用户名: 密码: 验证码:
天线散射机理分析与RCS控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
隐身技术在当今复杂电磁环境下的战争中占有重要的地位,尤其是隐身平台等的隐身性能直接决定了其在战场上的生存和突防能力。电子设备是现代作战平台的重要组成部分,而其中天线的散射特性更是制约整个系统电磁隐身性能的瓶颈因素。天线的RCS控制涉及电磁计算、电磁材料、加工工艺、电磁测量等多个领域,研制具有良好辐射和散射特性的天线具有重要的意义。本文重点研究了天线的散射机理及RCS控制技术,所取得的成果可概括为:
     1.研究了天线散射的基本理论,结合发射天线和接收天线给出了散射目标天线的时域和频域散射机理,从时域和频域两种角度分离了天线的结构模式项散射场和天线模式项散射场。对阵列天线的散射特性进行了分析,分析过程中包含了阵元间的耦合,简化了阵列天线散射的分析与设计。
     2.以超宽带平面单极子天线为例,研究了超宽带天线的散射机理,提出了三种减缩平面单极子超宽带天线RCS的方法,分别是减小覆盖面积、半超宽带天线设计以及交叉学科设计。利用上述方法设计了三组天线样机,天线辐射和散射特性的测试与仿真结果表明,以上三种方法设计出的天线除满足良好的超宽带辐射特性外,更具有低RCS特性。
     3.将仿生学的概念引入到天线工程设计,尤其是低RCS天线的设计。通过昆虫触角、向日葵等模型共设计了五款仿生天线,设计的仿生天线在指定的条件下均具有优异的表现。其中昆虫触角天线、扇形天线、向日葵天线的设计证实了仿生概念在天线RCS减缩技术中的应用,章鱼形和水波纹形天线的设计证实了仿生概念在其它天线设计技术中的应用。
     4.根据仿生学的概念,仿照植物互生叶片的排序方式设计了仿生频率选择表面,实验结果证明了仿生学在频率选择表面设计中的应用价值。将该频率选择表面应用于天线反射板的设计中,设计了低RCS阵列天线,仿真和测试结果表明设计天线具有与金属反射板天线类似的辐射特性,同时亦具有较低的RCS。
     5.研究了矩形腔体的散射机理和RCS减缩技术。通过锯齿化处理、内壁倾斜和棱边倒角处理等方法降低了矩形腔体整体的RCS。将微带天线加载到设计的低RCS腔体中,通过对设计天线和参考天线的仿真对比,验证了设计天线的辐射和散射特性,说明了该腔体在低RCS天线设计中的应用价值。
     6.研究了阵列天线单元间耦合与天线散射的关系,利用S参数网络法降低了二元阵列天线单元间的耦合,设计了低耦合二元阵列天线,并对设计天线和参考天线的辐射散射特性进行了仿真和测试。
     7.研究了双圆曲面圆柱形腔体和小型圆极化微带天线的散射特性,设计了低RCS圆极化微带阵列天线,实验结果表明在保证天线辐射性能的前提下,设计天线的RCS得到了很好的控制。
Stealth technique is playing an important role in the modern war with complicated electromagnetic environment. The stealth performance directly determines its battlefield survival probability and penetration ability. Avionics equipment is an important component of modern combat aircraft; the scattering from an antenna often becomes a bottleneck which restricts the stealth effect of the whole system. The stealth technique involves electromagnetic calculation, electromagnetic materials, machining process, electromagnetic measurement, and so on. Development of the antennas with good radiation and scattering performances relates mainly to the stealth of the aircraft. This dissertation mainly concerns with the antenna scattering analysis and RCS control methods, the author's major contributions are outlined as follows:
     1. The antenna scattering mechanism is analyzed, the basic scattering theory of the antenna is illustrated in both the frequency-domain and time-domain clearly. The polarization of detecting antenna, scattering antenna, and receiver antenna are included in the analytical course. The structural mode scattering and the antenna mode scattering are separated. The scattering of antenna array is analyzed including the coupling, which simplifies the analysis and design.
     2. Take the ultra-wide band planar monopole antenna for example, the scattering mechanism of UWB antennas is studied. Three methods of reducing the RCS of UWB planar monopole antennas are given. They are reducing the area covered, half UWB antenna design, and interdisciplinary design. Radiation and scattering characteristics of the three antennas are studied and compared to those of the reference antennas. The results show that the three antennas have favorable UWB-related performances and lower RCS than the reference antennas.
     3. Bionics principle is applied to antenna design, especially to the stealth antenna design. To authenticate the method, five novel bionic antennas are proposed by use of the models of insect tentacle, sunflower, and so on. The five bionic antennas have favorable radiation performances at their specified environment. Insect tentacle antenna, fan-shaped antenna, and sunflower antenna demonstrate the feasibility of applying bionics principle to antenna RCS reduction. Octopus antenna and water-wave antenna demonstrate the feasibility of applying bionics principle to other antenna design.
     4. Based on bionics principle and the model of orientation of the alternate leaves, bionic frequency selective surface is designed. The technique of applying bionics principle to FSS design is valid. FSS is applied in the monopole antenna array RCS control. An antenna array with low RCS is designed and its radiation and scattering characteristics are studied. The validity of the method is proved by simulated and measured results.
     5. The scattering mechanism and RCS reduction of rectangular cavity body are studied. Serrated process, tilting wall, and chamfering the edge are used to reduce the total RCS. An antenna is placed in the low RCS cavity, and compared with the reference antenna. The RCS reduction of the method is proved by simulated and measured results.
     6. The relationship of the antenna scattering and element coupling is studied. The coupling of the two-element array is reduced by using the theories of S parameter network. Simulation and measurement results of the proposed antenna and the reference antenna prove that it is advantageous for the RCS reduction of the antenna array.
     7. Low RCS cylindrical cavity body and circular polarized microstrip antenna are designed. A novel low RCS circular polarized microstrip antenna array is proposed. The simulated and measured results show that compared to the reference antenna, the novel antenna has lower RCS and favorable radiation performances.
引文
[1]龚书喜,刘英,张鹏飞,徐云学,姜文,天线雷达截面预估与减缩,西安:西安电子科技大学出版社,2010.
    [2]陈次兮,居安思危—研制隐身雷达的紧迫性,中国电子科学院学报,2008,3(2),6-9.
    [3]张连仲,王炳如,陈玲等,军用雷达技术在现代化战争中的应用,现代雷达,2008,30(4),6-9.
    [4]马井军,赵明波,张开锋等,飞机隐身技术及其雷达对抗措施,国防科技,2009,30(3),38-44+64.
    [5]阮颖铮等编著,雷达截面与隐身技术,北京:国防工业出版社,1998.
    [6]王瑞凤,杨宪江,张彦朴,解析武器装备的隐身问题,探测与控制学报,2008,S1,77-83.
    [7]E. F. Knott, J. F. Shaeffer, and M. T. Tuley, Rafar Cross Section,2nd Edition, Raleigh:SciTech Pub., NC,2004.
    [8]R. B. Green, The general theory of antenna scattering, Report 1223-17, Antenna Laboratory, Ohio State University, November 30,1963.
    [9]R. E. Collin, The receiving antenna, Antenna theory, Part 1, R. E. Collin and F. J. Zucker(eds.), New York:McGraw-Hill,1969, pp.123-133.
    [10]洪涛,天线雷达截面控制技术研究,西安电子科技大学博士论文,2011.
    [11]王文涛,天线雷达散射截面分析与控制方法研究,西安电子科技大学博士论文,2011.
    [12]D. M. Pozar, Radiation and scattering from a microstrip patch on a uniaxial substrate, IEEE Transactions on Antennas and Propagation, Vol.35, No.6,1987, pp.613-621.
    [13]R. C. Hansen, Relationships between antennas as scatters and as radiators, IEEE Proceedings, Vol.77,1989, pp.659-662.
    [14]James T. Aberle, David M. Poazr, and Craig R.Birtcher, Evaluation of input impedence and radar cross section of probe-fed microstrip patch elements using an accurate feed model, IEEE Transactions on Antennas and Propagation, Vol.39, No.12,1991, pp.1691-1996.
    [15]J. L. Volakis, et al., Broadband RCS reduction of rectangular patch by using distributed loading, Electronic letters, Vol.28, No.25,1992, pp.2322-2325.
    [16]H. Y. Yang, et al., Mulifunctional antennas with low RCS,1992 IEEE Antennas and Propagation Society International symposium,1992, pp.2240-2243.
    [17]Adrian S. King, and Wallace J. Bow, Scattering from a finite array of microstrip patches, IEEE Transactions on Antennas and Propagation, Vol.40, No.7,1992, pp.770-774.
    [18]Edward H. Newman, and David Forrai, Scattering from a microstrip patch, IEEE Transactions on Antennas and Propagation, Vol.35, No.3,1987, pp.245-251.
    [19]Jin-Ming Jin, and John L.volakis, A hybrid finite element method for scattering and radiation by microstrip patch antennas and arrays residing in a cavity, IEEE Transactions on Antennas and Propagation, Vol.39, No.11,1991, pp.1598-1604.
    [20]Feng Ling, and Jian-Ming Jin, Scattering and radiation analysis of microstrip antennas using discrete complex image method and reciprocity theorem, Microwave and optical technology letters, Vol.16, No.4,1997, pp.212-216.
    [21]David M. Pozar, RCS reduction for a microsrip antenna using a normally biased ferrite substrate, IEEE Microwave and Guided Wave Letters, Vol.2, No.5,1992, pp.196-198.
    [22]J. L. Volakis, et al., Radar cross section analysis and control of microstrip patch antennas,1992 IEEE Antennas and Propagation Society International symposium, 1992, pp.2225-2228.
    [23]D. R. Jackson, The RCS of a rectangular microstrip patch in a substrate-superstrate geometry, IEEE Transactions on Antennas and Propagation, Vol.38, No.1,1990, pp.2-8.
    [24]J. T. Aberle, et al., Scattering and radiation properties of varactor-tuned microstrip antennas,1992 IEEE Antennas and Propagation Society International symposium, 1992, pp.2229-2232.
    [25]V. K. Tripp, The vehicular minimum scattering antenna, AP-S Digest Antennas and Propagation Society International Symposium 1989, Vol.2,1989, pp.722-725.
    [26]Huilin Hu, Yunhua Tan, Bocheng Zhu, and Lezhu Zhou, Analysis of a probe-fed bow-tie antenna scattering by using the hybrid FE-BI method, Asia Pacific Microwave Conference 2009,2009, pp.104-107.
    [27]Hu Huilin, Tan Yunhua, Zhu Bocheng, and Zhou Lezhu, Analysis of conformal bow-tie antenna scattering by using the hybrid FE-BI method, IET International Radar Conference 2009,2009, pp.1-4.
    [28]V. Vasilets, O. Sukharevsky, and S. Kukobko, Scattering of reflector antenna with conic dielectric radome, International Conference on Mathematical Methods in Electromagnetic Theory 2006,2006, pp.164-166.
    [29]A. V. Bartsevich, Y. Y. Bobkov, A. Al-Rifay, and O. A. Yurtsev, Multi-element wire antenna array scattering characteristics numerical modeling, International Conference on Antenna Theory and Techniques,2007, pp.432-434.
    [30]Tsung-Yen Ho, Shih-Yuan Chen, and Hsueh-Jyh Li, A method to determine the structure mode and antenna mode of a RFID tag antenna scattering, IEEE Antennas and Propagation Society International Symposium 2009, APSURSI'09, 2009, pp.1-4.
    [31]Ma Yunxiao, Theoretic study of antenna scattering based on minimum-scattering antennas, Antennas Propagation and EM Theory (ISAPE 2010), pp.335-337.
    [32]A. D. Khzmalyan, Finite array antenna scattering and transmission-line analysis using the FFT, IEEE Antennas and Propagation Magazine, Vol.42, No.1,2000, pp.41-53.
    [33]B. Thors, L. Josefsson, and R.G. Rojas, The RCS of a cylindrical array antenna coated with a dielectric layer, IEEE Transactions on Antennas and Propagation, Vol.52,2004, pp.1851-1858.
    [34]Teh-Hong Lee, R. C. Rudduck, Te-Kao Wu, and C. Chandler, Structure scattering analysis for seawinds scatterometer reflector antenna using extended aperture integration and GTD, International Symposium on Antennas and Propagation Society, Vol.2,1994, pp.890-893.
    [35]Teh-Hong Lee, and W. D. Burnside, Structure scattering of feed antenna in a dual reflector antenna system, IEEE Antennas and Propagation Society International Symposium,2007, pp.5656-5659.
    [36]Guo-Xin Fan, and Jian-Ming Jin, A hybrid method for analyzing scattering from a large planar slotted waveguide array antenna in a real environment, IEEE Antennas and Propagation Society International Symposium 1998, Vol.4,1998, pp.2182-2185.
    [37]Chien-Chang Huang, and Tah-Hsiung Chu, Radiating and scattering analyses of a slot-coupled patch antenna loaded with a MESFET oscillator, IEEE Transactions on Antennas and Propagation, Vol.43, No.3,1995, pp.291-298.
    [38]Guoxin Fan, and Jian-Ming Jin, Scattering from a cylindrically conformal slotted-waveguide array antenna, Antennas and Propagation Society International Symposium 1996, Vol.2,1996, pp.1394-1397.
    [39]P. Rogers, Application of the minimum scattering antenna theory to mismatched antennas, IEEE Transactions on Antennas and Propagation, Vol.34, No.10,1986, pp.1223-1228.
    [40]Yueh-Ying Hu, Back-scattering cross section of a center-loaded cylindrical antenna, IRE Transactions on Antennas and Propagation, Vol.6, No.1,1958, pp. 140-148.
    [41]Ning Yuan, Tat Soon Yeo, Xiao-Chun Nie, and Le Wei Li, A fast analysis of scattering and radiation of large microstrip antenna arrays, IEEE Transactions on Antennas and Propagation, Vol.51, No.9,2003, pp.2218-2226.
    [42]T. Metzler, and D. Schaubert, Scattering from a stub loaded microstrip antenna, Antennas and Propagation Society International Symposium 1989, Vol.1,1989, pp.446-449.
    [43]A. Toscano, L. Vegni, and F. Urbani, Scattering from a cavity backed microstrip antenna on a bi-anisotropic substrate with a finite round plane by a hybrid finite element method, IEEE Transactions on Magnetics, Vol.34, No.5,1998, pp. 2716-2719.
    [44]Guo-Xin Fan, and Jian-Ming Jin, Correction to "scattering from a cylindrically conformal slotted waveguide array antenna", IEEE Transactions on Antennas and Propagation, Vol.45, No.9,1997, pp.1442-1443.
    [45]丁卫平,徐金平,背腔式分形微带贴片天线电磁散射特性分析,东南大学学报,2003,33(1),19-21.
    [46]G. Sinclair, The numerical solution of antenna and scattering problems, IRE Transactions on Antennas and Propagation, Vol.7, No.5,1959, pp.402-405.
    [47]D. M. Pozar, Radar cross-section of microstrip antenna on normally biased ferrite substrate, Electronics Letters, Vol.25,1989, pp.1079-1080.
    [48]P. J. Tittensor, and M. L. Newton, Prediction of the radar cross-section of an array antenna, Sixth International Conference on Antennas and Propagation 1989, Vol.1, 1989, pp.258-262.
    [49]Byungje Lee, and F.J. Harackiewicz, The RCS of a microstrip antenna on an in-plane biased ferrite substrate, IEEE Transactions on Antennas and Propagation, Vol.44,1996, pp.208-211.
    [50]丁卫平,徐金平,背腔式微带天线电磁散射分析的FEM/PO-PTD方法,电波科学学报,2002,17(4),365-369.
    [51]陈莽,波导缝隙天线阵列的散射特性研究,西北工业大学硕士学位论文.
    [52]吕善伟,肖巍,苏东林,波导缝隙阵列RCS,北京航空航天大学学报,1994,20(4),397-401.
    [53]R. K. Schneider, A re-look at antenna in-band RCSR via load mismatching, Antennas and Propagation Society International Symposium 1996, Vol.2,1996, pp.1398-1401.
    [54]E. Heidrich, and W. Wiesbeck, Reduction and minimization of antenna scattering, Antennas and Propagation Society International Symposium 1992,1992, pp.904-907.
    [55]P.-S. Kildal, L. Steen, and P. Napier, Reduction of scattering from gaps between reflector antenna panels by using artificially soft edges, Antennas and Propagation Society International Symposium 1991, Vol.3,1991, pp.1316-1319.
    [56]W. Cumming, C. Wang, and S. Loh, Analysis and reduction of scattering from the feed of a cheese Antenna, IRE Transactions on Antennas and Propagation, Vol.7, No.3,1959, pp.226-233.
    [57]D. M. Pozar, RCS reduction for a microstrip antenna using a normally biased ferrite substrate, IEEE Microwave and Guided Wave Letters, Vol.2,1992, pp. 196-198.
    [58]D. D. Reuster, G. A. Thiele, and P. W. Eloe, Development of low RCS reflector antenna systems, Antennas and Propagation Society International Symposium 1994, Vol.3,1994, pp.2325-2328.
    [59]G. G. Cook, and S. K. Khamas, Control of radar cross sections of electrically small high temperature superconducting antenna elements using a magnetic field, IEEE Transactions on Antennas and Propagation, Vol.42,1994, pp.888-890.
    [60]N. Misran, R. Cahill, and V. F. Fusco, RCS reduction technique for reflectarray antennas, Electronics Letters, Vol.39,2003.
    [61]B. Munk, An omnidirectional antenna with low RCS, Finite Antenna Arrays and FSS,2003, pp.214-223.
    [62]王文涛,刘英,龚书喜,张玉洁,王兴,采用间距优化的阵列天线RCS减缩方法研究,西安电子科技大学学报,2010,37(6),1077-1081.
    [63]P. Persson, and B. Thors, RCS reduction of antennas integrated in an infinite PEC plane, IEEE Antennas and Propagation Society International Symposium 2005, Vol.3A,2005, pp.74-77.
    [64]冯林,低RCS雷达天线技术的研究和应用,电子学报,1995,23(10),164-169.
    [65]A. Tennant, and B. Chambers, RCS reduction of spiral patch antenna using a PSS boundary, IEE Proceeding Radar. Sonar and Navigation, Vol.152,2005, pp. 248-252.
    [66]S. Monni, G. Gerini, and A. Neto, Frequency selective surfaces for the RCS reduction of low frequency antennas, First European Conference on Antennas and Propagation 2006,2006, pp.1-6.
    [67]赵书晨,低RCS微带阵列天线研究,西安电子科技大学硕士学位论文.
    [68]Wei He, Ronghong Jin, Junping Geng, Guomin Yang, Zhijiang Fang, and Min Ding, RCS reduction of microstrip antenna using fractal UC-EBG ground, IEEE Antennas and Propagation Society International Symposium 2007,2007, pp.2506.
    [69]凌劲,龚书喜,路宝,王文涛,王兴,刘苏,电磁带隙结构在天线雷达散射截面减缩中的应用,强激光与粒子束,2009,21(8),1225-1229.
    [70]冯林,邓书辉,阮颖铮,反射面天线带内雷达散射截面,电波科学学报,1996,11(2),18-21.
    [71]R. He, R. Jin, and J. Geng, Low radar cross-section and high performances of microstrip antenna using fractal uniplanar compact electromagnetic bangap ground, IEE Microwaves. Antennas & Propagation, Vol.1,2007, pp.986-991.
    [72]You-Quan Li, Hui Zhang, Yun-Qi fu, and Nai-Chang Yuan, RCS reduction of ridged waveguide slot antenna array using EBG radar absorbing material, IEEE Antennas and Wireless Propagation Letters, Vol.7,2008, pp.473-476.
    [73]B. Lu, S. X. Gong, Y. J. Zhang, F. T. Zha, J. Ling. Optimum Spatial Arrangement of Array Elements for Suppression of Grating-Lobes of Radar Cross Section. IEEE Antenna and Wireless Propagation Letters, Vol.9,2010, pp.114-117.
    [74]张宏波,龚书喜,贺秀莲,分形开槽减缩微带天线RCS,微波学报,2006,22(6),34-36.
    [75]崔冠峰,分形天线的设计及其RCS减缩,西安电子科技大学学位论文.
    [76]刘英,龚书喜,傅德民,分形在天线雷达散射截面减缩中的应用,微波学报,2003,19(2),28-30.
    [77]王文涛,张鹏飞,龚书喜,王兴,洪涛,路宝,附加延时线的阵列天线模式项RCS减缩优化,西安电子科技大学学报,2011,38(2),124-128.
    [78]李有权,基于电磁带隙结构的隐身技术研究及其在天线阵中的应用,国防科技大学工学博士学位论文.
    [79]Wen Jiang, Ying Liu, Shuxi Gong, and Tao Hong, Application of bionics inantenna radar cross section reduction, IEEE Antennas and Wireless Propagation Letters, Vol.8,2009, pp.1275-1278.
    [80]Wentao Wang, Shuxi Gong, Xing Wang, Ying Guan, and Wen Jiang, Differential evolution algorithm and Method of Moments for the design of low-RCS antenna, IEEE Antenna and Wireless Propagation Letters, Vol.9,2010, pp.295-298.
    [81]Y. B. Thakare, and Rajkumar, Design of fractal patch antenna for size and radar cross-section reduction, Microwaves. Antennas & Propagation, Vol.4,2010, pp. 175-181.
    [82]陶长亚,Koch分型与H形开槽相结合减缩微带贴片天线RCS,电子科技,2008,21(10),8-10.
    [83]王文涛,龚书喜,胡楚锋,王兴,凌劲,基于准分形频率选择表面的天线RCS减缩,微波学报,2010,26(3),1-5.
    [84]张帅,龚书喜,路宝,凌劲,查锋涛,利用PSO同时优化阵列天线的辐射和散射特性,西安电子科技大学学报,2010,37(4),726-730.
    [85]袁宏伟,目标散射精确分析及微带天线RCS控制技术研究,西安电子科技大学博士学位论文.
    [86]冯林,阮颖铮,天线RCS减缩技术研究的新进展,电子科技大学学报,1995,24(7),23-26.
    [87]路宝,天线雷达散射截面分析与控制术研究,西安电子科技大学博士学位论文.
    [88]刘英,龚书喜,傅德民,天线散射理论研究,电子学报,2005,33(9),1611-1613.
    [89]吴涛,微带贴片天线及阵列RCS减缩的研究,西安电子科技大学硕士学位论文.
    [90]刘建富,龚书喜,徐云学,张晓露,一种双指数Vivaldi天线RCS研究,空间电子技术,2011,(2),26-29,53.
    [91]凌劲,龚书喜,张鹏飞,袁宏伟,路宝,王文涛,一种微带贴片天线RCS减缩新方法,西安电子科技大学学报,2010,37(2),295-299.
    [92]路宝,龚书喜,凌劲,王文涛,一种新型频率选择表面及其在天线雷达散射截面减缩中的应用,电子与信息学报,2010,32(1),199-202.
    [93]Lo Y T, Lee S W, et al, Antenna Handbook, New York, NY:Chapman & Hall, 1993.
    [94]Hu S, Chen H, Law C L, et al, Backscattering cross section of Ultrawideband antennas, IEEE Antennas Wireless Propagation Letter, Vol.6,2007, pp.70-73.
    [95]刘英,龚书喜,傅德民,天线散射理论研究,电子学报,2005,33(9),1611-1613.
    [96]刘英,天线雷达截面预估与减缩,西安电子科技大学博士论文,2005.
    [97]T. Hong, S. X. Gong, W. Jiang, A novel ultra-wide band antenna with reduced radar cross section, Progress in Electromagnetics Research, PIER 96,2009, pp. 299-308.
    [98]Y. Liu, S. X. Gong, D. Fu, A novel model for analyzing for analyzing the RCS of microstrip antenna, in Proc. IEEE Antennas Propag. Soc. Int. Symp., Vol.4,2003, pp.22-27.
    [99]J. X. Liang, C. C. Chiau, X. D. Chen, and C. G. Parini, Study of a printed circular disc monopole antenna for UWB systems, IEEE Transactions on Antennas and Propagation, Vol.53,2005, pp.3500-3504.
    [100]D. M. Pozar, Radiation and scattering from a microstrip patch on a uniaxial substrate, IEEE Transactions on Antennas and Propagation, Vol.35,1987, pp. 613-621.
    [101]Salman Naeem Khan, Low profile and compact size coplanar UWB antenna working from 2.8GHz to over 40GHz, Microwave and Optical Technology Letters, Vol.51, No.2,2009.
    [102]M. Sun, Y. P. Zhang, and Y. Lu, Miniaturization of planar monopole antenna for ultrawideband radios, IEEE Transactions on Antenna and Propagation, Vol.58, 2010, pp.2420-2425.
    [103]H. Nazli, E. Bicak, B. Turetken, and M. Sezgin, An improved design of planar elliptical dipole antenna for UWB applications, IEEE Antennas Wireless Propagation Letter, Vol.9,2010, pp.264-267.
    [104]FCC Report and Order for Part 15 acceptance of Ultra Wideband (UWB) systems from 3.1-10.6GHz, February,2002, FCC website.
    [105]G.-M. Yang, R.-H. Jin, G-B. Xiao, C. Vittoria, V.-G. Harris, and N.-X. Sun, Ultrawideband (UWB) antennas with multiresonant split-ring loops, IEEE Transactions on Antennas and Propagation, Vol.57,2009, pp.256-260.
    [106]W. Jiang, S.-X. Gong, Y.-P. Li, T. Hong, X. Wang, and L.-T. Jiang, A novel low RCS mobius-band monopole antenna, Journal of Electromagnetic Waves and Applications, Vol.23, No.14-15,2009,1887-1895.
    [107]Webster's New Collegiate Dictionary, Springfield, MA:G.&C. Merriam,1974.
    [108]帕帕斯,数学趣闻集锦,上海:上海教育出版社.
    [109]http://zh/wikipedia.org/
    [110]戴君易,奇异的仿生学,湖南:湖南教育出版社,1998.
    [111]R. Muller, and J. C. Hallam, Knowledge mining for biomimetic smart antenna shapes, Robot. Auton. Syst., Vol.50, No.4,2005, pp.131-145.
    [112]http://baike.baidu.com/view/803.htm
    [113]Haitang Cen, and Wuyi Chen, Structural bionics design and experimental analysis for small wing, Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, Vol. 45, No.3,2009, pp.286-290.
    [114]Luquan Ren, Progress in the bionic study on anti-adhesion and resistance reduction of terrain machines, Science in China, Series E:Technological Sciences, Vol.52, No.2,2009,273-284.
    [115]Zhang Deyuan, Cai Jun, Jiang Xinggang, Han Xin, and Chen Bo, Study on bioforming technology of bionic micro-nano structures, Key Engineering Materials,407-408,1-7,2009.
    [116]Qiang Zhou, Rongwei Zhou, Lixin Wang, and Huli Niu, Computer simulation and design on bionic slippery microstructure surfaces, Nongye Jixie Xuebao/Transactions of the Chinese Society of Agricultural Machinery, Vol.40, No.9,2009, pp.201-204+208.
    [117]http://www.reading.ac.uk/BIONICS/
    [118]孙宁娜等,仿生设计,湖南大学出版社,2010.
    [119]http://en.wikipedia.org/wiki/Bionics.
    [120]IEEE Standards Board, IEEE Standard Definitions of Terms for Antennas, Mar, 1993.
    [121]Xing Chen, Kama Huang, and Xiao-Bang Xu, Automated design of a three-dimensional fishbone antenna using parallel genetic algorithm and NEC, IEEE antennas and Wireless Propagation Letters, Vol.4.2005, pp.425-428.
    [122]Suk-Youb, and Kyeong-Sik Min, Design of a fishbone-shaped antenna with a V-slot for dual-band operation, Microwave and Optical Technology Letters, Vol. 50, No.10,2008, pp.2509-2512.
    [123]James A. Flint, A biomimetic antenna in the shape of a bat's ear; IEEE Antennas and Wireless Propagation Letters, Vol.5,2006, pp.145-147.
    [124]T. A. Milligan, Modern Antenna Design,2nd Edition, McGraw-Hill,2005, pp. 235-236.
    [125]H. Kawakami, G. Sato and R.W. Masters, Characteristics of TV Transmitting Batwing Antennas, IEEE Transactions on Antennas and Propagation, Vol. AP-32, No.12,1984.
    [126]J. D. Kraus, Antennas,2nd Ed, Sections 16.7 to 16.8, New York, McGraw-Hill, 1988.
    [127]Ying Liu, and Shuxi Gong, A novel UWB clover-disc monopole antenna with RCS reduction, Journal of electromagnetic Waves and Application, Vol.22, No.7,2008, pp.1115-1121.
    [128]罗国清,基片集成频率选择表面的研究,东南大学博士学位论文,2006.
    [129]A. Munk Ben, Frequency Selective Surface:Theory and Design, New York:John Wiley & Sons,2000.
    [130]Na-Na Qi, S.-X. Gong, P. F. Zhang, and J. F. Liu, A Novel Y-Loop Aperture Frequency Selective surface Using Substrate-Integrated Waveguide Technology, Microwave and Optical Technology Letters, Vol.50, No.12,2008, pp.3023-3027.
    [131]Guo Qing Luo, Wei Hong, and Hong Jun Tang, High performance Frequency Selective Surface using cascading substrate integrated waveguide cavities, IEEE Microw. Wireless Compon. Letts.,2006, pp.648-650.
    [132]GuoQing Luo, Wei Hong, and Zhang-Cheng Hao etc, Theory and experiment of novel frequency selective surface based on substrate integrated waveguide technology, IEEE Transactions on Antennas and Propagation, Vol.53, No.12, 2003, pp.2649-2655.
    [133]杨红玉,新型频率选择表面的研究,西安电子科技大学硕士论文,2010.
    [134]Jordi Romeu, and Yahya Rahmat-Sammii, Fractal FSS:A Novel Dual-Band Frequency Selective Surface, IEEE Transactions on Antennas and Propagation, Vol.48, No.7,2000, pp.1097-1105.
    [135]M. K. Pain, and S. Bhunia, A novel investigation on size reduction of frequency selective surface, Microwave and Optical Technology Letters, Vol.49, No.11, 2007, pp.2820-2821.
    [136]J. D. Kraus,天线(第三版)(英文版),北京:电子工业出版社,2008.
    [137]R. Haupt, Antenna Arrays:A Computational Approach, Wiley-IEEE Press,2010, pp.1-44.
    [138]Frank Gross,薛泉,智能天线,北京:电子工业出版社,2009.
    [139]林昌禄,近代天线设计,北京:人民邮电出版社,1990.
    [140]H.-W.Yuan, S.-X. Gong, X. Wang, and W.-T.Wang, Scattering analysis of a printed dipole antenna using PBG structures, Progress in Electromagnetic Research B, Vol. 1,2008, pp.189-195.
    [141]沈君彦,隐身飞行器蒙皮锯齿对缝RCS设计研究,隐身技术,2011,39-42.
    [142]黄沛霖等,飞行器目标的双站散射特性研究,西安电子科技大学学报,2008(2).
    [143]阮颖铮,雷达截面与隐身技术,北京:国防工业出版社,2001.
    [144]张鹏飞,隐身技术中的雷达截面预估与控制,西安电子科技大学博士论文,2008.
    [145]Shin-Chang Chen, Yu-Shin Wang, and Shyh-Jong Chuang, A decoupling technique for increasing the port isolation between two strongly coupled antennas, IEEE Transactions on Antennas and Propagation, Vol.56, No.12,2008.
    [146]姜林涛,小型天线阵耦合问题研究,西安电子科技大学硕士论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700