用户名: 密码: 验证码:
滑动轴承非线性轴心轨迹的瞬态与周期特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轴心轨迹是滑动轴承工作状态的综合反映。通过轴心轨迹,可以确定轴承的回转精度和最小油膜厚度,判断转子系统的稳定性和轴承设计参数的合理性;通过控制可以实现具有特殊用途的期望轴心轨迹。本课题针对滑动轴承的复杂受力状态,开展非线性轴心轨迹的瞬变及周期特性研究,对旋转机械的精度和稳定性控制及期望轴心轨迹的实现具有重要意义。
     首先,基于轴颈惯性力、非线性油膜力和动载荷之间的平衡,建立了滑动轴承轴心轨迹的非线性分析模型。同时,为便于比较,根据油膜力线性化方法,建立了轴心在平衡位置附近作小位移涡动的线性分析模型。
     其次,提出了非线性轴心轨迹的位置配置计算方法。步骤是:由初始条件,先求解该瞬时轴心位置的Reynolds方程,根据油膜压力分布积分得到油膜合力,然后求解运动方程,得到轴心的瞬时加速度,再由欧拉方法计算出轴心的下一个位置参数,如此循环迭代,直到得到完整的轴心轨迹。
     接着研究了阶跃、矩形脉冲、正弦脉冲和三角脉冲复杂载荷作用下,轴心轨迹的瞬态特性、最大油膜压力及最小油膜厚度等主要参数的变化规律,分析比较了四种载荷对主要参数的影响。轴承在稳定工作而受到瞬变载荷作用时,主要参数都有较大的变化。时域中变化剧烈的阶跃和矩形脉冲载荷,比正弦脉冲和三角脉冲载荷对轴心轨迹及主要参数的影响大。由于脉冲载荷的作用时间有限,随着其消失,轴心乃收敛于原平衡位置,而阶跃载荷则使轴心收敛于新的平衡位置。
     研究了不平衡旋转载荷作用下,轴心轨迹的周期特性,分析比较了在小不平衡载荷作用下轴心轨迹非线性分析与线性分析之间的误差,即轴心轨迹中心的位置误差与位移幅值误差。当不平衡载荷较小时,可以作为小扰动载荷处理,轴心轨迹的非线性分析可以用线性分析代替,二者误差较小。
     当不平衡载荷增大时,轴心轨迹的中心偏离原平衡位置向轴承中心移动,且涡动位移随载荷非线性增大,轴心轨迹的非线性分析与线性分析之间的误差增大。对轴心轨迹特性及动态油膜力进行了频谱分析,表明轴心位移及油膜力不仅包含基频成分,而且包含二倍频及三倍频等高频成分,且基频力随不平衡载荷的增加具有明显的线性增加特征。
     基于非线性轴心轨迹和油膜合力的频谱特征,提出了大扰动不平衡载荷作用下轴心轨迹的准线性分析方法:将油膜力基频部分表示为位移、速度的线性函数,采用LMS方法识别出一组当量刚度和当量阻尼系数,再以此刚度、阻尼系数和载荷对轴心轨迹进行准线性分析。比较了非线性分析与准线性分析的误差,完全能够满足工程要求。用准线性分析代替非线性分析,可大大减少计算时间。
     研究了不平衡载荷与阶跃载荷对轴心临界涡动轨迹的影响。不平衡载荷的存在,使临界转速降低,临界涡动提前,半频涡动和基频涡动同时存在。不平衡载荷小时以半频涡动为主,不平衡载荷大时以基频涡动为主。只有不平衡载荷在-定范围时,轴心涡动轨迹才为“内8形”。当轴承处于临界涡动时,如果给轴施加一个阶跃载荷,可以调整轴心的工作位置,抑制临界涡动的发生。
     最后,根据非圆轴心轨迹的应用要求,研究了椭圆轴心轨迹的成形方法。建立了轴心预定轨迹计算模型,计算了轴心同步进动时,实现不同轴心轨迹所需的控制力,并比较了“期望轨迹”与“检验轨迹”之间的误差。从控制力的波形看,圆轨迹所需的控制力优于椭圆轨迹的控制力。从“期望轨迹”与“检验轨迹”的误差看,圆轨迹的误差小于椭圆轨迹的误差。相比同步正进动,轴心作同步反进动时,轴心轨迹的抗扰动能力强,即使在临界转速时,“检验轨迹”都能较好地复现“期望轨迹”。
     论文详细地研究了滑动轴承非线性轴心轨迹的瞬态和周期特性,揭示了轴心轨迹变化的内在规律,为旋转机械的精度、稳定性控制及期望轴心轨迹的实现奠定了理论基础。
     需要指出的是,论文建立的非线性轴心轨迹计算模型,提出的非线性轴心轨迹计算方法,并未涉及具体的轴承结构,因而适用于所有滑动轴承,包括静压轴承和动静压轴承。
     本课题为国家自然科学基金资助项目课题(项目编号:50275089,51075242)。
Journal centre motion trajectory is a comprehensive behavior of journal bearing working condition. Journal centre trajectory analysis can be used to ascertain index repeatability and the least oil film thickness that to judge stability of rotor and rationality of the bearing design parameters. Directed towards complex stress state of journal bearing, the transient and periodical feature of nonlinear journal centre trajectory is studied in this dissertation, which is significant to precision and stableness control of rotating machinery.
     In the first place, the non-linear analysis model of journal centre trajectory is establish, which based on equivalence of neck journal inertial force, non-linear oil film force and dynamic load. Synchronously, based on linearization technique of oil film force the linear model that journal center whirl around its static equilibrium position is established for conveniently analyze.
     Secondly, an algorithmic method is proposed that locate the center position of journal centre trajectory. The following is the procedure, first solve the Reynolds equation of transient bearing center position according to initial conditions, resultant force of oil film can be got by integral of oil film force distribution, then acceleration of journal centre can be got by solve move equation, the next calculate parameters of next position by using Euler method, iteration in this method until acquire a completed journal centre trajectory.
     Thirdly, instantaneous characteristic of journal centre trajectory, maximum oil film force and minimum depth of oil film under step, square wave pulse, sinusoidal pulse and triangular pulse transient load are calculated separately, variation of main parameters is analyzed and also the influence to these parameters caused by different types of loads. Transient load applied to steady working journal bearing will cause the main parameters significantly changed. Step and square wave pulse load fluctuate considerable in time domain such as sinusoidal pulse and triangular pulse signals influence journal centre trajectory and main parameters notably. Owing to action time of impulse load is finite the shaft center will go back to its equilibrium position that the load applied before, on the other side step load will cause the shaft center transit to another equilibrium position.
     The cyclophysis of journal centre trajectory under unbalanced rotating load is investigated. Linear analysis and non-linear analysis of journal centre trajectory that affected by small disequilibrium load are compared, and both journal centre trajectory center position error and displacement amplitude error are studied. Under the condition of disequilibrium load is small, it can be taken as small disturbance, that non-linear analysis of journal centre trajectory can be taken placed by linear analysis, and the error between these two methods is small.
     When the load increased, the center of journal centre trajectory departs its equilibrium position and moves towards to journal center, and whirling displacement increases nonlinearly to the load, and the error between methods of Linear analysis and non-linear analysis will increase too. Spectral analysis is carried out to journal centre trajectory characteristic and dynamic oil film force, results show that shaft center displacement and oil film force not only contain the fundamental frequency component, but also second-harmonic generation and upper, and fundamental frequency force will increase linearly to the unbalanced load.
     Based on spectral features of nonlinear journal centre trajectory and oil film force, an idea of quasi-linear analysis method of journal centre trajectory under large disequilibrium load is proposed, which expresses the fundamental frequency part of oil film force as linear function of displacement and velocity, identify stiffness coefficient and damping coefficient of the bearing by LMS method, and then use these coefficient to analysis journal centre trajectory. The error between non-linear and quasi-linear analysis is calculated, results show that the latter can meet engineering demands and its computer time is much less.
     Finally, according to application of noncircular locus, method of shaping elliptic locus is investigated. The computational modeling of desired trajectories is established, and the control force is calculated that used to force the journal center to move along desired locus when the journal is rotating, the error between desired trajectory and test trajectory is worked out. After analysis the wave pattern, it can be concluded that the force needed to form a circle locus surpasses that to form an ellipse, besides the error is smaller to shape a circle than an ellipse. The ability of resist disturbance of backward precession is stronger than forward precession, even in the condition of critical whirl the locus of backward precession can reproduce desired trajectory accurately.
     Transient and periodical characteristic of nonlinear journal centre trajectory are investigated minutely in this dissertation, that to exposit inherent law of variation of it, these all lay the foundation for precision realization of rotating machinery, stableness control and acquiring desired trajectory.
     It is to be remarked that both the establishment of nonlinear journal centre trajectory calculating model and the proposing of its computing method are not concerned with concrete bearing structure, so all these methods can be used to all types of journal bearings such as hydrostatic bearing and hybrid bearing.
     This project is supported by National Natural Science Foundation of China (No.50275089,51075242)
引文
1.路甬祥.中国制造科技的现状与发展.中国科学基金.2006,5:2-3
    2.姜涛.WMB型液体动静压轴承在精密机床上的应用.制造技术与机床.1997,5:38
    3.李长河,修世超,蔡光起.高速超高速磨削技术发展与关键技术.精密制造与自动化.2006,4:16-21
    4.虞烈,刘恒.轴承-转子系统动力学.西安:西安交通大学出版社.2001
    5.袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社.2003
    6.闻邦椿,顾家柳,夏松波,王正.高等转子动力学.北京:机械工业出版社.2000
    7.朱石坚,何琳.船舶减振降噪技术与工程设计.北京:科学出版社.2002.
    8.《振动与冲击手册》编辑委员会.振动与冲击手册,第一卷.北京:国防工业出版社.1988.
    9.陈莹,孙美丽,房朝峰,王贤刚.动载滑动轴承油膜分布及压力同步采集研究.润滑与密封,2006,10:157-160
    10. Chen Xiaoyang, Sun Meili, Wang Wen, et al. Experimental Investigation of Time-dependent cavitation in an Oscillatory Squeeze Film. Science in China Ser.GPhysics, Mechanics & Astromy.2004,47:107-112
    11.房朝峰,孙美丽,等.动载滑动轴承瞬态油膜的全景实验研究.润滑与密封,2007,7:54-58
    12.孙美丽,韩兆兵,张直明.大扰动情况下滑动轴承内瞬态油膜分布研究.润滑与密封.1997,5:7-9
    13. Tsuneo Someya. On the Development of Negative Pressure in Oil Film and the Characteristics of Journal Bearing. Meccanica.2003,38:643-658
    14.张直明,张言羊,谢友柏,等.滑动轴承的润滑流体动力润滑理论.北京:高等教育出版社.1986
    15.王贡献,褚德英,张磊,沈荣瀛,汪玉.舰船设备冲击试验机研究进展.振动与冲击,2007,2:152-159
    16. B. Tower. First Report on Friction Experiments. Proc, Inst, Mech, Engrs.1883, 36-58
    17.F.T.巴威尔.轴承系统-理论与实践.北京:机械工业出版社,1983
    18.余俊,徐真,赵冬初,刘珍莲.摩擦学.湖南:湖南科学技术出版社,1984
    19. A. Sommerfeld. Zur Hydrodynamischen Theorie der Schmiermittelreibung. Z Math u Physik.1904,50:97-105
    20. O. Reynolds. On the Theory of Lubrication and its Applications to Mr Beauchamp Tower's Experiments Including an Experimental Determination of the Viscosity of Olive Oil [J]. Phil Trans Roy Soc,1886,,177 (1):157-234
    21. G. B. Dubois, F. W. Ocvirk. Analytical Derivation and Experimental Evaluation of Short Bearing Approximations for full Journal Bearings [J]. N. A. C. A. Tech. REP,1953,1157
    22.孙大成.润滑力学讲义.北京:北京中国友谊出版社,1991
    23. H. Elord, C. W. Ng. A Theory for Turbulent Fluid Films and its Application to Bearing. ASME Journal of Lubrication Technology.1967,7:89-90
    24. A. Dyson, A. R. Wilson. Film Thickness in Elastohydrodynamic Lubrication by Silicone Fluids. Proceedings of the Institution of Mechanical Engineers, Part 3B. 1966,180:97-112
    25. Li Wanglong, Wang Chengi, Lue Jangi. Surface Roughness Effects in Journal Bearings with Non-newtonian Lubricants. Tribology Transactions.1996,39 (4):819-826
    26. W. Hirst, A. J. Moore. Non-Newtonian Behaviour in Elastohydrodynamic Lubrication. Proceedings of the Royal Society, London, Series A.1974,337: 101-121
    27. H. Eyring. Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates. Journal of Chemical Physics.1936,4:283-291
    28. T. Ree, H. Eyring. Theory of Non-Newtonian Flow. I, Solid Plastic System; Ⅱ, Solution System of High Polymers. Journal of Applied Physics.1955,26: 793-809
    29. P. Yang, S. Wen. A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication. ASME Journal of Tribology.1990,112: 631-636
    30. P. Yang, S. Wen. The Behavior of Non-Newtonian Thermal EHL Line Contacts at Dynamic Loads. ASME Journal of Tribology.1992,114:81-85
    31. H. S. Hsiao, B. J. Hamrock. A Complete Solution for Thermal Elastohydrodynamic Lubrication of Line Contacts Using Circular Non-Newtonian Fluid Model. ASME Journal of Tribology.1992,114:540-552
    32. H. Kim, F. Sadeghi. Non-Newtonian Elastohydrodynamic Lubrication of Point Contact. ASME Journal of Tribology.1991,113:703-711
    33. J. Liu. Thermal Non-Newtonian Elastohydrodynamic Lubrication of Point Contacts. University of Leeds, Ph.D. Thesis.1994
    34. O. Pinkus, B. Sternlicht. The Maximum Temperature Profile in Journal Bearings. Transaction of the ASME.1957,2:337-341
    35. O. Pinkus, D. J. Wilcock. Thermal Effects in Fluid Film Bearings. Mech. Eng.. 1980,4:1-23
    36. H. Mchallion, F. Yousif, T. Lloyd. The Analysis of Thermal Effects in a Full Journal Bearing. Journal of Lubrication Technology.1970,10:578-587
    37. R. Boncompain, J. Frene. A Study of the Thermohydrodynamic Performance of a Plain Journal Bearing with Comparison Between Theroy and Experiment. Trans. ASME, J. Lubr. Technol.1983,105:422-428
    38. K. Hatakenaka, M. Tanaka. Thermohydrodynamic Performance of Journal Bearings with Partial Reverse Flow and Finger-type Cavitation. Proc Instn Mech Engrs Part J:Engineering Tribology.2002,216:315-325
    39. R. S. Paranjpe, Han Taeyoung. A Study of the Thermohydrodynamic Performance of Steadily Loaded Journal Bearing. Tribology Transactions.1994, 37(4):679-690
    40. K. Mistry, S. Biswas, K. Athre. Study of Thermal Profile and Cavitation in a Circular Journal Bearing. Wear.1992,159:79-89
    41. M. M. Khonasari, J. Y. Jang, M. Fillon. On the Generalization of Thermohydrodynamic Analyses for Journal Bearings. Trans. ASME, J. Tribol.. 1996,118:571-580
    42. T. Han, R. S. Paranjpe. A Finite Volume Analysis of the Thermohydrodyn-amic Performance of Finite Journal Bearings. Trans. ASME, J. Tribology.1990,112: 557-566
    43. D. Dowson, C. A. March. A thermohydrodynamic analysis of journal bearings. In:Proc. Inst. Mech. Eng,1967,181
    44. J. Ferron, J. Frene, R. Boncompain. A study of the thermohydrodynamic performance of a plain journal bearing comparison between theory and experiment. ASME J. Lubr. Technol.,1970.
    45. S A Gandjalikhan Nassab, M S Moayeri. Three-dimensional thermohydrodynamic analysis of axially grooved journal bearing. Proc. Instn Mech Engrs Part J:J. Engineering Tribology.2002,216:35-47
    46.岑少起.计入能量和状态方程时有限长滑动轴承的完全Navier-Stokes解.机械工程学报.1996,31(2):51-56
    47.潘依森,潘思能.液体动压滑动轴承油膜温度场的分析与计算.福州大学学报(自然科学版).1995,23(3):39-44
    48. S. S. Banwait, H. N. Chandrawat. Study of thermal boundary conditions for a plain journal bearing. Tribology International.1998,31(6):289-296
    49. Hassan A. EI-gamal. Analysis of the steady state performance of a wedge-shaped hydrodynamic journal bearing. Wear.1995,184:111-117
    50. C.M. Rodkiewicz, W. DALITA. Experimental Investigation Regarding the Effects of Grooves on Conical Bearing Performance. Tribology Transactions.1995,138(1):178-182
    51. J K Martin. Performance of a novel configuration of journal bearing. IMechE.2000:43-51
    52. D. Sudheer, S. Swarnamani, B. S. Prabhu. Experimental investigation on the performance characteristics of tilting pad journal bearings for small L D ratios. Wear.1997,212:33-40
    53. T. Almqvist, S. B. Glavatskikh, R. Larsson. The Analysis of tilting pad thrust bearings-comparison between theory and experiments. ASME Journal of Tribology.2000,122(2):412-417
    54. K. Brockwell, W. Dmochowski. Thermal effects in the tilting pad journal bearing. J. Phys. D. Appl.1992,25:384-392
    55. Yoshio Kumada, Katsuyuki Hashzume, Yoshitsugu Kimura. Performance of plain bearings with circumferential microgrooves. TLE Tribology Transactions.1995,1(39):81-86
    56.胡雄海,洪玉芳,汪久根.微沟槽表面的滑动轴承性能分析.机械设计与研究.2002,2(18):51-53
    57. Kenji Watanabe, Jyunichi Natsume, Katsuyuki Hashizume, et al. Theoretical analysis of bearing performance of microgrooved bearing. JASE Review.2000,21:29-34
    58. Brian Pettinato, Ronald D. Flack, Lloyd E. Barrett. Test Results for a Highly Preloaded Three-Lobe Journal Bearing:Effect of Load Orientation on Static and Dynamic Characteristics. Journal of The Society of Tribologists and Lubrication Engineerings.2001,9:23-30
    59. Dimofte F. Wave journal bearing with compressible lubricant-Part II:a comparison of the wave bearing with a groove bearing and a lobe bearing. STLE Tribol Trans 1995,38(2):364-72
    60. Davd V. Taylor, Gregory J. Kostrzwsky, Flack Ronald D, et al. Measured Performance of a Highly Preloaded Three-Lobe Journal Bearing Part 2:Dynamic Characteristics. Tribology Transactions.1995,38(3): 707-713
    61. Flack R. D., Lanks R. F. Effects of Three Lobe Bearing Germetres on Rigid Rotor Stability. ASLE.1982,25(2):221-228
    62. S. Yoshimoto, T. Kume, T. Shitara. Axial load capacity of water-lubricated hydrostatic conical bearings with spiral grooves for high speed spindles. Tribology International.1998,31(6): 331-338
    63. G. H. Jang, D. I. Chang. Analysis of a Hydrodynamic Herringbone Grooved Journal Bearing Considering Cavitation. ASME Journal of Tribology.2000,122(1):103-109
    64. G.H.Jang, J. W. Yoon. Nonlinear dynamic analysis of a hydrodynamic journal bearing considering the effect of a rotating or stationary herringbone groove. ASME Journal of Tribology.2002,124(2):297-304
    65. Gregory J. Kostrzewsky, Ronald D. Flcak, Lloyd E. Barrett. Comparison between measured and predicted performance of a two-axial-groove journal bearing. Tribology Transactions.1996,39(3):571-578
    66. Kyungphil Kang, Yoonchul Rhim, Kiro Sung. A study of the oil-lubricated herringbone-grooved journal bearing-Part 1: Numerical analysis. Journal of Tribology ASME.1996,118:906-911
    67. Kyungphil Kang, Yoonchul Rhim, Taeik Son, et al. Numerical analysis of the oil-lubricated herringbone-grooved journal bearing for VCR drum assembly. IEEE.1995:26-27
    68. S. H. Winoyo, Z. Q. Hou, S. Kong, et al. Effects of Herringbone Groove Patterns on Performance of Vertical Hydrodynamic Journal Bearings. Tribology Transactions.2002,45(3):318-323
    69. Zirkelback N. Finite element analysis of herringbone groove journal bearing:parametric study. Transaction of ASME.1998,120:234-240
    70. A Harnoy, M. M. Khonsari, Hydro-Roll. A novel bearing design with superior thermal characteristics. Tribology Transactions.1996, 39(2):455-461
    71. Stanislaw Strzelecki. Maximum oil film pressure and temperature of two-lobe journal bearings with different bush profiles. Lubrication Science.2000,12(3):253-264
    72. V. Zang, M. R Hatch. On the whirl dynamics of hydrodynamic bearing spindle in information storage. Information Storage and Processing Division. ISPS, ASME, NY, USA.1996,2:73-84
    73. P. J. Ogrodnik, M. I. Goodwin, M. P. Roach, et al. Novel variable impedance hydrodynamic oil-film bearing Part I:theoretical modeling. Journal of engineering Tribology.1996,210(1):55-63
    74. P. J. Ogrodnik, M. I. Goodwin, M. P. Roach, et al. Novel variable impedance hydrodynamic oil-film bearing Part II:experimental identification of the steady state and dynamic characteristics. Journal of engineering Tribology.1996,210(1):65-64
    75. Florin Dimofte. Wave journal bearing with compressible lubricant-part I:the wave bearing concept and a comparison to the plain circular bearing. STLE Tribology Transactions.1995,38(1): 153-160
    76. Florin Dimofte. Wave journal bearing with compressible lubricant-part II:A comparison of the wave bearing with a wave-groove bearing and a lobe bearing. STLE Tribology Transactions. 1995,38(2):364-372
    77. J. K Martin. Mathematical model and numerical solution technique for a novel adjustable hydrodynamic bearing. International Journal for Numerical Methods in Fluids.1999,30(7):845-864
    78.彭斌生,朱均.上瓦开周向槽椭圆轴承性能的试验和理论计算研究.润滑与密封.1992,4:4-8
    79.袁晓阳,朱均.弹支瓦阶梯推力轴承承载特性研究.机械科学与技术.1993,4:15-19
    80.朱均,徐季陶.径向滑动轴承设计专家系统的设计与实现.机械科学与技术.1992,2:66-70
    81.李小江,朱均.上瓦带档板椭圆轴承性能研究.西安交通大学学报.1996,30(7):32-35,42
    82.张直明,张言羊,谢友柏等.滑动轴承的流体动力润滑理论.北京:高等教育出版社.1986
    83.张直明,朱礼进.径向滑动轴承轴瓦反转的现象和要理分析.上海工业大学学报.1991,12(2):122-128
    84.王云飞,常谦.螺旋槽动静压轴承.轴承.1995,2:2-8
    85.王凤才,袁小阳,朱均.变阶梯结构自适应径向滑动轴承的研究.摩擦学学报.2000,120(3):197-201
    86.王凤才,张锁怀,徐华,等.随动耦合变阶梯径向滑动轴承动力特性及稳定性的研究.摩擦学学报.2000,120(6):460-464
    87.苏红,毛军,蔡琳.一种复合式滑动轴承的实验研究.北方交通大学学报.2003,27(4):11-13
    88. LU Changhou, AI Xing, LI Jianfeng. Analysis and Research on Spiral oil Wedge Hydrodynamic Bearing for Precise Machine Tool Spindles. Int. J. Mach. Tools Manufact.1998,38,(3):197-203
    89. Chen Shujiang, Lu Changhou, Li Lei. Fluid flow separation character on novel hybrid journal bearing. Chinase Journal of Mechanical Engineering. 2006,19(4):540-543
    90.陈淑江.螺旋油楔滑动轴承润滑机理的理论与实验研究.山东大学博士学位论文.2007
    91.陈淑江,路长厚.新型螺旋油楔动静压滑动轴承的油腔结构研究.润滑与密封.2006,10:15-18
    92. Ying Yang, Changhou Lu. The Research on Moving of Cavities of a Novel Spiral Oil Wedge Journal Bearing. Proceedings of the 7th ICCA'09, Christchurch, New Zealand,2009:1213-1216.
    93.杨莹,路长厚.基于线性摄动法的新型混合轴承动态特性研究.中国机械工程,2009,20(15):1833-1847.
    94.杨莹.螺旋油楔滑动轴承空穴特性的理论与实验研究.山东大学博士学位论文.2010
    95.罗大兵,吴鹿鸣,帅旗.径向动压滑动轴承主轴轴心轨迹的动态仿真.机械设计,2006,23(4):51-53
    96.谭善光.基于分离变量的滑动轴承雷诺方程通解.润滑与密封,2010,35(3):19-24
    97. Hitoshi HATTORI. Dynamic Analysis of a Rotor-Journal Bearing System with Large Dynamic Loads. JSME International Journal.1993, Vol.36(2):251-257
    98. J. Ramesh, B. C. Majumdar and N. S. Rao. Stability characteristics of rough submerged oil elliptical bearings under dynamic load. Tribology International.1998,30(12):857-863
    99. Nicoleta. M. Ene. A stability analysis for a hydrodynamic three-wave journal bearing. Tribology International.2008,41:434-442
    100. R. Sinhasan, K. G. Goyal. Transient response of a two-lobe journal bearing lubricated with non-Newtonian lubricant. Tribology International.1995,28(4):233-239
    101.张洪,李广明,孟凡明.分形参数对轴心轨迹的影响.润滑与密封,2006,6:118-120
    102.冯凯,张优云.低气压对发动机轴承性能的影响.润滑与密封,2007,32(6):12-17
    103. V. Meruans, R. Pascual. Identification of dynamic coefficients in plain journal bearings. Tribology International.2008,41:742-754
    104. Tieu AK, Qiu ZL. Identification of sixteen dynamic coefficients of two journal bearings from experimental unbalance responses. Wear 1994,177:63-99.
    105. Hua Zhou, et al. An experimental study on oil-film dynamic coefficients. Tribology International.2004,37:245-253
    106. S. X. Zhaoa, X. D. Daia, G. Menga, J. Zhu. An experimental study of nonlinear oil-film forces of a journal bearing. Journal of Sound and Vibration,2005,287:827-843
    107. Kostrzewsky GJ, Flack RD. Accuracy evaluation of experimentally derived dynamic coefficients of fluid film bearings. Part I: Development of method. Tribology Transactions 1990,33:105-114.
    108. Kostrzewsky GJ, Flack RD. Accuracy evaluation of experimentally derived dynamic coefficients of fluid film bearings. Part II:Case studies. Tribology Transactions 1990,33:115-121.
    109. Byoung-Hoo Rho, Kyung-Woong Kim. A study of the dynamic characteristics of synchronously controlled hydrodynamic journal bearings. Tribology International 2002,35:339-345.
    110. Renato Brancati. Non-linear stability analysis of a rigid rotor on tilting pad journal bearings. Tribology International 1996, 29(7):571-578.
    111. E. A. Estupinan, I.F. Santos. Linking rigid multibody systems via controllable thin fluid films. Tribology International 2009.
    112. R. Nicoletti, I. F. Santos. Linear and non-linear control techniques applied to actively lubricated journal bearings. Journal of Sound and Vibration,2003,260:927-947
    113.朱汉华,严新平,刘正林,等.冲击载荷作用下船舶轴系转速与回转振动间影响研究.武汉理工大学学报,2008,32(6):983-985
    114. R. Tiwari, V. Chakravarthy. Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor-bearing systems. Mechanical Systems and Signal Processing, 2006 (20):1590-1614
    115.何仙芝,桂长林,李震,孙军.冲击载荷作用下计入轴颈倾斜的轴-轴承系统动力学摩擦学行为研究.轴承,2007,3:17-21
    116. Byoung-Hoo Rho, Kyung-Woong Kim. Acoustical properties of hydrodynamic journal bearings. Tribology International,2003,36: 61-66
    117.杨建国,夏松波,刘永光,须根法.小波降噪在轴心轨迹特征提取中的应用.哈尔滨工业大学学报,1999,5:52-54
    118.赵林度,盛昭瀚.离散余弦变换在轴心轨迹自动识别中的应用.振动、测试与诊断,1999,19(1):36-38
    119.丁克北.基于模糊-小波神经网络的轴心轨迹识别方.石油机械,2005,33(6):14-16
    120.刘占生,张新江,夏松波,怀进杰.轴心轨迹特征的提取方法及其在旋转机械故障诊断中的应用.汽轮机技术,1997,39(5):303-305
    121.刘刚,屈梁生.应用连续小波变换提取机械故障的特征.西安交通大学学报,2000,34(11):74-77
    122.侯敬宏,黄树红,申弢,张燕平.基于小波分析的旋转机械振动信号定量特征研究.机械工程学报,2004,40(1):131-135
    123.严普强,黄长艺.机械工程测试技术基础.北京:机械工业出版社,2004
    1. ZHANG Kai, HU De-jin. An Electromagnetic Actuation Based Boring Method for Non-Circular Hole. Journal of Shanghai Jiaotong University,2005,39(6):845-848
    2. ZHAI Peng, ZHANG Chengrui. Dynamic Design of A High Frequency Response Servo Bar Used for Boring. Manufacturing Technology & Machine Tool,2006,8:103-106
    3. Moller, B. Using high-speed Electrospindles With Active Magnetic Bearing for Boring Of Non-circular Shape, Proc. second Inter. Symposium on Magnetic Bearings,1990,189-196
    4. M.S.Kim. Application of a magnetic bearing spindle to non-circular fine boring. Proceedings of the 6th inter symposium on magnetic bearings,1998:22-31
    1. V. Meruane, R. Pascual. Identification of nonlinear dynamic coefficients in plain journal bearings. Tribology International,2008(41):743-754
    2. HE Zhi-xian, GUI Chang-lin,LI Zheng,SUN Jun.Dynamic Tribological Behaviors of Flexible Shaft-Bearing System Under Shock Loads Considering Misalignment Caused by Shaft Deformation.Bearing,2007,3:17-21
    3. GUAN Dai-shan, GUO Bai-sen. Research on pressure and stress field of journal bearing subjected to shock loading. Transducer and Microsystem Technologies.2008,4:55-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700