用户名: 密码: 验证码:
氧化损伤对肿瘤细胞生长调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往研究显示:一氧化氮(NO)具有广泛的生物调节活性,可通过调节多种基因的表达,抑制肿瘤细胞的生长繁殖;自由基所致生物大分子的损伤可介导多种基因表达的改变。为进一步探讨自由基对肿瘤细胞生长繁殖的调控机制,通过研究光照核黄素、合成光核酸酶和L-精氨酸(L-arg)不同浓度对培养肿瘤细胞的生物学作用,探索了其对恶性肿瘤的抑制作用及机制。
     一、L-精氨酸、光照核黄素及合成的光核酸酶浓度依赖性抑制肿瘤细胞生长繁殖 当培养肿瘤细胞系(Hela细胞)中加入中低浓度L-arg(0~30mmol/L)、核黄素(0.016 to32μmol/L)与光核酸酶(Br-Ph-ⅡP β Dp 0~205.2μmol/L,Br-Ph-PP β Dp 0~406.5μ mol/L)均能抑制肿瘤细胞的生长,其抑制率与药物浓度呈正相关;L-arg在较高浓度(30~100mmol/L各组)时对细胞的生长有促进的趋势,但其细胞形态发生明显变化,丧失贴壁能力;
     二、光照核黄素可促进肿瘤细胞凋亡 经流式细胞仪检测核黄素给药组(32 μ mol/L,3.2 μ mol/L)与对照组(0μmol/L)凋亡指数(AI)依次为4.02,1.99,1.08,同MTT实验共同证明光照核黄素可诱发细胞凋亡;
     三、光照核黄素可氧化DNA,产生8-羟基鸟嘌呤 采用8-羟基鸟嘌呤抗体免疫组化染色显示核黄素给药组(32μmol/L,3.2 μmol/L)细胞内有大量鸟嘌呤被氧化为8-羟基鸟嘌呤,且高剂
    
    硕士学位论文
     量时出现膜、核阳性,低剂量时显示核阳性;
    四、光照时间与端粒的缩短呈正比在肿瘤细胞培养体系中,加入
     核黄素,经不同光照时间后,采用经典方法Southem blot检测
     端粒长度;发现端拉长度随给药后光照时间的延长而缩短,O,
     0.5,l,2,4h光照后端粒长度分别约为4.61,4.36,4.10,3.92,
     3 .79kb;
    五、光照核黄素可导致与DNA损伤相关多种基因的表达发生变化
     由高通量DNA损伤芯片筛选受光照核黄素处理的肿瘤细胞
     mRNA后,发现GADD45,53BPI,BRCAZ,BTGZ,P55ede,
     cEN甲一E,McAK,UNGZ等基因均有表达的改变,其中提高表
     达的一些是与细胞周期及DNA损伤修复机制相关的基因的激
     活,其中GADD45的提高表达可能提示GADD45在介导
     Foxo3a修复DNA损伤前可能先激活p53或其它基因调节途
     径,最终导致细胞的凋亡,抑制肿瘤细胞的生长.
     总之,多种实验体系研究显示,自由基可抑制培养肿瘤细
    胞的生长繁殖,其机制可能与自由基损伤DNA导致多种基因
    表达异常及氧化切割缩短端粒有关。
The previous studies showed that nitric oxide possesses a wide range of biological characters, which involving in regulations on a lot kind of gene expressions, inhibition tumor cells proliferations, and so on; free radicals- inducing dysfunctions of biological macromolecules can mediate multi-changes of gene expressions. For the further research of regulations and mechanisms on tumor cells growth by free radicals, our experiments were designed to display ways of some photosensitive substance, such as riboflavin, composed photonuclease and L-arginine; those which act as donor of free radicals play different biological characters in different concentrations. In this research, the inhibition effects of oxidation on tumor cells and its mechanisms were studied.
    1 The inhibition rate of tumor cells is dose-dependent on L-arginine\ riboflavin\ composed photonuclease MTT assay was used to estimate the inhibition rate of different drugs. Adding L-arginine in concentrations of 0 ~ 30mmol/L could depresss cells proliferation. The inhibition rate was positive correlation with the dose. Same with L-arginine, groups of riboflavin under 0.016 to 32 mol/L showed positive correlation with the dose. Groups of high L-arginine
    
    
    dose(30 ~ 100mmol/L) have a trend of promoting cells proliferation.
    2 Studies on photosensitive riboflavin induced cell apoptosis Riboflavin-given groups 32, 3.2 ju mol/L showed 4.02 and 1.99 in apoptosis index while the blank group is 1.08, which proved riboflavin could induce cell apoptosis.
    3 Photosensitive riboflavin oxidizing guanine into 8-hydroxy-guanine Immnohistochemical studies by using Anti-8-hydroxyguanine antibody showed that guanine could be oxidized into 8-hydroxyguanine in both 32 and 3.2umol/L riboflavin- given groups. The high dose group appeared membranes and nucleolus positive while the low dose only showed nucleolus positive.
    4 Telomere length is positive correlation with illumination time In cultured cell system, after given 32 u mol/L riboflavin and then illuminate different times, the telomere length was measured by southern blot and the results indicated that there was a continuous telomere shortens with time; in the time of 0, 0.5, 1, 2, 4h dealt with photosensitiv riboflavin, the telomere length are 4.61, 4.36, 4.10, 3.92, 3.79kb, respectively;
    5 The DNA damage related gene expression changes had been found by Microarray after dealt with riboflavin The Hela cells dealt with 32 u mol/L riboflavin, and then isolated mRNA was analysised by GEArray. The results indicated that gene expressions of GADD45, 53Bpl, BRCA 2, BTG 2, P55cdc, CENP-E, MCAK, UNG 2 changed
    
    obviously. Some of these expression changes were related to DNA damage and repair in response to stress stimuli. The data in our experiment showed that FOXO3a gene has no significant expression changes under our experimental condition. GADD45 expression may first not activate the FOXO3a-mediate DNA repair response but a p53 or other genes regulated pathway.
    In conclusion, those experiment systems showed that free radicals could control the proliferations of tumor cells. The mechanism may relate with free radicals initiated damage of DNA, resulting in multi-gene expressions variation and oxidized incising and shorten telomere.
引文
[1] Groschner K, Rosker C, Lukas M. Role of TRP channels in oxidative stress. Novartis Found Symp. 2004, 258:222-235, 263-266
    [2] N.R. Webster J.F. Nunn Molecular structure of free radicals and their importance in biological reactions. Br. J. Anaesth. 1988, 60: 98-108
    [3] J.M. Gutteridge, Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995, 41: 1819-1828
    [4] Kinnula VL, Torkkeli T, Kristo P, et al. Ultrastructural and chromosomal studies of manganese superoxide dismutase in malignant mesothelioma Am J Respir Cell Mol Biol. 2004 Mar 23 [Epub ahead of print]
    [5] Nam HY, Choi BH, Lee JY, et al. The role of nitric oxide in the particulate matter (PM2.5)-induced NFkappaB activation in lung epithelial cells. Toxicol Lett. 2004, 14; 148(1-2): 95-102
    [6] Schafer A, Wiesmann F, Neubauer S, et al. Rapid regulation of platelet activation in vivo by nitric oxide. Circulation. 2004, 109(15): 1819-1822
    [7] Wang YY, Tang ZY, Dong M, et al. Inhibition of platelet aggregation by polyaspartoyl L-arginine and its mechanism. Acta Pharmacol Sin. 2004,25(4): 469-473
    
    
    [8] Dias KL, Da Silva Dias C, Barbosa-Filho JM, et al. Cardiovascular effects induced by reticuline in normotensive rats. Planta Med. 2004, 70(4): 328-333
    [9] Chien YH, Bau DT, Jan KY. Nitric oxide inhibits DNA-adduct excision in nucleotide excision repair. Free Radic Biol Med. 2004, 36(8): 1011-1017
    [10] Vega A, Chacon P, Monteseirin J,et al. A new role for monoamine oxidases in the modulation of macrophage-inducible nitric oxide synthase gene expression. J Leukoc Biol. 2004 Apr 1 [Epub ahead of print]
    [11] Chen CJ, Raung SL, Liao SL, et al. Inhibition of inducible nitric oxide synthase expression by baicalein in endotoxin/cytokinestimulated microglia. Biochem Pharmacol. 2004, 67(5): 957-65
    [12] Kim JY, Choi CY, Lee KJ, et al. Induction of inducible nitric oxide synthase and proinflammatory cytokines expression by o, p'-DDT in macrophages. Toxicol Lett. 2004, 147(3): 261-269
    [13] Miller BH, Fratti RA, Poschet JF, et al. Mycobacteria Inhibit Nitric Oxide Synthase Recruitment to Phagosomes during Macrophage Infection. Infect Immun. 2004, 72(5): 2872-2878
    [14] Kettler M, Ikegagya N, Brees DK et al. L-arginine metabolism in immune mediated glomerulonephritis in the rat. Am J Kidney Dis, 1996, 28(6): 878-887
    [15] Waddington SN, Mosley K, Cook HT et al. Arginase AI is
    
    upregulated in acute immune complex induced inflammation. Biochem Biophys Res Commun, 1998, 9247(1): 84-87
    [16] Johansson RK, Poljakovic M, Andersson KE et al. Expression of nitric oxide synthase in bladder smooth muscle cells: regulation by cytokines and L-arginine. J Urol 2002, 168(5): 2280-2285
    [17] deRojas-Walker T, Tamir S, Ji H, Wishnok JS, et al. Nitric oxide induces oxidative damage in addition to deamination in macrophage DNA. Chem Res Toxicol. 1995, 8(3): 473-477
    [18] Wink DA, Kasprzak KS, Maragos CM, et al. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science 1991, 254:1001-1003
    [19] Oztezcan S, Kirgiz B, Unlucerci Y, et al. Heme oxygenase induction protects liver against oxidative stress in x-irradiated aged rats. Biogerontology. 2004, 5(2): 99-105
    [20] Bernard DG, Gabilly ST, Dujardin G, et al. Overlapping specificities of the mitochondrial cytochrome c and c1 heme lyases. J Biol Chem. 2003, 278(50): 49732-49742
    [21] Jin C, Barrientos A, Tzagoloff A. Yeast dihydroxybutanone phosphate synthase, an enzyme of the riboflavin biosynthetic pathway, has a second unrelated function in expression of mitochondrial respiration. J Biol Chem. 2003, 278(17): 14698-14703
    [22] Shumyantseva VV, Bulko TV, Schmid RD, et al. Photochemical properties of a riboflavins/cytochrome P450 2B4 complex. Biosens
    
    Bioelectron. 2002,17(3): 233-238
    [23] Ito K, Inoue S, Yamamoto K et al. 8-Hydroxydeoxyguanosine formation at the 5' site of 5'-GG-3' sequences in double-stranded DNA by UV radiation with riboflavin. J Biol Chem. 1993, 268(18): 13221-13227
    [24] LU Changyuan, HAN Zhenhui, LIU Guanshu, et al. Photophysical and photochemical processes of riboflavin (Vitamin B 2) by means of the transient absorption spectra in aqueous solution Science in China (Biochemistry) 2000(5): 428-436
    [25] Dohno C, Nakatani K, Saito I. Guanine of the third strand of C.G~*G triplex serves as an effective hole trap. J Am Chem. Soc. 2002, 124(49): 14580-14585.
    [26] Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology Pharmacol Rev. 1991, 43: 109-142
    [27] Moncada S, Higgs EA, Hodson HF, et al. The L-Arginine: nitric oxide pathway J Cardiovascular-Pharmacol. 1991, 17(A3): S1-S9.
    [28] Beckman JS, Beckman TW, Chen J, et al. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide Proc Natl Acad Sci USA, 1990,87: 1620-1624
    [29] Stuehr, DJ, Nathan CF. Nitric oxide, a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells J Exp Med 1989, 169(5): 1543-1555
    
    
    [30] Mosmann TJ. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxiciy assays. J Immunol Meth, 1983, 65(1-2): 55-63
    [31] Nikkhah G, Tonn JC, Hoffmann O, et al. The MTT assay for chemosensitivity testing of human tumors of the central nervous system. Part Ⅰ: Evaluation of test-specific variables J Neurooncol. 1992, 13(1): 1-11
    [32] Gerlier D, Thomasset N. Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 1986, 94(1-2):57-63
    [33] Ruco LP, Stoppacciaro A, Uccini S, et al. Expression of intercellular adhesion molecul-1 and vascular cell adhesion molecule in unidifferentiated nasopharyngeal carcinoma and in malignant epithelial tumor. Hum Pathol, 1994,25: 924-928.
    [34] Busson P, Zhang Q, Guillon JM, et al. Elevated expression of ICAM-1 and CD58 in Epstein Virus positive nasopharygeal carcinoma cells. Int J Cancer 1992, 50:863-867.
    [35] 王连聪,束美宝,魏启春等 鼻咽癌细胞间粘附分子-1升高的临床意义 中华耳鼻咽喉科杂志 2000,35(6):1-6
    [36] Lin HC, Wang CH, Yu CT et al. Endogenous nitric oxide inhibits neutrophil adherence to lung epithelial cells to modulate interleukin-8 release. Life Sci 2001, 69(11): 1333-1344
    [37] Louis J, Ignarr O, Georgette M et al. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell
    
    proliferation. Proc Natl Acad Sci USA, 2001, 98(7): 4202-4208
    [38] Song JX, Qing SH, Huang XC et al. Effect of parenteral nutrition with L-arginine supplementation on postoperative immune function in patients with colorectal cancer. Di Yi Jun Yi Da Xue Xue Bao 2002, 22(6): 545-547
    [39] Mahns A, Melchheier I, Suschek CV et al. Irradiation of cells with ultraviolet-A (320-400nm) in the presence of cell culture medium elicits biological effects due to extracellular generation of hydrogen peroxide Free Radic Res. 2003, 37(4): 391-397
    [40] 刘官树,陆长元,姚思德等 核黄素体外辐射增敏机理研究 中国科学C辑 2001 31 (6):544-549
    [41] 陆长元,韩镇辉,王文锋等 鸟嘌呤核苷酸与核黄素氧化性自由基之间的电子转移研究 辐射研究与辐射工艺学报 2000,18(4):268-271
    [42] Artuso M, Esteve A, Brésil H, et al. The role of the Ataxia telangiectasia gene in the p53, WAF1/CIP1(p21) and GADD45-mediated response to DNA damage produced by ionising radiation. Oncogene,1995,11:1427-1435
    [43] Medema RH, Kops GJ, Bos JL et al. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 2000 13, 404(6779): 782-787
    [44] 陆长元,韩镇辉,蔡喜臣等 核黄素(维生素B2)的光物理和光化学性质 中国科学(B) 2000,30(5):428-435
    
    
    [45] 张连文,林维真,潘景喜等 核黄素光敏损伤DNA的凝胶电泳 中国科学(C) 2001,31(2):178-184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700