Wedge Hybrid Journal Bearing, Lubrication Engineering,2006, (10), pp.15-18.
    1 YAN Qing-hua, YAN Yong ming, AN Qi. Influence of Preload Factor on the Stability of Three-Lobe Journal Bearing[J]. Journal of East China University of Science and Technology(Natural Science Edition),2006,32(11):1365-1368.
    2 Zhang Qinglei. A study of the oil film reformation and rupture boundaries effects on the journal bearing performance[D]. Xi'an:Xi'an Jiaotong University,2003.
    3 Yang China, Li Huiguang, Yu Lie. Frequency effects on the dynamic characteristics of aerodynamic tilting-pad journal bearing[J]. Journal of Xi'an Jiaotong University, 2007,41(3):330-333.
    4 Yang Lihua, Li Huiguang, Yu Lie. Dynamic stiffness and damping coefficients of aerodynamic tilting-pad journal bearings[J]. Tribology International,2007,40(9): 1399-1410.
    5 Yu Lie, Qi Shemiao, Geng Haipeng. A generalized solution of elastoaerodynamic lubrication for aeroynamic complicant foil bearings[J].Sci China E:Eng Mater Sci 2005,48(4):414-429.
    6 Yu Lie, Liu Heng. Rotor-bearing system dynamics[M]. Xi'an:Press of Xi'an Jiaotong University,2001.
    7 Wang Fengcai, Zhang Suohuao, Xu Hua,et al. Dynamic characteristics and stability of adaptive variable structure journal bearing with coupling two-step films[J]. Tribology,2000,20(6):460-464.
    8 Sahu M, Sarangi M, Majumdar B C. Thermo-hydrodynamic analysis of herringbone grooved journal bearings[J]. Tribology International,2006,39 (11): 1395-1404.
    9 Chen Shujiang.Theoretical and experimental study on lubrication mechanism of a spiral oil wedge journal bearing[D]. Shandong:Shandong University,2007.
    10 Kostrzewsky G, Taylor D V, Flack R D, et al. Theoretical and experimental dynamic characteristics of a highly preloaded three-lobe journal bearing[J]. Tribology Transactions,1998,41(3):392-398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700