用户名: 密码: 验证码:
基于案例决策和TRIZ知识的产品概念设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
速度和创新是产品设计的两个关键因素,而两者间常常存在着一定的矛盾,即任何一个因素的优化通常都会导致另外一个因素的恶化。产品设计中决策活动的目的之一在于平衡二者间的冲突,帮助实现快速设计和创新设计。决策活动会在产品设计的很多阶段出现,如设计任务确定、设计规格形成、概念设计和体现设计等。其中,概念设计是最为重要的阶段,也是决策活动最为频繁的阶段。产品概念设计以设计目标为输入、以产品概念设计方案为输出,决定着产品最终质量和市场竞争力,其本质是为了获取创新方案。产品概念设计过程研究的主要目的是促进概念设计的规范化、形式化、系统化,支持产品设计者在尽可能短的期限开发出高质量、新颖且符合顾客需求的产品。因此,本文将产品概念设计当做一系列的决策问题求解过程,并以产品概念设计过程模型研究为主体,决策(技术决策)问题求解为重点,加快产品开发速度和增强设计方案创新性为目标,构建较为完整的、面向顾客需求的概念设计模型。
     论文结合质量功能配置(Quality Function Deployment,QFD)、案例决策理论(Case-Based Decision Theory,CBDT)、发明问题解决理论(Theory of the Solution ofInventive Problems,TRIZ)、意象尺度(Image-Scale)、Solidworks等理论、方法或工具,提出了产品概念设计过程模型QCTIS。依据该模型,论文着重研究了顾客需求获取、产品概念设计过程中一般技术决策问题和涉及创新的技术决策问题的求解。具体地,运用TRIZ中的技术进化法则、路线和40条发明原理驱动顾客需求的分析、获取及调研问卷的设计,并以KANO模型的二维评价表为单个调研问题制作框架,构建了TRIZ知识驱动下的顾客需求获取机制;应用CBDT解决产品概念设计过程中的一般技术决策问题,构建了产品概念设计背景下基于CBDT的决策问题求解模型,着重探讨了假定情景下的相似度计算方法,包括相似度计算中评价属性集的选择问题和单个属性的相似度评价问题;以基于CBDT的决策问题求解流程为框架,TRIZ中矛盾矩阵为桥梁,将TRIZ与基于CBDT的决策问题求解模型进行融合,构建了CBDT-TRIZ模型,用于解决涉及创新的技术决策问题,以帮助设计者快速获取创新方案。除此,本文还规范了该过程模型中基于QFD的顾客需求分析和给出了基于Image-Scale的方案评估方法。
     本文结合实际的产品设计,开发了与产品概念设计过程模型QCTIS相关的软件工具,并通过无绳园艺工具产品的创新设计验证了相关研究和开发成果。这些软件工具的成功开发,在一定程度上说明了本文研究的可行性和有效性,可为产品概念设计提供方法与技术上的支持。
Speed to market and innovation are two of the most important attributes that enable amanufacturer to be competitive. These two attributes can be contradicting, forcingcompromises. Despite this, there exists one common activity which can benefit bothattributes–optimize the decision-making process, which can satisfy rapid design andinnovative design simultaneously. Decision-making occur in many places within the designprocess which is made up of task clarification, specification definition, conceptual design,and embodiment design. Within this process, conceptual design is the phase wheredecision-making and creativity can play an important role. Product conceptual design is asystem work flow where specification of the design is the input and the conceptual designscheme of product is the output. The essence of product conceptual design is to acquireinnovative design scheme of new products, and it will effect the quality and the marketcompetitiveness of the final product. The main purpose of the research of productconceptual design is to standardized, formalized, and systematized the procedures, thussupporting designers to develop an innovative product which has a high quality and meetscustomer needs at the lowest expense of the time and the cost. This paper will develop thecustomer-driven product conceptual design process model by regarding the conceptualdesign process as a series of decision-making process, and mainly comitted to optimizerelated decision (Technical decision) problem resolution during the product conceptualdesign, thus helping designers rapidly formulate innovative design scheme for the newproduct development.
     The paper proposed a product conceptual design process model–QCTIS. QualityFunction Deployment (QFD), Case-based Decision Theory (CBDT), Theory of InventiveProblem Solving (TRIZ), Image-Scale, and Solidworks are integrated into the process model.Specifically, a questionnaire design mechanism by utilizing knowledge-evelutionary lawsand lines,40innovative principles, which come from TRIZ, to excavate unperceivablecustomer needs was firstly proposed. The mechanism is influenced by TRIZ as well as theKano model to evaluate customer needs. Then, a CBDT-based problem resolution modelto support general decision-making during product conceptual design, accordingly somemethods used in the model were discussed, especially attribute scope determination related to similarity evaluation and similarity functions of each single attribute. In addition, based on theprocess of CBDT-based problem resolution model and the contradiction matrix comesfrom TRIZ, a CBDT-TRIZ model for rapidly undertaking innovative solution generationare proposed. Finally, the proposed process model QCTIS also utilizes QFD to translate customerwants into relevant engineering design requirements and thus formulating the design specification,and Image Scale to offer an orthogonal coordinates system to aid evaluation.
     Through some actual product designs, some software were developed based on theproposed product conceptual design process model, such as the tool for questionnaire design basedon evelutionary lines and40innovative principles, the tool for general decision problemresolution based on CBDT, and a tool for the application of the CBDT-TRIZ model. The feasibilityand effectiveness of the research result can also be proved by these tools. In addition, a―cordlesshand-tool design‖case study was developed to validate the new process model.
引文
[1] Pahl G, Beitz W, Schulz H et al. Engineering design: a systematic approach. Springer,2007.
    [2] Wallace K M, Blessing L T. Observations on some German contributions toengineering design in memory of professor Wolfgang Beitz. Research in EngineeringDesign.2000,12(1):2-7.
    [3] Al Tshuller G S. Creativity as an exact science: The theory of the solution of inventiveproblems. CRC,1984.
    [4] Gero J S. Design prototypes: a knowledge representation schema for design. AIMagazine.1990,11(4):26.
    [5] Gero J S, Kannengiesser U. The situated function-behaviour-structure framework. in:Artificial Intelligence in Design.2002.89-104.
    [6] Suh N P. Axiomatic design theory for systems. Research in Engineering Design.1998,10(4):189-209.
    [7] Simon H A. The sciences of the artificial. MIT Press,1996.
    [8] Kelly A E, Lesh R A. Handbook of Research Design in Mathematics and ScienceEducation. ERIC,2000.
    [9] Richey R C, Klein J D, Nelson W A. Developmental research: Studies of instructionaldesign and development. Handbook of Research for Educational Communicationsand Technology.2004:1099-1130.
    [10] Van den Akker J. Principles and methods of development research. DesignApproaches and Tools in Education and Training. Springer Netherlands,1999:1-14.
    [11] Cantamessa M. Design research in perspective: A meta-research on iced97and iced99. WDK Publications.2001:29-36.
    [12] Blessing L T, Chakrabarti A. DRM, a design research methodology. Springer,2009.
    [13] Domeshek E A, Kolodner J L. Toward a case-based aid for conceptual design.International Journal of Expert Systems.1991,4(2):201-220.
    [14] Tsai S, Childs P R. TRIZ: Incorporating the Bright Process in Design. in: TRIZ-FutureConference.2008.243-250.
    [15] Shiau J, Li X. A closed-loop design change control workflow in product datamanagement for conceptual design phase. International Journal of Intelligent Controland Systems.2007,12(1):24-36.
    [16]张建明,魏小鹏,张德珍.产品概念设计的研究现状及其发展方向.计算机集成制造系统.2003,9(8):613-620.
    [17] Tan R, Ma J, Liu F et al. UXDs-driven conceptual design process model forcontradiction solving using CAIs. Computers in Industry.2009,60(8):584-591.
    [18]高常青.机械产品快速创新设计及其关键技术的研究:[济南:山东大学图书馆],2008.
    [19] Suh N P. Axiomatic Design: Advances and Applications. New York: OxfordUniversity Press,2001.
    [20] Kobayashi H. A systematic approach to eco-innovative product design based on lifecycle planning. Advanced Engineering Informatics.2006,20(2):113-125.
    [21] Mann D L. Better technology forecasting using systematic innovation methods.Technological Forecasting and Social Change.2003,70(8):779-795.
    [22] Gero J S, Kannengiesser U. A function-behaviour-structure ontology of processes.Design Computing and Cognition'06.2006:407-422.
    [23] Campbell M I, Cagan J, Kotovsky K. A-Design: An agent-based approach toconceptual design in a dynamic environment. Research in Engineering Design.1999,11(3):172-192.
    [24] Wang J R. Ranking engineering design concepts using a fuzzy outranking preferencemodel. Fuzzy Sets and Systems.2001,119(1):161-170.
    [25] Madhusudan T, Zhao J L, Marshall B. A case-based reasoning framework forworkflow model management. Data&Knowledge Engineering.2004,50(1):87-115.
    [26] Burattini E, De Gregorio M, Tamburrini G. Hybrid expert systems: An approach tocombining neural computation and rule-based reasoning. Expert Systems.2002,5:1315-1354.
    [27]冯培恩,张帅.复合功能原理方案特征建模及其求解过程研究.中国机械工程.2002,13(004):306-311.
    [28] Goel A K, Bhatta S R. Use of design patterns in analogy-based design. AdvancedEngineering Informatics.2004,18(2):85-94.
    [29] Hsiao S, Tsai H. Applying a hybrid approach based on fuzzy neural network andgenetic algorithm to product form design. International Journal of IndustrialErgonomics.2005,35(5):411-428.
    [30]蔡文.可拓逻辑初步.科学出版社,2003.
    [31] Robles G C, Negny S, Le Lann J M. Case-based reasoning and TRIZ: A coupling forinnovative conception in Chemical Engineering. Chemical Engineering andProcessing: Process Intensification.2009,48(1):239-249.
    [32]檀润华,马建红.基于QFD及TRIZ的概念设计过程研究.机械设计.2002,19(9):1-4.
    [33] Li W, Li Y, Wang J et al. The process model to aid innovation of products conceptualdesign. Expert Systems with Applications.2010,37(5):3574-3587.
    [34] Karuppoor S S. Tools for innovation and conceptual design:[Texas:Texas A&MUniversity],2003.
    [35] Li T, Huang H. Applying TRIZ and Fuzzy AHP to develop innovative design forautomated manufacturing systems. Expert Systems with Applications.2009,36(4):8302-8312.
    [36]戴胜,唐敦兵,张广军.基于公理化设计与TRIZ集成的产品创新设计模型.中国制造业信息化:学术版.2009,38(2):38-43.
    [37] Osborn A F. Applied imagination.1953.
    [38] Gero J S. Concept formation in design. Knowledge-Based Systems.1998,11(7):429-435.
    [39] Zhao L, Chen W, Ma J et al. Structural bionic design and experimental verification ofa machine tool column. Journal of Bionic Engineering.2008,5:46-52.
    [40]约翰逊,陆国贤.机械设计综合创造性设计与最优化.机械工业出版社,1987.
    [41] Akao Y. Quality function deployment: integrating customer requirements into productdesign. Productivity Press,2004.
    [42]肖云龙.创造性设计.湖北科学技术出版社,1989.
    [43]潘云鹤.智能CAD方法与模型.科学出版社,1997.
    [44]孙守迁,包恩伟.基于组合原理的概念创新设计.计算机辅助设计与图形学学报.1999,11(003):262-265.
    [45]赵燕伟.基于多级菱形思维模型的方案设计新方法.中国机械工程.2000,11(6):684-686.
    [46]谢友柏.现代设计与知识获取.中国机械工程.1996,7(6):36-41.
    [47]张付英.机械产品创新设计信息化建模,求解及其关键技术研究:[天津:天津大学图书馆],2004.
    [48] Mann D L, Dewulf S. Updating TRIZ:1985-2002Patent Research Findings. TRIZConference, Philadelphia, March.2003.
    [49] Mann D L, Dewulf S. Updating the Contradiction matrix. TRIZ Conference,Philadelphia, March.2003.
    [50] Mann D. Assessing the accuracy of the contradiction matrix for recent mechanicalinventions. The TRIZ Journal, February.2002.
    [51] Wang H, Chen G, Lin Z et al. Algorithm of integrating QFD and TRIZ for theinnovative design process. International Journal of Computer Applications inTechnology.2005,23(1):41-52.
    [52] Verduyn D M, Wu A. Integration of QFD, TRIZ,&Robust Design: Overview&"Mountain Bike" Case Study. in: Proceedings ASI Total Product DevelopmentSymposium.1995.
    [53] Terninko J. The QFD, TRIZ and Taguchi connection: customer-driven robustinnovation. in: Proceedings of the9th Annual Quality Function DeploymentSymposium.1997.
    [54] Domb E, Corbin D. QFD, TRIZ and entrepreneurial intuition: the DelCor InteractivesInternational case study. in: Proceedings of the10th Symposium on Quality FunctionDeployment.1998.
    [55] Tan R, Kraft D. A conceptual design methodology for variety using TRIZ and QFD. in:Proceedings of the ASMS14th International Conference on Design Theory andMethodology Integrated Systems Design.2002.
    [56] Cavallucci D, Lutz P. Intuitive design method (IDM), a new approach on designmethods integration. in: Proceeding of ICAD2000: First International Conference onAxiomatic Design, Cambridge.2000.21-23.
    [57] Hu M, Yang K, Taguchi S. Enhancing robust design with the aid of TRIZ andaxiomatic design (Part I). The TRIZ Journal, October.2000.
    [58] Kim Y S, Cochran D S. Reviewing TRIZ from the perspective of axiomatic design.Journal of Engineering Design.2000,11(1):79-94.
    [59] Ruihong Z, Runhua T, Guozhong C. Case study in AD and TRIZ: A paper machine.The TRIZ Journal.2004.
    [60] Rizzo A R. Tools from the Theory of Constraints. The TRIZ Journal.1997.
    [61] Sawaguchi M. Effective approaches to solving technical problems by combining TRIZwith VE. The TRIZ Journal.2000.
    [62] Sawaguchi M. Development of the Next Generation Portable Toilet Through NewProduct Development Approach Based on the Combined Effects of Three Methods:TRIZ. VE and Marketing~Consulting Case of Company S~, The TRIZ Journal.2002.
    [63] Srinivasan R, Kraslawski A. Application of the TRIZ creativity enhancement approachto design of inherently safer chemical processes. Chemical Engineering andProcessing: Process Intensification.2006,45(6):507-514.
    [64] Goel P S, Singh N. Creativity and innovation in durable product development.Computers&Industrial Engineering.1998,35(1-2):5-8.
    [65] Campbell B. Brainstorming and TRIZ. The TRIZ Journal.2003.
    [66] Terninko J, Zusman A, Zlotin B.40inventive principles with social examples. TheTRIZ Journal.2001.
    [67] Retseptor G.40inventive principles in quality management. The TRIZ Journal.2003:1-25.
    [68] Chang H T, Chen J L. Eco-innovative examples for40TRIZ inventive principles. TheTRIZ Journal.2003:1-16.
    [69] Zhang J, Chai K H, Tan K C.40inventive principles with applications in serviceoperations management. The TRIZ Journal.2003:1-16.
    [70] Retseptor G.40inventive principles in marketing, sales and advertising. The TRIZJournal.2005:1-16.
    [71] Marsh D G.40Inventive principles with applications in education. The TRIZ journal.2004.
    [72] Cretu S M. TRIZ method introduced to the calculation field. Procedia Engineering.2011,9:500-511.
    [73] Kim I.40principles as a problem finder. The TRIZ Journal, March.2005.
    [74] He C, Tong L H. Similarity between TRIZ Principles. The TRIZ Journal.2005.
    [75] He C, Tong L H. Grouping of TRIZ Inventive Principles to facilitate automatic patentclassification. Expert Systems with Applications.2008,34(1):788-795.
    [76] Yoon J, Kim K. An Automated Method for Identifying TRIZ Trends from Patents.Expert Systems with Applications.2011.
    [77] Zanni-Merk C, Cavallucci D, Rousselot F. An ontological basis for computer aidedinnovation. Computers in Industry.2009,60(8):563-574.
    [78]陈文广,徐志刚.基于物场分析和效应的计算机辅助创新系统研究及软件开发:
    [济南:山东大学图书馆],2008.
    [79] Savage L J. The foundation of statistics. Dover Publications,1972.
    [80] Raiffa H, Schlaifer R. Applied statistical decision theory. Harvard Business SchoolPublications,1961.
    [81] Simon H A, Dantzig G B, Hogarth R et al. Decision making and problem solving.Interfaces.1987,17(5):11-31.
    [82] Badke-Schaub P, Gehrlicher A. Patterns of decisions in design: leaps, loops, cycles,sequences and meta-processes. in: Proceedings of the14th International Conferenceon Engineering Design.2003.
    [83] Mezher T, Abdul-Malak M, Maarouf B. Embedding critics in decision-makingenvironments to reduce human errors. Knowledge-Based Systems.1998,11(3):229-237.
    [84]王克勤,同淑荣.产品设计决策的内涵及分类研究.制造业自动化.2008,30(005):5-7.
    [85] Herrmann J W, Schmidt L C. Viewing product development as a decision productionsystem.2002.
    [86] Krishnan V, Ulrich K T. Product development decisions: A review of the literature.Management Science.2001,47(1):1-21.
    [87] Hansen C T, Andreasen M M. A mapping of design decision-making. in: Proceedingsof the8th International Design Conference.2004.
    [88] Hansen C T, Andreasen M M. Basic thinking patterns of decision-making inengineering design. in: MCE2000-International Conference on Multi-CriteriaEvaluation.2000.
    [89]古莹奎,杨振宇.概念设计方案评价的模糊多准则决策模型.计算机集成制造系统.2007,13(8):1504-1510.
    [90] Cvetkovic D. Evolutionary Multi–Objective Decision Support Systems forConceptual Design:[Plymouth: University of Plymouth],2000.
    [91]容芷君,陶芳,陈奎生等.基于偏好的产品设计方案决策模型.武汉科技大学学报:自然科学版.2012,35(3):215-218.
    [92] Bascaran E, Richard B B, Mistree F. Hierarchical selection decision support problemsin conceptual design. Engineering Optimization.1989,14(3):207-238.
    [93] Hoyle C J, Chen W. Product attribute function deployment (PAFD) for decision-basedconceptual design. IEEE Transactions on Engineering Management.2009,56(2):271-284.
    [94] Hatamura Y. Decision-making in engineering design. Springer-Verlag LondonLimited,2006.
    [95] Roozenburg N F, Eekels J. Product design: fundamentals and methods. WileyChichester,1995.
    [96] Jones J C. Design Methods: Seeds of human futures. London: John Wiley&Sons,1980.
    [97] Wright I C, Campello A C, Segre F M et al. A survey of methods utilisation duringproduct design process in UK industry. Engineering Design Institute, LoughboroughUniversity of Technology.1995.
    [98] Ahmed S. Understanding the use and reuse of experience in engineering design:[Cambrige: University of Cambrige],2001.
    [99] Kahneman D, Tversky A. Prospect theory: An analysis of decision under risk.Econometrica: Journal of the Econometric Society.1979:263-291.
    [100] Simon H A. Administrative Behavior: A study of decision-making processes inadminstrative organization.1957.
    [101] Gilboa I, Schmeidler D. Case-based decision theory. The Quarterly Journal ofEconomics.1995,110(3):605-639.
    [102] Stirling W C. Satisficing Games and Decision Making: with applications toengineering and computer science. Cambridge University Press,2003.
    [103] Mcgown A, Green G, Rodgers P A. Visible ideas: information patterns of conceptualsketch activity. Design Studies.1998,19(4):431-453.
    [104] Gilboa I, Schmeidler D. Act similarity in case-based decision theory. EconomicTheory.1997,9(1):47-61.
    [105] Wang Q, Zhao Y, Rao C. Analyses and Improvement of Case-Based Decision Modelof Product Conceptual Design. Advances in Neural Networks.2009:1131-1137.
    [106] Hullermeier E. Exploiting similarity and experience in decision making. in: FuzzySystems,2002. in: Proceedings of the2002IEEE International Conference on FuzzySystems.2002.729-734.
    [107]王清.一类有限理性的建模和决策分析方法的研究:[武汉:华中科技大学图书馆],2009.
    [108] Blonski M. Social learning with case-based decisions. Journal of Economic Behavior&Organization.1999,38(1):59-77.
    [109] Jahnke H, Chwolka A, Simons D. Coordinating Service‐Sensitive Demand andCapacity by Adaptive Decision Making: An Application of Case‐Based DecisionTheory. Decision Sciences.2005,36(1):1-32.
    [110] Golosnoy V, Okhrin Y. General uncertainty in portfolio selection: A case-baseddecision approach. Journal of Economic Behavior&Organization.2008,67(3):718-734.
    [111]徐晓臻,高国安.案例推理在多准则评价智能决策支持系统中的应用研究.计算机集成制造系统.2001,7(1):16-18.
    [112]罗铤.面向问题求解的决策支持系统中元数据库的设计与应用研究:[长沙:中南大学图书馆],2003.
    [113]李锋刚.基于优化案例推理的智能决策技术研究:[合肥:合肥工业大学图书馆],2007.
    [114]刘芳.基于CBR的智能决策支持系统研究与应用:[兰州:兰州大学图书馆],2008.
    [115]李建洋.基于粗糙集的案例推理智能决策支持系统的研究:[合肥:安徽大学图书馆],2003.
    [116] Ishikawa T, Terano T. Analogy by abstraction: Case retrieval and adaptation forinventive design expert systems. Expert Systems with Applications.1996,10(3):351-356.
    [117] Lee D, Lee K. An approach to case-based system for conceptual ship design assistant.Expert Systems with Applications.1999,16(2):97-104.
    [118] Wu M, Lo Y, Hsu S. A fuzzy CBR technique for generating product ideas. ExpertSystems with Applications.2008,34(1):530-540.
    [119] Jung S, Lim T, Kim D. Integrating radial basis function networks with case-basedreasoning for product design. Expert Systems with Applications.2009,36(3):5695-5701.
    [120]王清,赵勇,饶从军.基于阈值的案例决策方法及其在创新设计中的应用.控制与决策.2010,25(10).
    [121]罗仕鉴,朱上上,应放天等.产品设计中的用户隐性知识研究现状与进展.计算机集成制造系统.2010,16(004):673-688.
    [122]温万银.顾客需求理论研究概述.企业导报.2012,(5):243-244.
    [123] Kano N, Seraku N, Takahashi F et al. Attractive quality and must-be quality. TheJournal of the Japanese Society for Quality Control.1984,14(2):39-48.
    [124] Kirschman C F, Fadel G M. Customer metrics for the selection of generic forms atthe conceptual stage of mechanical design. in: Proceedings of ASME DesignEngineering Technical Conference.1997.
    [125] Fornell C, Johnson M D, Anderson E W et al. The American customer satisfactionindex: nature, purpose, and findings. The Journal of Marketing.1996:7-18.
    [126] Hallowell R. The relationships of customer satisfaction, customer loyalty, andprofitability: an empirical study. International Journal of Service IndustryManagement.1996,7(4):27-42.
    [127] Xu Q, Jiao R J, Yang X et al. An analytical Kano model for customer need analysis.Design Studies.2009,30(1):87-110.
    [128]聂大安,李彦,麻广林等.基于用户需求分类的同步多产品设计方法.计算机集成制造系统.2010,16(006):1131-1137.
    [129] Chen L, Ko W. A fuzzy nonlinear model for quality function deployment consideringKano’s concept. Mathematical and Computer Modelling.2008,48(3):581-593.
    [130] Chen L, Ko W. Fuzzy approaches to quality function deployment for new productdesign. Fuzzy Sets and Systems.2009,160(18):2620-2639.
    [131]罗仕鉴,朱上上.用戶体验与产品创新设计.机械工业出版社,2010.
    [132]林升栋,王枢亚.扎尔特曼隐喻抽取技术(ZMET)的实际操作及其应用.市场研究.2005,(002):33-37.
    [133] Kumar V. User Insights Tool A Sharable Database for Global Research.2004.
    [134] Natter M, Mild A. DELI: An interactive new product development tool for theanalysis and evaluation of market research data. Journal of Targeting, Measurementand Analysis for Marketing.2003,12(1):43-52.
    [135] Lin M, Wang C, Chen M et al. Using AHP and TOPSIS approaches incustomer-driven product design process. Computers in Industry.2008,59(1):17-31.
    [136] Lau H C, Jiang B, Chan F T et al. An innovative scheme for product and processdesign. Journal of Materials Processing Technology.2002,123(1):85-92.
    [137] Wang Y, Chin K. A linear goal programming approach to determining the relativeimportance weights of customer requirements in quality function deployment.Information Sciences.2011,181(24):5523-5533.
    [138] Yi-Luen Do E. Design sketches and sketch design tools. Knowledge-Based Systems.2005,18(8):383-405.
    [139]雷鸣,朱祖平,姚立纲.质量功能展开中顾客需求自动映射.计算机集成制造系统.2009,15(3):592-597.
    [140] Hauser J R, Clausing D. The house of quality. Harvard Business Review.1988,66(3):63-73.
    [141]张军,赵江洪.意象尺度法与产品设计研究.装饰.2007,(7):21.
    [142] Kobayashi S. The aim and method of the color image scale. Color Research&Application.1981,6(2):93-107.
    [143] Mann D L. Hands-on systematic innovation. Creax Press Belgium,2002.
    [144] Schank R C. Dynamic memory: A theory of reminding and learning in computers andpeople. Cambridge University Press,1983.
    [145] Hartigan J A, Wong M A. Algorithm AS136: A k-means clustering algorithm.Applied Statistics.1979:100-108.
    [146] Leake D B. Case-based reasoning: Experiences, lessons and future directions. MITPress,1996.
    [147] Gu M, Tong X, Aamodt A. Comparing similarity calculation methods inconversational cbr. in: IEEE International Conference on Information Reuse andIntegration.2005.427-432.
    [148] Maicher L, Witschel H F. Merging of distributed topic maps based on the subjectidentity measure (SIM) approach. in: Proceedings of Berliner XML Tags.2004,4:301-307.
    [149] Hirtz J M, Stone R B, Mcadams D et al. Evolving a functional basis for engineeringdesign. in: Proceedings of the ASME Design Engineering Technical Conference.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700