用户名: 密码: 验证码:
体外循环对脑血管功能影响及相关脑保护策略的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
概述:随着心脏外科手术和体外循环技术的不断进步,体外循环造成术后多脏器功能损害日益受到重视。早期和晚期的神经系统并发症发生率仍然很高。脑血流中断或局部血流分配不充分是脑损伤的重要机制,而脑血流灌注完全取决于脑血管的功能状态。目前国内外对于体外循环引起脑血管功能变化的研究很少,尤其是国内对于脑血管功能变化的文献基本是空白。因此迫切需要深入的实验研究来揭示体外循环对脑血管功能变化及其发生机制,并在此基础上提出相关的脑保护策略。
     第一部分S.D.大鼠闭胸体外循环模型的研究
     目的:建立S.D.大鼠体外循环(CPB)模型,为体外循环脑、肺、肝、肾等重要脏器损伤的基础研究提供经济实用的动物模型。
     方法:30只S.D.大鼠平均体重(467.9±44.5)g,随机平均分为5组,每组6只。A组:体外循环60分钟组、B组:体外循环120分钟组、C组:深低温低流量60分钟组、D组:深低温停循环60分钟组和E组:空白对照组。体外循环采用右颈内动脉插管灌注、右颈外静脉插管至右房引流方法建立闭胸体外循环转流,低温诱发室颤心脏停跳。术中进行体温、有创血压、心电图监测,并在在麻醉成功后(T1)、CPB开始前(T2)、CPB30min(T3)、CPB60min(T4)、CPB90min(T5)、CPB120min(T6)和体外循环结束后(T7)七个时间点记录生命体征和进行股动脉血气分析。血气管理采用α稳态策略。
     结果:24只大鼠均顺利建立体外循环模型,生命体征和血气指标均在合理范围内,脱离体外循环时平均血压维持60mmHg以上,脱离体外循环后心功能均顺利恢复。
     结论:本实验建立大鼠闭胸不同体外循环模型是切实可行的,该模型是研究体外循环生理的一个可信赖的平台,有利于研究体外循环后多脏器损伤的病理生理变化。
     第二部分体外循环对大鼠脑血管功能的影响及其机制研究
     目的:研究体外循环转流期间脑血管舒缩变化和不同体外循环时间和体外循环模式对脑血管反应性的影响,并探讨脑血管功能的改变的机制。通过蛋白水平和细胞水平实验指标测定体外循环对脑细胞损伤程度及脑代谢改变,明确脑损伤的程度与脑血管功能变化之间的相关性。
     方法:
     一、大鼠脑血管在不同体外循环模式下功能的变化:
     实验分组同实验第一部分。在CPB开始前(T2)、CPB30min(T3)、CPB60min(T4)、CPB90min(T5)、CPB120min(T6)5个时间点观察内皮素-1(ET-1)和一氧化氮(NO)血浆浓度变化,并通过计算ET-1/NO比值研究体外循环中脑血管舒缩变化规律。取右大脑中动脉(MCA),进行血管反应性测定,包括乙酰胆碱(Ach)浓度相关的血管内皮细胞介导的血管舒张反应、血管平滑肌对不同压力的肌源性反应、硝普钠(SNP)和血管紧张素诱发的血管平滑肌舒缩反应。取海马区脑组织进行微血管的内皮细胞超微结构观察。
     二、体外循环对大鼠脑血管功能失调的机制研究:
     在CPB开始前(T2)、CPB30min(T3)、CPB60min(T4)、CPB90min(T5)、CPB120min(T6)5个时间点测定肿瘤坏死因子-α(TNF-α)、白介素-6(IL-6)的动态血浆浓度变化,并分析其与脑血管舒缩变化规律的关系。采用免疫组织化学ICAM-1染色半定量观察脑血管壁的炎性反应强度。采用Western Blotting技术进行海马内皮型一氧化氮合酶蛋白的定量测定,并分析其与颈内静脉NO含量的关系。
     三、大鼠体外循环脑血管功能变化与脑损伤的关系研究:
     在CPB30min(T3)、CPB60min(T4)、CPB90min(T5)、CPB120min(T6)4个时间点测定血浆S100β蛋白含量,并评价其变化与脑血管舒缩状态指标ET-1/NO比值相关性。磷脂结合蛋白V法测定海马细胞凋亡比例,并评价脑细胞凋亡比例与脑血管舒缩状态相关性;脑组织病理切片H.E.染色评价神经元损伤情况。采用电泳法测定额顶叶皮质脑组织ATP含量,并评价脑组织ATP含量与脑血管舒缩状态相关性。在CPB开始前(T2)、CPB30min(T3)、CPB60min(T4)、CPB90min(T5)、CPB120min(T6)5个时间点测定乳酸含量和颈内静脉氧饱和度,并评价颈内静脉乳酸含量和氧饱和度与脑血管舒缩状态相关性。
     结果:
     一、大鼠脑血管在不同体外循环模式下功能的变化:
     4组S.D.大鼠均成功建立和脱离体外循环。体外循环60分钟后ET-1随转流时间延长而升高,在DHLF和DHCA组复温再灌注时ET-1含量也明显升高。NO含量在转流30分钟达到峰值,此后逐渐下降。ET-1/NO比值在转流30分钟低于术前水平,而此后逐渐升高,各组均在转流末达峰值。
     在不同压力负荷下,MCA肌源性活动功能检测各组间无明显差异。血管紧张素诱导的血管平滑肌收缩功能和硝普钠诱导的血管平滑肌舒张功能均正常。而在不同乙酰胆碱浓度下,A组MCA内皮细胞依赖的血管舒张功能即明显受损。B组与A组相比在各个Ach浓度血管舒张率无差异,而C组和D组在Ach浓度依赖的血管舒张率均明显较B组差,而C、D二组间比较无明显差异。
     海马微血管和内皮细胞超微结构观察发现A、B二组内皮细胞结构与正常组相仿,未见异常改变。而C组毛细血管形态结构基本正常,V-R间隙增宽,D组毛细血管内皮细胞损伤明显,V-R间隙严重增宽伴周围组织脑水肿。
     二、体外循环对大鼠脑血管功能失调的机制研究
     TNF-α和IL-6的浓度在体外循环各组随转流时间延长而显著升高。TNF-α与ET-1/NO比值间相关系数为r=0.637(P<0.001)。IL-6与ET-1/NO比值间相关系数为r=0.521(P<0.001)。海马病理切片ICAM免疫组织化学染色提示在体外循环各组均呈阳性。各组间比较按A、B、C、D组顺序炎症反应强度依次递增,且该强度与ET-1/NO比值间相关系数为r=0.872(P<0.001)。
     Western Blotting法检测eNOS蛋白含量发现各体外循环组含量均明显低于空白对照。B组eNOS蛋白含量亦低于A组(P=0.002)。D组亦显著低于C组(P=0.002)。eNOS蛋白含量与颈内静脉NO含量相关系数r=0.866(P<0.001)。
     三、大鼠体外循环脑血管功能变化与脑损伤的关系研究
     S100β蛋白水平在各体外循环组随转流时间延长而不断升高。而各组间比较,S100β蛋白水平在T5、T6高低依次为D组、C组和B组。S100β蛋白含量与ET-1/NO比值之间相关系数为0.753(P<0.001)。
     体外循环可引起海马神经细胞凋亡明显增加,Annexin v法测定凋亡比例大小依次为D组、C组、B组和A组。细胞凋亡比例与ET-1/NO比值之间相关系数为0.793(P<0.001)。病理学检测在各组切片均未观察到明显的神经元受损的表现,仅可见血管周围炎症,各组病理学评分均为0分。
     常温转流组ATP含量与E组间无明显差异,而C组和D组明显下降,其中D组ATP含量最低,组间差异具有统计学意义(P=0.002)。脑组织ATP含量与T6时间点ET-1/NO比值之间相关系数为-0.808(P<0.001)。乳酸含量测定发现C组和D组在T4、T5、T6明显高于其他各组,与ET-1/NO比值相关性较弱。
     结论:
     一、大鼠脑血管在不同体外循环模式下功能的变化:
     1.脑血管在体外循环期间的缩血管效应明显大于舒血管效应,整体脑组织处于低灌注状态。
     2.大脑中动脉内皮细胞依赖的血管舒张功能受损,在体外循环60分钟即可出现,并且在DHLF和DHCA组损伤明显加重,表明脑血管舒缩紧张度的不稳定性;而体外循环对平滑肌细胞功能无明显影响。
     3.通过大脑微血管和内皮细胞的超微结构观察,发现在DHCA组内皮细胞损伤表现及周围脑组织水肿。
     二、体外循环对大鼠脑血管功能失调的机制研究
     1.体外循环可引起TNF-α和IL-6为代表的炎性因子显著升高,炎性因子水平与脑血管舒缩状态存在明显相关性,说明脑血管舒缩功能受损可能或部分为全身炎症反应引起。
     2.体外循环可引起脑组织eNOS蛋白表达水平明显降低,且在DHLF和DHCA组降低尤为明显,提示炎症反应和缺血-再灌注损伤是影响eNOS蛋白水平的重要因素。
     3.脑组织eNOS蛋白水平与颈内静脉血NO含量呈明显相关,提示脑血管eNOS功能状态是脑血管舒缩状态的重要因素。
     三、大鼠体外循环脑血管功能变化与脑损伤的关系研究
     1.体外循环,特别是DHLF和DHCA转流可引起血浆S100β蛋白为标志的神经细胞明显损伤,其损伤程度与脑血管灌注水平一致。
     2.体外循环可引起神经细胞凋亡比例升高,说明凋亡是神经系统损伤的重要原因之一。细胞凋亡比例与脑血管舒缩状态之间存在相关性。
     3.体外循环后早期2小时之内,未能在H.E.染色的病理切片上发现明显的神经细胞受损证据。
     4.DHLF和DHCA可引起细胞ATP含量明显下降和颈内静脉乳酸水平明显升高,其程度与脑血管舒缩状态一致。
     第三部分应用一氧化氮供体对大鼠体外循环脑损伤的保护策略研究
     目的:观察通过给予NO供体以提高血浆NO浓度,能否通过减轻体外循环引起的炎症反应强度,提高脑组织灌注状态,从而减轻大鼠体外循环后急性脑损伤。
     方法:36只大鼠随机平均分为6组,每组6只。B组:常温体外循环120min组、C组:深低温低流量60min组、D组:深低温停循环60min组、F组:常温体外循环120min+保护组、G组:深低温低流量60min+保护组和H组:深低温停循环60min+保护组。保护方法为静脉输注硝普钠3mg/kg/h至CPB结束,加用去氧肾上腺素维持平均动脉血压在60mmHg以上。
     各组CPB30min(T3)、CPB60min(T4)、CPB90min(T5)、CPB120min(T6)4个时间点测定血浆S100β蛋白、Annexin V法测定海马细胞凋亡比例、右额顶叶皮质脑组织ATP含量测定、在CPB开始前(T2)、CPB30min(T3)、CPB60min(T4)、CPB90min(T5)、CPB120min(T6)5个时间点测定颈内静脉乳酸含量和氧饱和度等脑代谢指标及大脑海马区神经元和胶质细胞超微结构观察分别进行保护组与非保护组比较,观察NO供体的保护效应。
     在CPB体外循环开始(T2)和体外循环120分钟(T6)二个时间点抽取颈内静脉血,组间进行TNF-α和IL-6浓度比较,确定NO供体是否通过降低炎性因子水平起到神经保护作用。定量测定各组海马eNOS蛋白并进行组间比较,了解给予NO供体后对eNOS蛋白含量的影响。
     结果:各组36只S.D.大鼠均顺利建立体外循环。B组和F组、C组和G组、D组和H组比较,在T5、T6时间点各保护组颈内静脉血S100β蛋白含量均低于对照组;各保护组凋亡比例均明显低于对照组;各保护组额顶叶皮质脑组织ATP含量均高于对照组;在DHLF和DHCA保护组转流末乳酸含量明显低于对照组。T6时间点IL-6浓度F、G、H组均明显低于B、C、D组,F组eNOS蛋白含量低于B组(P=0.037),而C组与G组、D组与H组间eNOS蛋白含量相仿。
     结论:
     1.SNP作为一种外源性NO的供体,可以明显减轻体外循环引起的神经细胞损伤和减少细胞的凋亡。
     2.扩张脑血管增加血流灌注和氧供、抑制体外循环炎症反应可能是NO供体脑保护的机制。
Introduction With the improvement of techniques of cardiac surgery and cardiopulmonary bypass(CPB),attention is increasingly focused on the multi-organ dysfunction caused by the CPB.The early and late neurologic morbidities are still high.The interruption of cerebral blood flow and the regional low-flow cerebral perfusion are the vast mechanisms of the brain injury,and the cerebral perfusion is totally based on the functional status of the cerebral vessels.There are few studies on effect of the CPB on cerebral vascular changes nowadays;especially the field is almost empty in domestic.This research was assigned to experimentally study on the effect of the CPB on cerebral vascular changes and mechanisms,and raised associated cerebral protective strategy.
     PartⅠThe Study of the Animal Model of Closed Chest Cardiopulmonary Bypass in Sprague-Dawley Rats
     Objectives To establish the animal model of closed chest cardiopulmonary bypass in the Sprague-Dawley rats and provide a economical animal model for the basic research of multi-organ dysfunction induced by CPB.
     Methods The S.D.rats were assigned to undergo CPB via right carotid and jugular cannulation,and self-designed and improved the elements of CPB circuit.The cardiac arrest was induced by the hypothermal ventricular fibrillation.Mean body weight of the 30 rats was(467.9±44.5)g.The 30 rats were equally divided into five groups which were underwent CPB for 60 minutes(Group A),CPB for 120 minutes(Group B), deep hypothermic low flow(DHLF) bypass 60 minutes(Group C),deep hypothermic circulatory arrest(DHCA) 60 minutes(Group D) and sham(Group E) individually. During the bypass,temperature,invasive arterial blood pressure,electrocardiograph and arterial blood gas analysis were monitored and recorded at the following time point:after the anesthesia(T1),before CPB(T2),30min(T3),60min(T4),90min(T5), 120min(T6) during CPB and end of CPB(T7).Theα-stat strategy was used as blood gas analysis management.
     Results The CPB were performed successfully in all the rats.The blood gas analysis results were all maintained in acceptable range and the mean arterial pressure were over 60 mmHg when off-pump.The cardiac function recovered after the rat weaned from the CPB.
     Conclusions The animal model of closed chest CPB can be established successfully in rats with excellent survive.This model is a stable platform for the study of the pathophysiology of CPB and post-CPB multiple organ dysfunctions.
     PartⅡThe Study on Effect of the Cardiopulmonary Bypass on Cerebral Vascular Changes in Rats and Associated Mechanisms
     Objectives 1.To study on the cerebral vasomotor changes during the CPB and cerebral vascular reactivity changes after different bypass time and modes and to investigate the associated mechanisms.2.To test the cerebral injuries and metabolism in protein and cell levels to correlate the cerebral injuries and cerebral vasomotor changes.
     Methods
     1.The Study on the Cerebral Vasomotor Changes During the CPB and Cerebral Vascular Reactivity Changes after Different Bypass Time and Modes in Rats. The 30 rats were divided into 5 groups as PartⅠ.The internal jugular vein blood samples were taken before CPB(T2),30 min(T3),60 min(T4),90 min(T5) and 120 min(T6) during CPB to test the serologic endothelin-1(ET-1) and nitric oxide(NO) changes.The ET-1/NO ratio was calculated to investigate the cerebral vasomotor changes.The right middle cerebral artery(MCA) was harvested and prepared for assessment of the myogenic tone with different transmural pressure,the endothelial cell response induced by different concentration of acetylcholine and the vascular smooth muscle cell response induced by the sodium nitroprusside and serotonin.The hippocampus tissue was harvested to observe the ultramicrostructure of endothelial cell in capillary with electron microscope.
     2.The Mechanism of Cerebral Vascular Dysfunction Induced by the Cardiopulmonary Bypass in Rats.
     The internal jugular vein blood samples were taken before CPB(T2),30 min(T3),60 min(T4),90 min(T5) and 120 min(T6) during CPB to test the tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) in serum.The statistical analysis was used to test correlation between the cytokines and the cerebral vasomotor changes.The eNOS protein expression in hippocampus was determined by the Western immunoblotting and the correlation between the eNOS expression and NO content was accessed.
     3.The Study on the Correlation Between the Cerebral Vascular Changes and Cerebral Injuries Induced by CPB in Rats.
     The internal jugular vein blood samples were taken 30 min(T3),60 min(T4),90 min(T5) and 120 min(T6) during CPB to test the S100βprotein levels and assess the correlation between S100βlevels and ET-1/NO ratio.The apoptosis cell percentage in hippocampus was determined by Annexin V/PI exam and the correlation between the apoptosis cell ratio and ET-1/NO ratio on T6 was accessed.The neuron injury was scored by the histopathology.The ATP content in frontal and apical lobe of the brain was tested by the electrophoresis and correlated with the ET-1/NO ratio on T6.The lactic acid content and internal jugular vein saturation were tested before CPB(T2),30 min(T3),60 min(T4),90 min(T5) and 120 min(T6) during CPB.The correlation were analyzed between the lactic acid content/ internal jugular vein saturation and the ET-1/NO ratio.
     Results
     1.The Study on the Cerebral Vasomotor Changes During the CPB and Cerebral Vascular Reactivity Changes after Different Bypass Time and Modes in Rats. All the rats were successfully established and weaned from the bypass.The ET-1 content increased with the bypass time and in DHLF and DHCA group,the ET-1 content increased in rewarming period.The NO content reached summit at T3 but decreased gradually after that.The ET-1/NO ratio was lower than T2 in T3 but increased to summit at the end of bypass.
     The bypass did not alter the results of myogenic tone test with different transmural pressure.Furthermore,the vascular smooth muscle cell response induced by the sodium nitroprusside and serotonin were also intact in all the rats.Acetylcholine caused a dose-dependent vasodilation in the sham group that was absent in animals undergoing CPB.Significantly,this was apparent after only 60 minutes of CPB and the endothelial cell vasodilation responses were lower in DHLF and DHCA groups compared with group B.
     The ultramicrostructure of endothelial cell and capillary in hippocampus observed by electron microscope found normal structure in group A and B,but the V-R space widened in group C and structural injury in endothelial cell and cerebral edema in group D.
     2.The Mechanism of Cerebral Vascular Dysfunction Induced by the Cardiopulmonary Bypass in Rats.
     CPB led to an early and marked increase in TNF-αand IL-6.The correlation coefficient between TNF-αand ET-1/NO ratio was 0.637(P<0.001).The correlation coefficient between IL-6 and ET-1/NO ratio was 0.521(P<0.001).The ICAM-1 were overexpressed in all the CPB groups and the intensity of ICAM-1 expression increased by turns in group A,B,C and D.The correlation coefficient between ICAM-1 and ET-1/NO ratio was 0.872(P<0.001).
     The CPB was correlated with the significantly reduction in eNOS expression.The ranks comparison based on Wilcoxson tests indicated that the eNOS protein level was lower in group B than group A(P=0.002) and group D than group C(P=0.002).The correlation coefficient between eNOS protein expression and NO content in internal jugular vein was 0.866(P<0.001),and the regression equation was NO content= 1.91+1.73×eNOS expression.
     3.The Study on the Relationship Between the Cerebral Vascular Changes and Cerebral Injuries Induced by CPB in Rats.
     The CPB was correlated with the significantly increased in S100βprotein.DHCA caused highest S100βprotein levels compared with group B and C.The ranks comparison indicated that the S100βprotein level was higher in DHLF group compared with group B.The correlation coefficient between S100βprotein and ET-1/NO ratio was 0.753(P<0.001).
     The CPB was correlated with the significantly increased in apoptosis cell percentage in hippocampus.DHCA caused highest percentage of apoptosis cells compared with group B and C.The correlation coefficient between percentage of apoptosis cells and ET-1/NO ratio was 0.793(P<0.001).No neuron injury was found pathologically and scored 0 in all the groups.
     CPB did not alter the level of ATP compared with sham group,but the level reduced significantly in group C and D.The ranks comparison based on Wilcoxson tests indicated that the ATP level was lower in group D than group C(P=0.002).The correlation coefficient between ATP level and ET-1/NO ratio in T6 was -0.808 (P<0.001).The lactic acid were higher in group C and D compared with group A and B in T4,T5,T6,but weak correlation was found with ET-1/NO ratio.
     Conclusions
     1.The Study on the Cerebral Vasomotor Changes During the CPB and Cerebral Vascular Reactivity Changes after Different Bypass Time and Modes in Rats.
     a.The cerebral vasoconstriction effect is greater than vasodilatation effect during the CPB,which lead to poor cerebral perfusion.
     b.The specific loss of acetylcholine- induced vasodilation suggests endothelial cell dysfunction,which appeares 60 min after the onset of CPB and are worsen in DHLF and DHCA group.Adversely,the vascular smooth muscle functions are not impaired after CPB.
     c.The observation of ultramicrostructure of endothelial cell and capillary in hippocampus finds structural injury in endothelial cell and cerebral edema in DHCA group.
     2.The Mechanism of Cerebral Vascular Dysfunction Induced by the Cardiopulmonary Bypass in Rats.
     a.The increase of TNF-αand IL-6 induced by CPB is correlated with the cerebral vasomotor changes,which demonstrates that the impair cerebrovascular function is caused by the systemic inflammatory response.
     b.The eNOS protein expression is reduced by CPB,especially in DHLF and DHCA group,which suggests the systemic inflammatory response and ischemia-reperfusion injury are the vast factors that affect the expression of eNOS protein.
     c.The cerebrovascular eNOS protein expression is correlated with the NO content in internal jugular vein,which suggests the expression level of eNOS is a main factor of cerebral vasomotor changes.
     3.The Study on the Relationship Between the Cerebral Vascular Changes and Cerebral Injuries Induced by CPB in Rats.
     a.CPB,especially DHCA and DHLF leads to the increase of serum S100βprotein, which is a marker of the cerebral damage.And the serum S100βprotein level is correlated with the cerebral vasomotor changes.
     b.Apoptosis is induced by CPB in cells of hippocampus,which suggests that apoptosis is a vast mechanism of cerebral damage.The apoptosis cell percentage is correlated with the cerebral vasomotor changes.
     c.No evidence of neuron damage can be found pathologically in 2 hours after CPB.
     d.DHLF and DHCA can lead to the reduction of ATP level in brain and increase of the lactic acid level in internal jugular vein.The ATP level is correlated with the cerebral vasomotor changes.
     PartⅢThe Study of Protective Effect of NO Donor on Cerebral Damage Induced by CPB in Rats
     Objectivs To investigate the cerebral protective effect and mechanism of NO donor reducing the cerebral damage induced by CPB.
     Methods 36 rats were equally divided into six groups which were underwent CPB for 120 minutes(Group B),DHLF 60 minutes(Group C),DHCA 60 min(Group D),CPB for 120 minutes with SNP(Group F),DHLF 60 minutes with SNP(Group G),DHCA 60 min with SNP(Group H).The protective strategy was to infuse SNP 3mg/kg/h intravenously with deoxyepinephrine to maintain the MAP over 60mmHg till end of CPB.The serum S100βprotein level,the apoptosis cell percentage,the ATP levels, the lactic acid and internal jugular vein saturation and the microstructure were compared between the corresponding groups with and without SNP.
     The blood samples were taken at T2 and T6 to evaluate the TNF-αand IL-6 levels. The levels were compared between the corresponding groups with and without SNP. The eNOS protein expression were determined to assess the changes affected by the NO donor.
     Results 36 rats were successfully established the bypass.The serum S100βprotein levels and apoptosis cell percentages were lower at T5 and T6 in groups with SNP compared with the control groups.The ATP levels were higher in groups with SNP compared with the control groups while the lactic acid levels were lower in DHCA/DHLF groups with SNP compared with corresponding control groups.The IL-6 levels were lower in groups with SNP compared with corresponding control groups at T6.The SNP altered the eNOS protein expression in group F(P=0.037) compared with group B,while the expression levels were similar in DHLF/DHCA groups with or without SNP.
     Conclusions
     1.As an exogenous NO donor,SNP can significantly reduce the cerebral damage and cellular apoptosis induced by CPB.
     2.The mechanism of cerebral protection of SNP is contributed to the vasodilatation to increase the blood flow and oxygen and inhibition of systemic inflammatory response induced by CPB.
引文
[1] Laussen PC. Neonates with congenital heart disease[J].Curr Opin Pediatr, 2001,13(3):220-226.
    [2] Cooley DA.Early development of congenital heart surgery: open heart procedures[J]. Ann Thorac Surg, 1997,64(5): 1544-1548.
    [3] Trittenwein G, Nardi A, Pansi H, et al. Early postoperative prediction of cerebral damage after pediatric cardiac surgery[J]. Ann Thorac Surg, 2003,76(2):576-580.
    [4] Menache CC, du Plessis AJ, Wessel DL, et al. Current incidence of acute neurologic complications after open-heart operations in children[J]. Ann Thorac Surg, 2002,73(6): 1752-1758.
    [5] Majnemer A, Limperopoulos C, Shevell M, et al. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery[J]. J Pediatr, 2006,148(1):72-77.
    [6] Limperopoulos C, Majnemer A, Shevell MI, et al. Functional limitations in young children with congenital heart defects after cardiac surgery[J]. Pediatrics, 2001,108(6):1325-1331.
    [7] Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass[J]. Circulation, 1999,100(5):526-532.
    [8] Halstead JC, Etz C, Meier DM, et al. Perfusing the cold brain: optimal neuroprotection for aortic surgery[J]. Ann Thorac Surg, 2007,84(3):768-774.
    [9] Williams GD, Ramamoorthy C. Brain monitoring and protection during pediatric cardiac surgery[J]. Semin Cardiothorac Vasc Anesth, 2007,11(1):23-33.
    [10]Croughwell N, Smith LR, Quill T, et al. The effect of temperature on cerebral metabolism and blood flow in adults during cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 1992,103(3):549-554.
    [11]Greeley WJ, Ungerleider RM, Kern FH, et al. Effects of cardiopulmonary bypass on cerebral blood flow in neonates, infants, and children[J]. Circulation, 1989,80(3):209-215.
    [12]Murkin JM. Cerebral Autoregulation: The Role of CO_2 in Metabolic Homeostasis[J]. Semin Cardiothorac Vasc Anesth, 2007,ll(4):269-273.
    [13]Modine T, Azzaoui R, Fayad G, et al.A recovery model of minimally invasive cardiopulmonary bypass in the rat[J]. Perfusion, 2006,21(2):87-92.
    [14]Dong GH,Xu B,Wang CT,et al.A rat model of cardiopulmonary bypass with excellent survival[J].J Surg Res,2005,123(2):171-175.
    [15]Kern FH,Ungerleider RM,Schulman SR,et al.Comparing two strategies of cardiopulmonary bypass cooling on jugular venous oxygen saturation in neonates and infants[J].Ann Thorac Surg,1995,60(5):1198-1202.
    [16]董国华,景华.大鼠体外循环模型技术与实践[J].中国病理生理杂志,2005,21(9):1867-1869.
    [17]Ballaux PK,Gourlay T,Ratnatunga CP,et al.A literature review of cardiopulmonary bypass models for rats[J].Perfusion,1999,14(6):411-417.
    [18]黑飞龙,高国栋,周荣华,等.大鼠体外循环模型的建立[J].中国体外循环杂志,2006,4(4);224-227.
    [19]杨波,苏肇康,陈恩.大鼠体外循环动物模型的建立[J].上海第二医科大学学报,2003,23(suppl):12-14.
    [20]Gourlay T,Ballaux PK,Draper ER,et al.Early experience with a new technique and technology designed for the study of pulsatile cardiopulmonary bypass in the rat[J].Perfusion,2002,17(3):191-198.
    [21]Grocott HP,Mackensen GB,Newman MF,et al.Neurological injury during cardiopulmonary bypass in the rat[J].Perfusion,2001,16(1):75-81.
    [22]Whitaker DC,Green AJ,Stygall J,et al.Evaluation of an alternative S100b assay for use in cardiac surgery:relationship with microemboli and neuropsychological outcome[J].Perfusion,2007,22(4):267-272.
    [23]Dominguez TE,Wernovsky G,Gaynor JW.Cause and prevention of central nervous system injury in neonates undergoing cardiac surgery[J].Semin Thorac Cardiovasc Surg,2007,19(3):269-277.
    [24]Nakamura K,Ueno T,Yamamoto H,et al.Relationship between cerebral injury and inflammatory responses in patients undergoing cardiac surgery with cardiopulmonary bypass[J].Cytokine,2005;29(3):95-104.
    [25]Williams GD,Ramamoorthy C.Brain monitoring and protection during pediatric cardiac surgery[J].Semin Cardiothorac Vasc Anesth,2007,11(1):23-33.
    [26]McQuillen PS,Barkovich AJ,Hamrick SE,et al.Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects[J].Stroke,2007,38(2 Suppl):736-741.
    [27]Fessatidis IT,Thomas VL,Shore DF,et al.Assessment of neurological injury due to circulatory arrest during profound hypothermia.An experimental study in vertebrates[J].Eur J Cardiothorac Surg,1993,7(9):465-472.
    [28]Bucerius J,Gummert JF,Borger MA,et al.Stroke after cardiac surgery:a risk factor analysis of 16,184 consecutive adult patients[J].Ann Thorac Surg,2003,75(2):472-478.
    [29]Newman S,Klinger L,Venn G,et al.Subjective reports of cognition in relation to assessed cognitive performance following coronary artery bypass surgery[J].J Psychosom Res,1989,33(2):227-233.
    [30]Newman SP,Harrison MJ.Coronary-artery bypass surgery and the brain:persisting concerns[J].Lancet Neurol,2002,1(2):119-125.
    [31]Murkin JM.Etiology and incidence of brain dysfunction after cardiac surgery[J].J Cardiothorac Vase Anesth,1999,13(Suppl 1):12-17.
    [32]Smith PL.The systemic inflammatory response to cardiopulmonary bypass and the brain[J].Perfusion,1996,11(4):196-199.
    [33]Murkin JM.Cerebral Autoregulation:The Role of CO2 in Metabolic Homeostasis[J].Semin Cardiothorae Vase Anesth,2007,11(4):269-273.
    [34]Nishizawa T,Usui A,Murase M,et al.pH-stat blood gas management provides better cerebral perfusion during deep hypothermic retrograde cerebral perfusion[J].Interact Cardiovasc Thorac Surg,2002,1(2):88-92.
    [35]Kiziltan HT,Baltali M,Bilen A,et al.Comparison of alpha-stat and pH-stat cardiopulmonary bypass in relation to jugular venous oxygen saturation and cerebral glucose-oxygen utilization[J].Anesth Analg,2003,96(3):644-650.
    [36]胡永奇,张连元,李宏杰,等.一氧化氮、内皮素-1对大鼠肢体缺血/再灌注后脑损伤的影响[J].中国应用生理学杂志,2005,21(1):30-33.
    [37]Taffi R,Nanetti L,Mazzanti L,et al.Plasma levels of nitric oxide and stroke outcome[J].J Neurol,2008,255(1):94-98.
    [38]Xu X,Zheng X.Potential involvement of calcium and nitric oxide in protective effects of puerarin on oxygen-glucose deprivation in cultured hippocampal neurons[J].J Ethnopharmacol,2007,113(3):421-426.
    [39]Dawson TM,Steiner JP,Dawson VL,et al.Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity[J].Proe Natl Acad Sci U S A,1993,90(21):9808-9812.
    [40] Malinski T, Bailey F, Zhang ZG, et al. Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion[J]. J Cereb Blood Flow Metab, 1993,13(3):355-358.
    [41][1] Bredt DS, Ferris CD, Snyder SH. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites[J]. J Biol Chem, 1992,267(16):10976-10981.
    [42] Jesmin S, Maeda S, Mowa CN, et al. Antagonism of endothelin action normalizes altered levels of VEGF and its signaling in the brain of stroke-prone spontaneously hypertensive rat[J]. Eur J Pharmacol, 2007,574(2-3):158-171.
    [43]McCarron RM, Chen Y, Tomori T, et al. Endothelial-mediated regulation of cerebral microcirculation. J Physiol Pharmacol[J]. 2006,57(Suppl 11):133-144.
    [44]Ludmer PL, Selwyn AP, Shook TL, et al. Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries[J].N Engl J Med, 1986,315(17):1046-1051.
    [45] Akopov SE, Sercombe R, Seylaz J. Leukocyte-induced acute endothelial dysfunction in middle cerebral artery in rabbits. Response to aggregating platelets[J]. Stroke 1994,25(11):2246 -2252.
    [46] Stanimirovic DB, Wong J, Shapiro A, et al. Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults[J]. Acta Neurochir, 1997,70(Suppl): 12-16.
    [47] Sellke FW, Wang SY, Stamler A, et al. Changes in autonomic response of the cerebral circulation after normothermic extracorporeal circulation[J]. J Thorac Cardiovasc Surg, 1996,112(2):450-461.
    [48]Hindman BJ, Enomoto S, Dexter F, et al. Cerebrovascular relaxation responses to endothelium-dependent and -independent vasodilators after normothermic and hypothermic cardiopulmonary bypass in the rabbit[J]. Anesthesiology, 1998,88(6):1614-1623.
    [49]Modine T, Azzaoui R, Ouk T, et al. Changes in cerebral vascular reactivity occur early during cardiopulmonary bypass in the rat[J]. Ann Thorac Surg, 2006,82(2):672-678.
    [50]Grocott HP, Mackensen GB, Newman MF, et al. Neurological injury during cardiopulmonary bypass in the rat[J]. Perfusion, 2001,16(1):75-81.
    [51] Akopov SE, Sercombe R, Seylaz J. Leukocyte-induced acute endothelial dysfunction in middle cerebral artery in rabbits. Response to aggregating platelets[J]. Stroke, 1994,25(11):2246-2252.
    [52] Akopov SE,Sercombe R, Seylaz J. Leukocyte-induced endothelial dysfunction in the rabbit basilar artery: modulation by platelet-activating factor[J]. J Lipid Mediat Cell Signal, 1995,11(3):267-279.
    [53]Hill GE. The inflammatory response to cardiopulmonary bypass[J]. Int Anesthesiol Clin, 1996,34(2):95-108.
    [54]Menasche P. The inflammatory response to cardiopulmonary bypass and its impact on postoperative myocardial function[J]. Curr Opin Cardiol, 1995,10(6):597-604.
    [55] Levy JH, Tanaka KA. Inflammatory response to cardiopulmonary bypass[J]. Ann Thorac Surg, 2003,75(Suppl):715-720.
    [56] Wan S, LeClerc JL, Vincent JL. Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies[J]. Chest, 1997,112(3):676-692.
    [57]Paparella D, Yau TM, Young E. Cardiopulmonary bypass induced inflammation: pathophysiology and treatment[J]. An update. Eur J Cardiothorac Surg, 2002,21(2):232-244.
    [58] Sellke FW, Boyle EM Jr, Verrier ED. Endothelial cell injury in cardiovascular surgery: the pathophysiology of vasomotor dysfunction[J]. Ann Thorac Surg, 1996,62(4):222-228.
    [59]Clermont G, Vergely C, de Girard C, et al. Cellular injury associated with extracorporeal circulation[J]. Ann Cardiol Angeiol, 2002,51:38-43.
    [60]Hack CE, de Groot ER, Felt-Bersma RJ, et al. Increased plasma concentrations of interleukin-6 in sepsis[J]. Blood, 1989,74(5):1704-1710.
    [61]Casey LC, Balk RA, Bone RC. Plasma cytokine and endotoxin concentrations correlate with survival in patients with the sepsis syndrome[J]. Ann Intern Med, 1993, 119(8):771-778.
    [62]Doguet F, Litzler PY, Tamion F, et al. Changes in mesenteric vascular reactivity and inflammatory response after cardiopulmonary bypass in a rat model[J]. Ann Thorac Surg, 2004,77(6):2130-2137.
    [63]Gourlay T, Samartzis I, Taylor KM. The effect of haemodilution on blood-biomaterial contact-mediated CD11b expression on neutrophils: ex vivo studies[J]. Perfusion, 2003,18(2):87-93.
    [64] Boyle EM Jr, Pohlman TH, Johnson MC, et al. Endothelial cell injury in cardiovascular surgery: the systemic inflammatory response[J]. Ann Thorac Surg, 1997,63(1):277-284.
    [65] Boyle EM Jr, Morgan EN, Kovacich JC, et al. Microvascular responses to cardiopulmonary bypass[J]. J Cardiothorac Vasc Anesth, 1999,13(Suppl 1):30-37.
    [66] Hill GE, Whitten CW, Landers DF. The influence of cardiopulmonary bypass on cytokines and cell-cell communication[J]. J Cardiothorac Vasc Anesth, 1997,11(3):367-375.
    
    [67]Ilton MK, Langton PE, Taylor ML, et al. Differential expression of neutrophil adhesion molecules during coronary artery surgery with cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 1999,118(5):930-937.
    
    [68] Sellke FW. Vascular changes after cardiopulmonary bypass and ischemic cardiac arrest: roles of nitric oxide synthase and cyclooxygenase[J]. Braz J Med Biol Res, 1999,32(11):1345-1352.
    [69]Loscalzo J. Nitric oxide and vascular disease[J]. N Engl J Med, 1995,333(4):251-253.
    
    [70]Rudic RD, Sessa WC. Nitric oxide in endothelial dysfunction and vascular remodeling: clinical correlates and experimental links[J]. Am J Hum Genet, 1999,64(3):673-677.
    [71] Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase[J]. Nature, 1995,377(6546):239-242.
    [72]Gidday JM, Park TS, Shah AR, et al. Modulation of basal and postischemic leukocyte-endothelial adherence by nitric oxide[J]. Stroke, 1998,29(7):1423-1429.
    
    [73]Hudetz AG, Wood JD, Kampine JP. Nitric oxide synthase inhibitor augments post-ischemic leukocyte adhesion in the cerebral microcirculation in vivo[J]. Neural Res 1999,21(4):378-384.
    
    [74]Lindauer U, Dreier J, Angstwurm K, et al. Role of nitric oxide synthase inhibition in leukocyte-endothelium interaction in the rat pial microvasculature[J]. J Cereb Blood Flow Metab, 1996,16(6):1143-1152.
    
    [75] McQuillan LP, Leung GK, Marsden PA, et al. Hypoxia inhibits expression of eNOS via transcriptional and posttranscriptional mechanisms. Am J Physiol, 1994;267(5):1921-1927.
    [76] Liao JK, Zulueta JJ, Yu FS, et al. Regulation of bovine endothelial constitutive nitric oxide synthase by oxygen[J]. J Clin Invest, 1995,96(6):2661-2666.
    [77] Phelan MW, Faller DV. Hypoxia decreases constitutive nitric oxide synthase transcript and protein in cultured endothelial cells[J]. J Cell Physiol, 1996,167(3):469-476.
    [78] Arnet UA, McMillan A, Dinerman JL, et al. Regulation of endothelial nitric-oxide synthase during hypoxia[J]. J Biol Chem 1996,271(25): 15069-15073.
    [79] Samdani AF, Dawson TM, Dawson VL. Nitric oxide synthase in models of focal ischemia[J]. Stroke, 1997,28(6): 1283-1288.
    [80] Endres M, Laufs U, Liao JK, Moskowitz MA. Targeting eNOS for stroke protection[J]. Trends Neurosci, 2004,27(5):283-289.
    [81]Iadecola C, Zhang F, Casey R, et al. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia[J]. Stroke, 1996,27(8):1373-1380.
    [82]Duebener LF, Sakamoto T, Hatsuoka S, et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass[J]. Circulation, 2001,104(12 suppl 1):260-264.
    [83] O'Brien JJ, Butterworth J, Hammon JW, et al. Cerebral emboli during cardiac surgery in children[J]. Anesthesiology, 1997,87(5):1063-1069.
    [84]Utley JR. Techniques for avoiding neurologic injury during adult cardiac surgery[J]. J Cardiothorac Vasc Anesth, 1996,10(1):38-43.
    [85]Blomquist S, Johnsson P, Luhrs C, et al. The appearance of S-100 protein in serum during and immediately after cardiopulmonary bypass surgery: a possible marker for cerebral injury[J]. J Cardiothorac Vasc Anesth, 1997,11(6):699-703.
    [86] Kumar P, Dhital K, Hossein-Nia M, et al. S-100 protein release in a range of cardiothoracic surgical procedures[J].J Thorac Cardiovasc Surg, 1997,113(5):953-954.
    [87]Myung RJ, Kirshbom PM, Petko M, et al. Modified ultrafiltration may not improve neurologic outcome following deep hypothermic circulatory arrest[J], Eur J Cardiothorac Surg, 2003,24(2):243-248.
    [88]Aurell A, Rosengren LE, Karlsson B, et al. Determination of S-100 and glial fibrillary acidic protein concentrations in cerebrospinal fluid after brain infarction[J].Stroke, 1991,22(10):1254-1258.
    [89]Oh EJ, Kim YM, Jegal DW, et al. Diagnostic value of Elecsys S100 as a marker of acute brain injury in the emergency department[J]. J Clin Lab Anal, 2007,21(6):387-392.
    [90]Muller K, Townend W, Biasca N, et al. S100B serum level predicts computed tomography findings after minor head injury[J]. J Trauma, 2007,62(6): 1452-1456.
    [91] Berger RP, Beers SR, Richichi R, et al. Serum biomarker concentrations and outcome after pediatric traumatic brain injury[J]. J Neurotrauma, 2007,24(12):1793-1801.
    [92]Nylen K, Ost M, Csajbok LZ, et al. Serum levels of S100B, S100A1B and S100BB are all related to outcome after severe traumatic brain injury[J]. Acta Neurochir (Wien), 2008,150(3):221-217.
    [93] Vajtr D, Prusa R, Kukacka J, et al. Evaluation of relevance in concussion and damage of health by monitoring of neuron specific enolase and S-100b protein[J]. Soud Lek, 2007,52(3):43-46.
    [94]Whitaker DC, Green AJ, Stygall J, et al. Evaluation of an alternative S100b assay for use in cardiac surgery: relationship with microemboli and neuropsychological outcome[J]. Perfusion, 2007,22(4):267-272.
    [95] Ali MS, Harmer M, Vaughan R. Serum S100 protein as a marker of cerebral damage during cardiac surgery[J]. Br J Anaesth, 2000,85(2):287-298.
    [96] Tanaka Y, Koizumi C, Marumo T, et al. Serum S100B is a useful surrogate marker for long-term outcomes in photochemically-induced thrombotic stroke rat models[J]. Life Sci, 2007,81(8):657-663.
    [97] Tanaka Y, Marumo T, Omura T, et al. Serum S100B indicates successful combination treatment with recombinant tissue plasminogen activator and MK-801 in a rat model of embolic stroke[J]. Brain Res, 2007,1154(18):194-199.
    [98] Connolly ES Jr, Winfree CJ, Rampersad A, et al. Serum S100B protein levels are correlated with subclinical neurocognitive declines after carotid endarterectomy[J]. Neurosurgery, 2001,49(5): 1076-1082.
    [99] Lindberg L, Olsson AK, Anderson K, et al. Serum S-100 protein levels after pediatric cardiac operations: a possible new marker for postperfusion cerebral injury[J]. J Thorac Cardiovasc Surg, 1998,116(2):281-285.
    [100]Zhang TJ, Hang J, Wen DX, et al. Hippocampus bcl-2 and bax expression and neuronal apoptosis after moderate hypothermic cardiopulmonary bypass in rats[J]. Anesth Analg, 2006,102(4): 1018-1025.
    [101]Ditsworth D, Priestley MA, Loepke AW, et al. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets[J]. Anesthesiology, 2003,98(5):1119-1127.
    [102]D'Lima DD, Kuhn K, Lotz MK. Detection of apoptosis in cartilage in situ and in isolated chondrocytes[J]. Methods Mol Med, 2004,100:275-290.
    [103] Rossi DJ, Bryder D, Seita J, et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age[J]. Nature, 2007,447(7145):725-729.
    [104] Kerr JF. History of the events leading to the formulation of the apoptosis concept[J]. Toxicology, 2002,181-182(27):471-474.
    [105] Zhou Z. New phosphatidylserine receptors: clearance of apoptotic cells and more[J]. Dev Cell, 2007,13(6):759-760.
    [106] Lust WD, Taylor C, Pundik S, et al. Ischemic cell death: dynamics of delayed secondary energy failure during reperfusion following focal ischemia[J]. Metab Brain Dis, 2002,17(2): 113-121.
    
    [107]Stys PK. White matter injury mechanisms[J]. Curr Mol Med, 2004,4(2): 113-130
    [108] Jenkins BG, Chen YI, Kuestermann E, et al. An integrated strategy for evaluation of metabolic and oxidative defects in neurodegenerative illness using magnetic resonance techniques [J]. Ann N Y Acad Sci, 1999,893:214-242.
    [109] Soustiel JF, Sviri GE. Monitoring of cerebral metabolism: non-ischemic impairment of oxidative metabolism following severe traumatic brain injury[J]. Neurol Res, 2007,29(7):654-660.
    [110] Archer SL, Huang JM, Reeve HL, et al. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia[J]. Circ Res, 1996,78(3):431-442.
    [11 l]Gasco A, Fruttero R, Rolando B. Focus on recent approaches for the development of new NO-donors[J]. Mini Rev Med Chem, 2005,5(2):217-229.
    [112] Gomez SI, Strick DM, Romero JC. Role of nitric oxide and prostaglandin in the maintenance of cortical and renal medullary blood flow[J]. Braz J Med Biol Res, 2008,41(2):170-175.
    [113]Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases[J]. Inflammopharmacology. 2007,15(6):252-259.
    [114]Brkovic A, Sirois MG.Vascular permeability induced by VEGF family members in vivo: role of endogenous PAF and NO synthesis[J]. J Cell Biochem, 2007,100(3):727-737.
    [115] Liu X, Huang Y, Pokreisz P, et al. Nitric oxide inhalation improves microvascular flow and decreases infarction size after myocardial ischemia and reperfusion[J]. J Am Coll Cardiol, 2007,50(8):808-817.
    [116] Chen MJ, Russo-Neustadt AA. Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways[J]. Life Sci, 2007,81(16):1280-1290.
    [117]Kopf SR, Benton RS, Kalfin R, et al. NO synthesis inhibition decreases cortical ACh release and impairs retention of a conditioned response[J].Brain Res, 2001,894(1):141-144.
    [118]Niu X, Smith CW, Kubes P. Intercellular oxidative stress induced by nitric oxide synthesis inhibition increases endothelial cell adhesion to neutrophil[J]. Circ Res, 1994,74(6): 1133-1140.
    [119] Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion[J]. Proc Natl Acad Sci USA, 1991,88(11):4651-4655.
    [120] Stadler J, Schmalix WA, Doehmer J. Inhibition of biotransformation by nitric oxide (NO) overproduction and toxic consequences[J]. Toxicol Lett, 1995:82-83(12):215-219.
    [121]Kooy NW, Royall JA, Ye YZ, et al. Evidence for in vivo peroxynitrite production in human acute lung injury[J]. Am J Respir Crit Care Med, 1995,151(4):1250-1254.
    [122]Dawson TM, Steiner JP, Dawson VL, et al. Immunosuppressant FK506 enhances phosphorylation of nitric oxide synthase and protects against glutamate neurotoxicity[J]. Proc Natl Acad Sci USA, 1993,90(21):9808-9812.
    [123]Bredt DS, Ferris CD, Snyder SH. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase C, and calcium/calmodulin protein kinase, identification of flavin and calmodulin binding sites[J]. J Biol Chem, 1992,267(16): 10976-10981.
    [124]Iadecola C, Li J, Ebner TJ, et al. Nitric oxide contributes to functional hyperemia in cerebellar cortex[J]. Am J Physiol. 1995,268(5):1153-1162.
    [125] Huang Z, Huang PL, Panahian N, et al. Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase[J]. Science, 1994,265(5180): 1883-1885.
    [126]Morikawa E, Moskowitz MA, Huang Z, et al. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat[J]. Stroke, 1994,25(2):429-435.
    [127] Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia[J]. J Cereb Blood Flow Metab, 1994,14(2):217-226.
    [128] Hayashi Y, Sawa Y, Nishimura M, et al. Role of nitric oxide in regulation of systemic vascular resistance during and after cardiopulmonary bypass[J]. J Artif Organs, 1999,2(2):152-156.
    [129]Massoudy P, Zahler S, Freyholdt T, et al. Sodium nitroprusside in patients with compromised left ventricular function undergoing coronary bypass: reduction of cardiac proinflammatory substances[J]. J Thorac Cardiovasc Surg, 2000,119(3):566-574.
    [130] Miller MR, Megson IL. Recent developments in nitric oxide donor drugs[J]. Br J Pharmacol, 2007,151(3):305-321.
    [131]Grossi L, D'Angelo S. Sodium nitroprusside: mechanism of NO release mediated by sulfhydryl-containing molecules[J] J Med Chem, 2005;48(7):2622-2626.
    [132]Zhang F, White JG, Iadecola C. Nitric oxide donors increase blood flow and reduce brain damage in focal ischemia: evidence that nitric oxide is beneficial in the early stages of cerebral ischemia[J].J Cereb Blood Flow Metab, 1994,14(2):217-226.
    [133]Tseng EE, Brock MV, Lange MS, et al. Neuronal nitric oxide synthase inhibition reduces neuronal apoptosis after hypothermic circulatory arrest[J]. Ann Thorac Surg, 1997,64(6): 1639-1647.
    [134]Bonaventura D, de Lima RG, Vercesi JA, et al. Comparison of the mechanisms underlying the relaxation induced by two nitric oxide donors: sodium nitroprusside and a new ruthenium complex[J]. Vascul Pharmacol, 2007,46(3):215-222.
    [135]Malinski T,Bailey F,Zhang ZG,et al.Nitric oxide measured by a porphyrinic microsensor in rat brain after transient middle cerebral artery occlusion[J].J Cereb Blood Flow Metab,1993,13(3):355-358.
    [136]Anttila V,Christou H,Hagino I,et al.Cerebral endothelial nitric oxide synthase expression is reduced after very-low-flow bypass[J].Ann Thorac Surg,2006,81(6):2202-2206.
    [1]Mahle WT,Lundine K,Kanter KR,et al.The short term effects of cardiopulmonary bypass on neurologic function in children and young adults[J].Eur J Cardiothorac Surg,2004,26(5):920-925.
    [2]Majnemer A,Limperopoulos C,Shevell M,et al.Health and well-being of children with congenital cardiac malformations,and their families,following open-heart surgery[J].Cardiol Young,2006,16(2):157-164.
    [3]Limperopoulos C,Majnemer A,Shevell MI,et al.Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery[J].J Pediatr,2000,137(5):638-645.
    [4]Bellinger DC,Wypij D,Kuban KC,et al.Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass[J].Circulation,1999,100(5):526-532.
    [5]Dunbar-Masterson C,Wypij D,Bellinger DC,et al.General health status of children with D-transposition of the great arteries after the arterial switch operation[J].Circulation,2001,104(12 suppl 1):Ⅰ138-Ⅰ142.
    [6]Mahle WT,Spray TL,Wernovsky G,et al.Survival after reconstructive surgery for hypoplastic left heart syndrome:a 15-year experience from a single institution[J].Circulation,2000,102(19 suppl 3):Ⅲ 136-Ⅲ 141.
    [7]Wernovsky G,Stiles KM,Gauvreau K,et al.Cognitive development after the Fontan operation[J].Circulation,2000,102(8):883-889.
    [8]Fleisher BE,Baum D,Brudos G,et al.Infant heart transplantation at Stanford:growth and neurodevelopmental outcome[J].Pediatrics,2002,109(1):1-7.
    [9] Glauser TA, Rorke LB, Weinberg PM, et al. Congenital brain anomalies associated with HLHS[J]. Pediatrics, 1990,85(6):984-990.
    [10] Davis DW, Burns BM, Wilkerson SA, et al. Visual perceptual skills in children born with very low birth weights[J]. J Pediatr Health Care, 2005,19(6):363-368.
    [11]Majnemer A, Limperopoulos C, Shevell M, et al. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery[J]. J Pediatr, 2006,148(1):72-77.
    [12]Ungerleider RM, Gaynor JW. The Boston Circulatory Arrest Study:an analysis[J]. J Thorac Cardiovasc Surg, 2004,127(5): 1256-1261.
    [13] Gaynor JW, Gerdes M, Zackai EH, et al. Apolipoprotein E genotype and neurodevelopmental sequelae of infant cardiac surgery[J]. J Thorac Cardiovasc Surg, 2003,126(6):1736-1745.
    [14] Miller G, Vogel H. Structural evidence of injury or malformation in the brains of children with congenital heart disease[J]. Semin Pediatr Neurol, 1999,6(1):20-26.
    [15]Byard RW. Forensic issues in Down syndrome fatalities[J].J Forensic Leg Med, 2007,14(8):475-481.
    [16] Solot CB, Gerdes M, Kirschner RE, et al. Communication issues in 22q11.2 deletion syndrome: children at risk[J].Genet Med, 2001,3(1):67-71.
    [17]Schievink WI, Mokri B, Piepgras DG, et al. Intracranial aneurysms and cervicocephalic arterial dissections associated with congenital heart disease[J]. Neurosurgery, 1996,3 9(4):685-689.
    [18] Barlow KM, Thomson E, Johnson D, et al. Late neurologic and cognitive sequelae of inflicted traumatic brain injury in infancy[J]. Pediatrics, 2005,116(2):174-185.
    [19] Daniels SR, Bates SR, Kaplan S. EEG monitoring during paroxysmal hyperpnea of tetralogy of Fallot: an epileptic or hypoxic phenomenon[J]? J Child Neurol, 1987,2(2):98-100.
    [20]Bakshi R, Wright PD, Kinkel PR, et al. Cranial magnetic resonance imaging findings in bacterial endocarditis :the neuroimaging spectrum of septic brain embolization demonstrated in twelve patients[J]. J Neuroimag, 1999,9(2):78-84.
    [21]Mahle WT, Clancy RR, McGaurn SP, et al. Impact of prenatal diagnosis on survival and early neurologic morbidity in neonates with the hypoplastic left heart syndrome[J]. Pediatrics, 2001,107(6):1277-1282.
    [22]Ditsworth D, Priestley MA, Loepke AW, et al. Apoptotic neuronal death following deep hypothermic circulatory arrest in piglets[J]. Anesthesiology, 2003,98(5): 1119-1127..
    [23] Amir G, Ramamoorthy C, Riemer RK, et al. Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest[J].J Thorac Cardiovasc Surg, 2006,132(6):1307-1313.
    [24]Wypij D, Newburger JW, Rappaport LA, et al. The effect of duration of deep hypothermic circulatory arrest in infant heart surgery on late neurodevelopment: the Boston Circulatory Arrest Trial[J]. J Thorac Cardiovasc Surg, 2003,126(5): 1397-1403.
    [25] Bellinger DC, Wypij D, du Duplessis AJ, et al. Neurodevelopmental status at eight years in children with dextrotransposition of the great arteries: the Boston Circulatory Arrest Trial[J]. J Thorac Cardiovasc Surg, 2003,126(5):1385-1396.
    [26] Williams GD, Ramamoorthy C. Brain monitoring and protection during pediatric cardiac surgery. Semin Cardiothorac Vasc Anesth, 2007,11(1):23-33.
    [27]Forbess JM, Visconti KJ, Bellinger DC,et al. Neurodevelopmental outcomes after biventricular repair of congenital heart defects[J]. J Thorac Cardiovasc Surg, 2002,123(4):631-639.
    [28]Reddy VM, Hanley FL. Techniques to avoid circulatory arrest in neonates undergoing repair of complex heart defects[J]. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu, 2001,4(1): 277-280.
    [29] Abdul-Khaliq H, Uhlig R, Bottcher W, et al. Factors influencing the change in cerebral hemodynamics in pediatric patients during and after corrective cardiac surgery of congenital heart diseases by means of full-flow cardiopulmonary bypass[J]. Perfusion, 2002,17(3): 179-185..
    [30] van der Linden J, Astudillo R, Ekroth R, et al. Cerebral lactate release after circulatory arrest but not after low flow in pediatric heart operations[J]. Ann Thorac Surg, 1993,56(6): 1485-1489.
    [31] Taylor RH, Burrows FA, Bissonnette B. Cerebral pressure-flow velocity relationship during hypothermic cardiopulmonary bypass in neonates and infants[J]. Anesth Analg, 1992,74(5):636-642.
    
    [32] Jonas RA. The effect of extracorporeal life support on the brainxardiopulmonary bypass[J]. Semin Perinatol, 2005,29(1):51-57.
    [33]Kirshbom PM, Skaryak LA, DiBernardo LR, et al. Effects of aortopulmonary collaterals on cerebral cooling and cerebralmetabolic recovery after circulatory arrest[J]. Circulation, 1995, 92(9 suppl):II490- II494.
    [34] Wong PC, Barlow CF, Hickey PR, et al. Factors associated with choreoathetosis after cardiopulmonary bypass in children with congenital heart disease[J]. Circulation, 1992,86(5 suppl):II118-II126.
    [35] Bradley SM, McCall MM, Sistino JJ, et al. Aortopulmonary collateral flow in the Fontan patient: does it matter[J]? Ann Thorac Surg, 2001,72(2):408-415.
    [36]Prasongsukarn K, Borger MA. Reducing cerebral emboli during cardiopulmonary bypass[J]. Semin Cardiothorac Vasc Anesth, 2005,9(2):153-158.
    [37] Stump DA. Embolic factors associated with cardiac surgery[J]. Semin Cardiothorac Vasc Anesth, 2005,9(2): 151-152.
    [38]Pugsley W, Klinger L, Paschalis C, et al. The impact of microemboli during cardiopulmonary bypass on neuropsychological functioning[J]. Stroke, 1994(7),25:1393-1399.
    [39] Schoenburg M, Kraus B, Muehling A, et al. The dynamic air bubble trap reduces cerebral microembolism during cardiopulmonary bypass[J]. J Thorac Cardiovasc Surg, 2003,126(5): 1455-1460.
    [40]Svenarud P, Persson M, van der Linden J. Effect of CO_2 insufflation on the number and behavior of air microemboli in open-heart surgery:a randomized clinical trial[J]. Circulation, 2004,109(9):1127-1132.
    [41]Mavroudis C, Backer CL, eds. Pediatric cardiac surgery[M]. Philadelphia: Mosby, 2003:171-193.
    [42]Jaggers JJ, Neal MC, Smith PK, et al. Infant cardiopulmonary bypass: a procoagulant state[J]. Ann Thorac Surg, 1999,68(2):513-520.
    [43]Owings JT, Pollock ME, Gosselin RC, et al. Anticoagulation of children undergoing cardiopulmonary bypass is overestimated by current monitoring techniques[J]. Arch Surg, 2000,135(9):1042-1047.
    [44] Codispoti M, Ludlam CA, Simpson D, et al. Individualized heparin and protamine management in infants and children undergoing cardiac operations[J]. Ann Thorac Surg 2001,71(3):922-928.
    [45] Shen I, Giacomuzzi C, Ungerleider RM. Current strategies for optimizing the use of cardiopulmonary bypass in neonates and infants[J]. Ann Thorac Surg, 2003,75(2):S729-S734.
    [46]Brix-Christensen V. The systemic inflammatory response after cardiac surgery with cardiopulmonary bypass in children[J]. Acta Anaesthesiol Scand, 2001,45(6):671-679.
    
    [47]Myung RJ, Kirshbom PM, Petko M, et al. Modified ultrafiltration may not improve neurologic outcome following deep hypothermic circulatory arrest[J]. Eur J Cardiothorac Surg, 2003,24(2):243-248.
    
    [48] Westaby S, Saatvedt K, White S, et al. Is there a relationship between cognitive dysfunction and systemic inflammatory response after cardiopulmonary bypass[J]? Ann Thorac Surg, 2001,71(2):667-672.
    [49]Mezrow CK, Sadeghi AM, Gandsas A, et al. Cerebral effects of low-flow cardiopulmonary bypass and hypothermic circulatory arrest[J]. Ann Thorac Surg, 1994,57(3):532-539.
    
    [50] Kirshbom PM, Skaryak LA, DiBernardo LR, et al. Effects of aortopulmonary collaterals on cerebral cooling and cerebral metabolic recovery after circulatory arrest[J]. Circulation, 1995,92(Suppl 2):II490- II494.
    
    [51]Mongero LB, Beck JR, Manspeizer HE, et al. Cardiac surgical patients exposed to heparin-bonded circuits develop less postoperative cerebral dysfunction than patients exposed to non-heparin-bonded circuits[J]. Perfusion, 2001,16(2):107-111.
    [52]Blanck TJJ, ed. Neuroprotection[M]. Baltimore:Williams & Wilkins, 1997:197-237.
    [53] du Plessis AJ. Induced mild hypothermia:the spearhead strategy for effective neonatal neuroprotection[J]? Pediatrics, 1998,102(4 pt l):972-974.
    [54] Kern FH, Jonas RA, Mayer JE, et al. Temperature monitoring during CPB in infants:does it predict efficient brain cooling[J]? Ann Thorac Surg, 1992,54(4):749-754.
    
    [55]Mault JR, Ohtake S, Klingensmith ME. Cerebral metabolism and circulatory arrest: effects of duration and strategies for protection[J]. Ann Thorac Surg, 1993,55(1):57-63.
    [56]Hindman BJ, Dexter F. Estimating brain temperature during hypothermia[J]. Anesthesiology, 1995,82(2):329-330.
    
    [57] Shum-Tim D, Nagashima M, Shinoka T. Postischemic hyperthermia exacerbates neurologic injury after deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg, 1998,116(5):780-792.
    [58] Jonas RA. Optimal pH strategy for hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg, 2001,121(2):204-205.
    [59] Priestley MA, Golden JA, O'Hara IB, et al. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha-stat and pH-stat cardiopulmonary bypass in newborn pigs[J]. J Thorac Cardiovasc Surg, 2001,121(2):336-343.
    [60]Plochl W, Cook DJ. Quantification and distribution of cerebral emboli during cardiopulmonary bypass in the swine. The impact of PaCO_2[J]. Anesthesiology, 1999, 90(1):183-190.
    [61]du Plessis AJ, Jonas RA, Wypij D, et al. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants[J]. J Thorac Cardiovasc Surg, 1997,114(6):991-1001.
    [62] Bellinger DC, Wypij D, du Plessis AJ, et al. Developmental and neurologic effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants[J]. J Thorac Cardiovasc Surg, 2001,121(2):374-383.
    [63]Skaryak LA, Chai PJ, Kern FH, et al. Blood gas management and degree of cooling:effects on cerebral metabolism before and after circulatory arrest[J]. J Thorac Cardiovasc Surg, 1995,110(6): 1649-1657.
    [64]Kurth CD, O'Rourke MM, O'Hara IB. Comparison of pH-stat and alpha-stat cardiopulmonary bypass on cerebral oxygenation and blood flow in relation to hypothermic circulatory arrest in piglets[J]. Anesthesiology, 1998,89(1):110-118.
    [65] Steward DJ, Da Silva CA, Flegel T. Elevated blood glucose levels may increase the danger of neurological deficit following profoundly hypothermic cardiac arrest. Anesthesiology, 1988,68(4):653.
    [66] Ekroth R, Thompson RJ, Lincoln C. Elective deep hypothermia with total circulatory arrest: changes in plasma creatine kinase BB, blood glucose, and clinical variables[J]. J Thorac Cardiovasc Surg 1989, 97(1):30-35.
    [67]Greeley WJ, ed. Perioperative Management of the Patient with Congenital Heart Disease[M]. Baltimore:Williams & Wilkins, 1996:133-174.
    [68]Rappaport LA, Wypij D, Bellinger DC, et al. Relation of seizures after cardiac surgery in early infancy to neurodevelopmental outcome. Boston Circulatory Arrest Study Group[J]. Circulation 1998, 97(8):773-779.
    [69]Hattori H, Wasterlain CG. Posthypoxic glucose supplement reduces hypoxic-ischemic brain damage in the neonatal rat[J]. Ann Neurol, 1990,28(2): 122-128.
    [70] Dexter F, Kern FH, Hindman BJ, et al. The brain uses mostly dissolved oxygen during profoundly hypothermic cardiopulmonary bypass[J]. Ann Thorac Surg, 1997,63(6):1725-1729.
    [71]Scallan MJ. Cerebral injury during paediatric heart surgery: perfusion issues[J]. Perfusion, 2004,19(4):221-228.
    [72]Duebener LF, Sakamoto T, Hatsuoka S, et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass[J]. Circulation, 2001,104(12 Suppl 1):II260-II264.
    [73]Shin'oka T, Shum-Tim D, Jonas RA, et al. Higher hematocrit improves cerebral outcome after deep hypothermic circulatory arrest[J]. J Thorac Cardiovasc Surg, 1996,112(6): 1610-1620.
    [74]Gruber EM, Jonas RA, Newburger JW. The effect of hematocrit on cerebral blood flow velocity in neonates and infants undergoing deep hypothermic cardiopulmonary bypass[J]. Anesth Analg, 1999,89(2):322-327.
    [75]Ekroth R, van der Linden J, Lincoln C, et al. Cerebral perfusion and metabolism after profound hypothermia) comparison between procedures involving no flow and low flow[J]. Cardiol Young, 1993,3(1):378-382.
    [76]Duebener LF, Sakamoto T, Hatsuoka S, et al. Effects of hematocrit on cerebral microcirculation and tissue oxygenation during deep hypothermic bypass[J]. Circulation, 2001,104(12 suppl 1):I260-I264.
    [77] Skaryak LA, Kirshbom PM, DiBernardo LR, et al. Modified ultrafiltration improves cerebral metabolic recovery after circulatory arrest[J]. J Thorac Cardiovasc Surg, 1995,109(4):744-751.
    [78]Shin'oka T, Shum-Tim D, Laussen PC, et al. Effects of oncotic pressure and hematocrit on outcome after hypothermic circulatory arrest[J]. Ann Thorac Surg, 1998,65(1): 155-164.
    [79] Johnston MV, Trescher WH, Ishida A, et al. Neurobiology of hypoxic-ischemic injury in the developing brain[J]. Pediatr Res, 2001,49(6):735-741.
    [80] Beck T, Goller HJ, Wree A. Chronic depression of glucose metabolism in postischemic rat brains[J]. Stroke, 1995,26(6):1107-1113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700