用户名: 密码: 验证码:
海—气二氧化碳交换速度和通量的遥感反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海-气CO_2通量是全球气候变化的重要控制因子之一,也是目前国际研究的热点。大量的现场实测和相关研究表明, CO_2交换速度不仅与风速有关,还与波浪、海-气边界层厚度、大气层化等密切相关。本文从遥感角度,针对海-气界面CO_2交换速度和通量的反演算法开展研究,利用高度计、散射计等卫星数据重点研究了CO_2交换速度和通量的现有计算方法的不确定性,以及波浪破碎、非破碎和波陡等不同因子对CO_2交换速度和通量的影响,取得如下主要进展:
     (1)提出了一个利用高度计数据反演空气摩擦速度的新公式,并且利用26个不同的交换速度公式,使用高度计数据,计算了2000年的CO_2交换速度以及通量的不确定性。发现由于交换速度公式的不同导致了估算全球CO_2交换速度以及通量非常大的不确定性。全球月平均交换速度之间的最大差异为27.70cm h~(-1),通量为6.24PgCyear~(-1),4°纬度带平均的CO_2交换速度的最大差异是70.37cm h~(-1),通量是0.58PgCyear~(-1)。计算得到经过面积加权以及施密特数校正之后的2000年全球平均交换速度是27.33±9.75cm h~(-1),通量是2.77±1.02PgCyear~(-1)。
     (2)使用一个与Ku-波段后向散射截面、有效波高和风速有关的函数,实现了对大范围、长时间序列交换速度的反演,同时考虑了风速以及波浪状态对交换速度的影响。计算了交换速度的全球分布以及季节变化,并进行了比对和分析;计算了19年CO_2海-气交换速度的变化趋势,有一个0.01cm h~(-1)每月的增速。计算得到经过面积加权以及施密特数校正之后的19年平均全球平均交换速度是36.14±1.62cm h~(-1)。
     (3)通过对CO_2交换速度公式的比较和分析,提出了一个利用高度计数据计算交换速度的新公式,该公式利用白帽覆盖率来区分波浪破碎以及非破碎部分对交换速度的贡献。计算和分析了交换速度和通量的全球分布以及季节分布。计算了17年CO_2海-气交换速度和通量的变化趋势,分别有0.725cm h~(-1)和0.0068PgC每年的增速。计算得到经过面积加权以及施密特数校正之后的17年平均全球平均交换速度为21.26cm h~(-1),通量为每年2.58PgC。
     (4)提出了一个利用ERS-2散射计数据计算交换速度的新方法,新方法同时考虑了风速和波陡。波陡由ERS-2散射计数据通过神经网络方法获得。文中给出的新公式与已有的风速参数化公式一致性较好,已有风速公式的变化可以用波陡的变化来反映,这反映了不同波浪场对交换速度以及通量的影响,该模型解释了不确定性的部分原因。计算了交换速度和通量的全球分布以及季节分布并且分析了他们的分布规律。经过面积加权以及施密特数校正之后得到了全球平均交换速度为30cm h~(-1),从大气进入海洋的净通量为1.77PgC。
Air-sea CO_2flux is one of the most important control factors on the global climate change,and is one of the hot spots of the international research. Based on a substantial amount ofliterature on air-sea CO_2transfer velocity and its environmental controls, it has been concludedthat CO_2transfer velocity is not only infected by the wind speed, but also related to the wave,thickness of the mixed layer and the atmospheric stratification. The thickness of the boundarylayer is a function of surface turbulent and diffusion coefficient and it is also affected by windspeed, fetch, wave age, wave steepness, whitecap, stability of the boundary layer and surfactant.In this paper, a study on the inversion algorithms of air-sea CO_2transfer velocity and flux fromsatellite data was carried out. Based on altimeter and scatterometer data, uncertainty of the CO_2transfer velocity and flux, the effects of the breaking and non-broken waves to CO_2transfervelocity and the effects of the wave steepness are investigated. The main results are followed:
     (1) A new formula to retrieve air friction velocity using altimeter data was proposed. Usingdata from TOPEX/Poseidon for the entire year of2000and26different transfer velocityformulas, uncertainties in CO_2transfer velocity and flux were estimated. There are largeuncertainties in estimating CO_2transfer velocity and flux due to various transfer velocities.Maximum differences of global monthly mean values are27.70cm h~(-1)and6.41Pg C year~(-1)forgas transfer velocities and sea-air CO_2fluxes respectively among these26formulas. Maximumdifferences of4°zonal mean values are70.37cm h~(-1)and0.58Pg C year~(-1)for CO_2transfervelocities and sea-air CO_2flux respectively among these26formulas. The average global meanvalue for CO_2gas transfer velocities is27.33±9.75cm h~(-1), and the average total global netair-to-sea CO_2is2.77±1.02Pg C year~(-1)after area weighting and Schmidt number correction.
     (2) Using a function of radar backscatter coefficient from Ku-band altimeter, significantwave height (SWH) and wind speed, the global, long time series air-sea CO_2transfer velocitywas calculated. Both the wind speed and wave state were taking into account. Globaldistributions and seasonal distributions of the air-sea CO_2transfer velocity were retrieved anddiscussed. The19-year increase rate of the air-sea transfer velocity was about0.01cm h~(-1)per month. The19-year averaged global, area-weighted, Schmidt number-corrected mean gastransfer velocity was36.14±1.62cm h~(-1).
     (3) A new formula to retrieve CO_2transfer velocity using altimeter data was proposed.This formula distinguished the contributions of the wave breaking part and non-broken part totransfer velocity using whitecaps coverage. Global distributions and seasonal distributions of theair-sea CO_2transfer velocity and flux were retrieved from TOPEX/Poseidon and Jason altimeterdata from October1992to December2009using the combined algorithm. The increase rate ofthe air-sea transfer velocity and flux was about0.725cm h~(-1)per year and0.266PgC per year,respectively. The17-year averaged gobal, area-weighted, Schmidt number-corrected mean gastransfer velocity was21.26cm h~(-1). Average total CO_2flux from atmosphere to ocean during the17years was2.58PgC per year.
     (4) Using the European Remote Sensing scatterometer (ERS-2) data from July1997toAugust1998, a new model of air-sea CO_2transfer velocity with surface wind speed and wavesteepness is proposed. Wave steepness (δ) was retrieved using a Neural Network (NN) modelfrom ERS-2scatterometer data, while the wind speed was directly derived by the ERS-2scatterometer. The new model agrees well with the formulations based on wind speed and thevariation in the wind speed dependent relationships presented in many previous studies can beexplained by this proposed relation with variation in wave steepness effect. This methodreflected the impact of the different wave fields to the CO_2transfer velocity and flux andexplained the reason of the uncertainty partly. Seasonally global maps of gas transfer velocityand flux were shown based on the new model and seasonal variations of the transfer velocity andflux during the1-year period were illustrated. The global mean gas transfer velocity is30cm h~(-1)after area-weighting and Schmidt number correction, while the total air to sea CO_2flux in thatyear was1.77PgC.
引文
[1]环境气象学、环境空气动力学[J].环境科学文摘,1995.
    [2] IPCC.气候变化2007:综合报告。政府间气候变化专门委员会第四次评估报告第一、第二和第三工作组的报告[M].瑞士,日内瓦: IPCC,2007b.104页.
    [3]储敏,徐永福,李阳春.边界条件对北太平洋自然14C分布的影响[J].热带海洋学报,2008(6):19-27页.
    [4]董调玲,王明星,刘瑞芝.二维的大气CO2—大西洋碳循环模式[J].大气科学,1994(5):631-640页.
    [5]关福民.卫星高度计及其应用[J].海洋科学,1989(6):57-60页.
    [6]黄爱华. MJ98-CDTM全球大气化学传输模式用于二氧化碳全球传输的模拟研究[D].兰州大学,硕士学位论文,2011.
    [7]黄艳松.基于浮标观测资料的海气通量计算方法研究[D].中国科学院研究生院(海洋研究所),博士学位论文,2011.
    [8]金心,石广玉.海洋中碳及营养物自然分布的数值模拟[J].气候与环境研究,1999(04):375-387页.
    [9]金心,石广玉.海洋环流模式模拟自然和核辐射14C的分布[J].大气科学,2000a(3):341-354页.
    [10]金心,石广玉.海洋对人为CO2吸收的三维模式研究[J].气象学报,2000b(1):40-48页.
    [11]金心,石广玉.生物泵在海洋碳循环中的作用[J].大气科学,2001(5):683-688页.
    [12]赖鑫.南北极大气成分本底特征的分析[D].中国气象科学研究院,硕士学位论文,2012.
    [13]李景刚,李纪人,阮宏勋,黄诗峰. Jason-2卫星测高数据在陆地水域水位变化监测中的应用[J].自然资源学报,2010,25(3).
    [14]李阳春,徐永福,赵亮,王明星.全球海洋模式中CFC-11吸收对次网格尺度混合参数化的敏感性[J].海洋学报(中文版),2007(03):31-38页.
    [15]李峣.中国东部近海夏季环流特征及其动力机制[D].中国科学院研究生院(海洋研究所),博士学位论文,2010.
    [16]李昭.虚拟海洋环境时空数据建模与可视化服务研究[D].浙江大学,博士学位论文,2010.
    [17]刘春岩.基于静态明、暗箱观测估算稻田生态系统—大气CO2净交换[D].南京气象学院,硕士学位论文,2004.
    [18]刘毅,吕达仁,陈洪滨,杨东旭,闵敏.卫星遥感大气CO2的技术与方法进展综述[J].遥感技术与应用,2011,26(2):247-254页.
    [19]刘玉光.卫星海洋学[M].北京:高等教育出版社,2009.337页.
    [20]鲁中明,戴民汉.海气CO2通量与涡动相关法应用研究进展[J].地球科学进展,2006(10), CNKI:SUN:DXJZ.0.2006-10-007.
    [21]马明.秦岭火地塘林区几种主要天然林碳素空间分布规律的研究[D].西北农林科技大学,硕士学位论文,2009.
    [22]马涛.放牧对内蒙古锡林河流域羊草草原土壤呼吸的影响[D].西北农林科技大学,硕士学位论文,2008.
    [23]浦一芬,王明星.海洋碳循环模式(I)—一个包括海洋动力学环流、化学过程和生物过程的二维碳模式的建立[J].气候与环境研究,2000(2):129-140页.
    [24]浦一芬,王明星.海洋碳循环模式(Ⅱ)—对印度洋的模拟结果分析[J].气候与环境研究,2001(1):67-76页.
    [25]沈春一,左军成,杜凌,李磊,李培良.世界大洋潮波特征的比较分析[J].中国海洋大学学报,2006,36(4).
    [26]汪炳祥.海浪的δ-β关系的探讨[J].中国海洋大学学报(自然科学版),1990,20(3):1-10页.
    [27]王爱方.基于频谱的海面均方波陡及其与气体交换速度的关系研究[D].中国海洋大学,硕士学位论文,2006.
    [28]王介民.涡动相关通量观测指导手册[M].2012.43页.
    [29]王玉婷.南极中山站近地面臭氧和一氧化碳的本底特征研究[D].中国气象科学研究院,硕士学位论文,2011.
    [30]文圣常,余宙文.海浪理论与计算原理[M].科学出版社,1984.
    [31]邢如楠.一个三维全球海洋碳循环模式[J].北京气象学院学报,1995,2:37-41页.
    [32]邢如楠.带生物泵三维全球海洋碳循环模式[J].大气科学,2000(3):333-340页.
    [33]邢如楠,王彰贵.热带太平洋表面水中CO2对El Ni o事件响应的数值模拟[J].气象学报,2001(3):308-317页.
    [34]徐小锋,宋长春.全球碳循环研究中“碳失汇”研究进展[J].中国科学院研究生院学报,2004,21(2):145-152页.
    [35]徐永福,王明星,金向泽.二维海洋温盐环流碳循环模式[J].大气科学,1997(5):62-69页.
    [36]徐永福,浦一芬,赵亮.海洋碳循环模式的研究进展[J].地球科学进展,2005(10):1106-1115页.
    [37]徐永福,赵亮,李阳春.北太平洋对人为二氧化碳吸收的数值模拟[J].地球物理学报,2007a(02):404-411页.
    [38]徐永福,赵亮,李阳春.海洋碳循环与海洋生态系统动力学[J].海洋环境科学,2007b(5):495-500页.
    [39]徐永福,姜超.二氧化碳在海洋深层水中隔离的数值模拟[J].地学前缘,2009(2):339-346页.
    [40]许苏清.利用现场和卫星遥感数据估算南大洋碳通量[D].厦门大学;海洋化学,博士学位论文,2008.
    [41]杨昕,王明星.陆面碳循环研究中若干问题的评述[J].地球科学进展,2001,16(3):427-435页.
    [42]张进峰.典型海域的海浪数值模拟研究[D].武汉理工大学,硕士学位论文,2005.
    [43]张进峰.区域海—气—浪耦合模式改进及航海仿真应用试验研究[D].武汉理工大学,博士学位论文,2009.
    [44]张云慧,程登发,姜玉英,张跃进,孙京瑞.北京地区越冬代旋幽夜蛾迁飞的虫源分析[J].中国农业科学,2010,43(9):1815-1822页.
    [45]赵琦.全球海气碳通量年际变化的数值模拟[D].南京信息工程大学,硕士学位论文,2012.
    [46] Andreas E. L. and Monahan E. C. The role of whitecap bubbles in air-sea heat and moistureexchange [J]. Journal of physical oceanography,2000,30(2):433-442.
    [47] Asher W. E. The sea-surface microlayer and its effect on global air-sea gas transfer [M]. In:Liss Peter S. and Duce Robert A. Eds. The sea surface and global change. Cambridge UniversityPress,1997a:251-286.
    [48] Asher W. E., Karle L. M., Higgins B. J. On the differences between bubble-mediatedair-water transfer in freshwater and seawater [J]. Journal of marine research,1997b,55(5):813-845.
    [49] Asher W. E. and Wanninkhof R. The effect of bubble-mediated gas transfer on purposefuldual-gaseous tracer experiments [J]. Journal of Geophysical Research,1998,103(C5):10555-10560.
    [50] Asher W. E. The effects of experimental uncertainty in parameterizing air-sea gas exchangeusing tracer experiment data [J]. Atmospheric Chemistry and Physics,2009,9(1):131-139.
    [51] Asher William E. and Pankow James F. The interaction of mechanically generatedturbulence and interfacial films with a liquid phase controlled gas/liquid transport process [J].Tellus B,1986,38(5):305-318.
    [52] AVISO and PO.DAAC. AVISO and PODAAC User Handbook: IGDR and GDR JasonProducts (Edition2.0).2004,ftp://avisoftp.cnes.fr/AVISO/pub/jason-1/documentation/handbook/Handbook_Jason_v2-1.pdf,viewed in March8,2013. P112.
    [53] Bacastow R. and Maier-Reimer E. Ocean-circulation model of the carbon cycle [J]. ClimateDynamics,1990,4(2):95-125.
    [54] Back D. D. and McCready M. J. Effect of small-wavelength waves on gas transfer acrossthe ocean surface [J]. Journal of Geophysical Research,1988,93(C5):5143-5152.
    [55] Banner Michael L. and Phillips O. M. On the incipient breaking of small scale waves [J].Journal of Fluid Mechanics,1974,65(4):647-656.
    [56] Batjes N. H. and Bridges E. M. A Review of Soil Factors and Processes that Control Fluxesof Heat, Moisture and Greenhouse Gases [M]. International Soil Reference and InformationCentre,1993.
    [57] Battle M., Bender M. L., Tans P. P., et al. Global carbon sinks and their variability inferredfrom atmospheric O2and δ13C [J]. Science,2000,287(5462):2467-2470.
    [58] Benada J. R. Merged GDR (TOPEX/POSEIDON) Generation B user’s handbook, version2.0, JPL-D-11007[M]. Phys. Oceanogr. Distrib. Active Archive Cent., Jet Propul. Lab., Calif.Inst. of Technol., Pasadena, Calif.,1997. p124.
    [59] Bock E. J., Hara T., Frew N. M., et al. Relationship between air-sea gas transfer and shortwind waves [J]. Journal of Geophysical Research-Oceans,1999,104(C11):25821-25831.
    [60] Bock Erik J., Edson James B., Frew Nelson M., et al. Description of the science plan for theApril1995CoOP experiment,‘Gas Transfer in Coastal Waters’, performed from the researchvessel New Horizon [M]. In: J hne Bernd and Monahan E. Eds. Air-Water Gas Transfer. Hanau,Germany: AEON Verlag,1995:801-810.
    [61] Bogucki Darek, Carr Mary-Elena, Drennan William M., et al. Preliminary and novelestimates of CO2gas transfer using a satellite scatterometer during the2001GasEx experiment[J]. International Journal of Remote Sensing,2010,31(1):75-92.
    [62] Bolin Bert. On the exchange of carbon dioxide between the atmosphere and the sea [J].Tellus,1960,12(3):274-281.
    [63] Boutin J., Etcheto J., Merlivat L., et al. Influence of gas exchange coefficientparameterisation on seasonal and regional variability of CO2air-sea fluxes [J]. GeophysicalResearch Letters,2002,29(8):23.
    [64] Broecker H. Ch, Petermann J., Siems W. The influence of wind on CO2-exchange in awind-wave tunnel, including the effects of monolayers [J]. Journal of marine research,1978,36(4):595-610.
    [65] Broecker W. S. and Peng Tsung-Hung. Tracers in the Sea [M]. New York: Columbia Univ.Press,1982. p689.
    [66] Brumley B. H. and Jirka G. H. Air-water transfer of slightly soluble gases: turbulence,interfacial processes and conceptual models [J]. Physicochemical Hydrodynamics,1988,10:295-319.
    [67] Businger J. A. and Delany A. C. Chemical sensor resolution required for measuring surfacefluxes by three common micrometeorological techniques [J]. Journal of Atmospheric Chemistry,1990,10(4):399-410.
    [68] Cai W. J., Chen L., Chen B., et al. Decrease in the CO2uptake capacity in an ice-free ArcticOcean basin [J]. Science,2010,329(5991):556-559.
    [69] Carter DJT. Prediction of wave height and period for a constant wind velocity using theJONSWAP results [J]. Ocean Engineering,1982,9(1):17-33.
    [70] Cember R. Bomb radiocarbon in the Red Sea: A medium-scale gas exchange experiment [J].Journal of Geophysical Research,1989,94(C2):2111-2123.
    [71] CERSAT. WNF products-User Manual (V2.1).1999,ftp://ftp.ifremer.fr/pub/ifremer/cersat/manuels/mutw01.pdf, viewed in March9,2013. P86.
    [72] Chai F., Dugdale R. C., Peng T. H., et al. One-dimensional ecosystem model of theequatorial Pacific upwelling system. Part I: model development and silicon and nitrogen cycle[J]. Deep Sea Research Part II: Topical Studies in Oceanography,2002,49(13):2713-2745.
    [73] Chen F., Cai W. J., Benitez-Nelson C., et al. Sea surface pCO2-SST relationships across acold-core cyclonic eddy: Implications for understanding regional variability and air-sea gasexchange [J]. Geophysical Research Letters,2007,34: L10603.
    [74] Chen L., Xu S., Gao Z., et al. Estimation of monthly air-sea CO2flux in the southernAtlantic and Indian Ocean using in-situ and remotely sensed data [J]. Remote Sensing ofEnvironment,2011.
    [75] Chen Liqi and Gao Zhongyong. Spatial variability in the partial pressures of CO2in thenorthern Bering and Chukchi seas [J]. Deep Sea Research Part II: Topical Studies inOceanography,2007,54(23–26):2619-2629.
    [76] Christian J. R., Verschell M. A., Murtugudde R., et al. Biogeochemical modelling of thetropical Pacific Ocean. I: Seasonal and interannual variability [J]. Deep Sea Research Part II:Topical Studies in Oceanography,2001,49(1):509-543.
    [77] Coantic Michel. A model of gas transfer across air-water interfaces with capillary waves [J].Journal of Geophysical Research,1986,91(C3):3925-3943.
    [78] Cosca C. E., Feely R. A., Boutin J., et al. Seasonal and interannual CO2fluxes for thecentral and eastern equatorial Pacific Ocean as determined from fCO2-SST relationships [J].Journal of geophysical research,2003,108(C8):3278.
    [79] Craig H. The natural distribution of radiocarbon and the exchange time of carbon dioxidebetween atmosphere and sea [J]. Tellus,1957,9(1):1-17.
    [80] Csanady G. T. The role of breaking wavelets in air-sea gas transfer [J]. Journal ofGeophysical Research,1990, C1(95):749-759.
    [81] Danckwerts P. V. Significance of liquid-film coefficients in gas absorption [J]. IndustrialAnd Engineering Chemistry,1951,43(6):1460-1467.
    [82] D'Asaro Eric, Lee Craig, Rainville Luc, et al. Enhanced Turbulence and Energy Dissipationat Ocean Fronts [J]. Science,2011,332(6027):318-322.
    [83] Davies C. G., Challenor P. G., Cotton P. D. Measurement of wave period from radaraltimeters [M]. In: Edge B. L. and Hemsley J. M. Eds. Ocean Wave Measurement and Analysis.Reston, Va: ASCE,1997:819-826.
    [84] Deacon E. L. Gas transfer to and across an air-water interface [J]. Tellus,1977,29(4):363-374.
    [85] Denman K. L., Brasseur G., Chidthaisong A., et al. Couplings Between Changes in theClimate System and Biogeochemistry [M]. In: Solomon S., Qin D., Manning M., et al. Eds.Climate Change2007: The Physical Science Basis. Contribution of Working Group I to theFourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and New York, NY, USA: Cambridge University Press,2007.
    [86] Dumont J. P., Rosmorduc V., Picot N., et al. OSTM/Jason-2Products Handbook [M].CNES: SALP-MU-M-OP-15815-CN; EUMETSAT: EUM/OPS-JAS/MAN/08/0041; JPL:OSTM-29-1237; NOAA/NESDIS: Polar Series/OSTM J400,2009.
    [87] Edson J. B., Zappa C. J., Ware J. A., et al. Scalar flux profile relationships over the openocean [J]. Journal of geophysical research,2004,109(C8): C8S-C9S.
    [88] Emery W. J., Baldwin D. G., Matthews D. K. Sampling the mesoscale ocean surfacecurrents with various satellite altimeter configurations [J]. Geoscience and Remote Sensing,IEEE Transactions on,2004,42(4):795-803.
    [89] Erickson D. J. A stability dependent theory for air-sea gas-exchange [J]. Journal ofGeophysical Research-Oceans,1993a,98:8471-8488.
    [90] Erickson David J. A stability dependent theory for air-sea gas exchange [J]. Journal ofGeophysical Research: Oceans,1993b,98(C5):8471-8488.
    [91] Etcheto J. and Merlivat L. Satellite determination of the carbon-dioxide exchangecoefficient at the ocean-atmosphere interface: A first step [J]. Journal of GeophysicalResearch-Oceans,1988,93(C12):15669-15678.
    [92] Etcheto J., Dandonneau Y., Boutin J. Estimating the Interannual Variability of the Air-SeaCO2Flux in the East Equatorial Pacific [J]. Physics and Chemistry of the Earth, Part B:Hydrology, Oceans and Atmosphere,1999,24(5):405-410.
    [93] Eugster W., Kling G., Jonas T., et al. CO2exchange between air and water in an ArcticAlaskan and midlatitude Swiss lake: importance of convective mixing [J]. J. Geophys. Res,2003,108(D124362).
    [94] Fairaill C. W., Hare J. E., Edson J. B., et al. Parameterization and micrometeorologicalmeasurement of air-sea gas transfer [J]. Boundary-Layer Meteorology,2000,96(1):63-106.
    [95] Fairall C. W. and Larsen S. E. Inertial-dissipation methods and turbulent fluxes at theair-ocean interface [J]. Boundary-Layer Meteorology,1986,34(3):287-301.
    [96] Fairall C. W., Bradley E. F., Rogers D. P., et al. Bulk parameterization of air-sea fluxes fortropical ocean-global atmosphere coupled-ocean atmosphere response experiment [J]. J.Geophys. Res,1996,101(C2):3747-3764.
    [97] Fairall C. W., White A. B., Edson J. B., et al. Integrated shipboard measurements of themarine boundary layer [J]. Journal of Atmospheric and Oceanic Technology,1997,14(3):338-359.
    [98] Fairall C. W., Hare J. E., Edson J. B., et al. Measurement and parameterization of the air-seagas transfer[C].,2000.
    [99] Falkowski P., Scholes R. J., Boyle E., et al. The global carbon cycle: A test of ourknowledge of earth as a system [J]. Science,2000,(290):291-296.
    [100] Fangohr S., Woolf D. K., Jeffery C. D., et al. Calculating long-term global air-sea flux ofcarbon dioxide using scatterometer, passive microwave, and model reanalysis wind data [J].Journal of Geophysical Research-Oceans,2008,113(C9).
    [101] Fangohr Susanne and Woolf David K. Application of new parameterizations of gastransfer velocity and their impact on regional and global marine CO2budgets [J]. Journal ofMarine Systems,2007,66(1-4):195-203.
    [102] Frankignoulle M. Field measurements of air-sea CO2exchange [J]. Limnology andOceanography,1988,33(3):313-322.
    [103] Frew Nelson M., Goldman J. C., Dennett M. R., et al. Impact of phytoplankton-generatedsurfactants on air-sea gas exchange [J]. Journal of Geophysical Research-Oceans,1990,95(C3).
    [104] Frew Nelson M., Bock Erik J., McGillis Wade R., et al. Variation of air-water gas transferwith wind stress and surface viscoelasticity [M]. In: J hne Bernd and Monahan E. Eds.Air-Water Gas Transfer. Hanau, Germany: AEON Verlag,1995:529-541.
    [105] Frew Nelson M. The role of organic films in air-sea gas exchange [M]. In: Liss P. S. andDuce Robert A. Eds. The sea surface and global change. Cambridge University Press,1997:121-172.
    [106] Frew Nelson M. and Nelson Robert K. Spatial mapping of sea surface microlayersurfactant concentration and composition [C]. In: Geoscience and Remote Sensing Symposium,1999. IGARSS '99Proceedings. IEEE1999International, edited by Stein T. I.,1999,3,Piscataway, N. J.: IEEE Press:1472-1474.
    [107] Frew Nelson M., Bock E. J., Schimpf U., et al. Air-sea gas transfer: Its dependence onwind stress, small-scale roughness, and surface films [J]. Journal of Geophysical Research,2004,109: C8S-C17S.
    [108] Frew Nelson M., Glover D. M., Bock E. J., et al. A new approach to estimation of globalair-sea gas transfer velocity fields using dual-frequency altimeter backscatter [J]. Journal ofGeophysical Research-Oceans,2007a,112(C11003).
    [109] Frew Nelson M., Glover David M., McCue Scott J. A Role for Altimeter Radars in GasExchange Studies [J]. Online athttp://earth.esa.int/workshops/venice06/participants/471/paper_471_frew.pdf,2007b.
    [110] Gao Z. Y., Chen L. Q., Gao Y. Air-sea carbon fluxes and their controlling factors in thePrydz Bay in the Antarctic [J]. Acta Oceanologica Sinica,2008,27(3):136-146.
    [111] Gao Zhiqiu, Wang Linlin, Bi Xueyan, et al. A simple extension of “An alternativeapproach to sea surface aerodynamic roughness” by Zhiqiu Gao, Qing Wang, and ShoupingWang [J]. Journal of Geophysical Research,2012,(117): D16110.
    [112] Garbe C. S., Schimpf U., J hne B. A surface renewal model to analyze infrared imagesequences of the ocean surface for the study of air-sea heat and gas exchange [J]. Journal ofgeophysical research,2004,109(C8): C8S-C15S.
    [113] Gent P. R. and Mcwilliams J. C. Isopycnal mixing in ocean circulation models [J]. Journalof Physical Oceanography,1990,20(1):150-155.
    [114] Gent P. R., Willebrand J., McDougall T. J., et al. Parameterizing eddy-induced tracertransports in ocean circulation models [J]. Journal of Physical Oceanography,1995,25(4):463-474.
    [115] Gerber M., Joos F., Vazquez-Rodriguez M., et al. Regional air-sea fluxes of anthropogeniccarbon inferred with an Ensemble Kalman Filter [J]. Global Biogeochemical Cycles,2009,23(1).
    [116] Glover D. M., Frew N. M., McCue S. J., et al. A multi-year time series of global gastransfer velocity from the TOPEX dual frequency, normalized radar backscatter algorithm [J].Geophysical Monograph-American Geophysical Union,2002,127:325-332.
    [117] Glover D. M., Frew N. M., Mccue S. J. Air-sea gas transfer velocity estimates from theJason-1and TOPEX altimeters: Prospects for a long-term global time series [J]. Journal ofMarine Systems,2007,66(1-4):173-181,10.1016/j.jmarsys.2006.03.020.
    [118] Goldman Joel C., Dennett Mark R., Frew Nelson M. Surfactant effects on air-sea gasexchange under turbulent conditions [J]. Deep Sea Research Part A. Oceanographic ResearchPapers,1988,35(12):1953-1970.
    [119] Gommenginger C. P., Srokosz M. A., Challenor P. G., et al. Measuring ocean wave periodwith satellite altimeters: A simple empirical model [J]. Geophysical research letters,2003,30(22):2150.
    [120] Goreau Thomas J. Balancing atmospheric carbon dioxide [J]. Ambio,1990,19(5):230-236.
    [121] Gregg W. W. Tracking the SeaWiFS record with a coupledphysical/biogeochemical/radiative model of the global oceans [J]. Deep Sea Research Part II:Topical Studies in Oceanography,2001,49(1):81-105.
    [122] Guan Changlong and Sun Qun. Analytically derived wind wave growth relations [J]. ChinaOcean Engineering,2002,16(3):359-368.
    [123] Guan Changlong and Xie L. On the linear parameterization of drag coefficient over seasurface [J]. Journal of Physical Oceanography,2004,34(12):2847-2851.
    [124] Hare J. E., Fairall C. W., McGillis W. R., et al. Evaluation of the National Oceanic andAtmospheric Administration/Coupled-Ocean Atmospheric Response Experiment(NOAA/COARE) air-sea gas transfer parameterization using GasEx data [J]. Journal ofGeophysical Research-Oceans,2004,109: C8S-C11S.
    [125] Harriott P. A random eddy modification of the penetration theory [J]. ChemicalEngineering Science,1962,17(3):149-154.
    [126] Hartman Blayne and Hammond Douglas E. Gas exchange rates across the sediment-waterand air-water interfaces in south San Francisco Bay [J]. Journal of Geophysical Research:Oceans,1984,89(C3):3593-3603.
    [127] Hasselmann K. An ocean model for climate variability studies [J]. Progress inOceanography,1982,11(2):69-92.
    [128] Hasselmann Klaus, Barnett T. P., Bouws E., et al. Measurements of wind-wave growthand swell decay during the Joint North Sea Wave Project (JONSWAP)[M]. Deutscheshydrographisches institut, Hamburg,1973. p96.
    [129] Hau ecker H. and J hne B. In situ measurements of the air-sea gas transfer rate during theMBL/CoOP west coast experiment [J]. Air–Water Gas Transfer, AEON Verlag&Studio,Hanau, Germany,1995:775-784.
    [130] Hau ecker H., Reinelt S., J hne B. Heat as a proxy tracer for gas exchange measurementsin the field: Principles and technical realization [J]. Air-Water Gas Transfer,1995:405-413.
    [131] Hau ecker H., Schimpf U., Garbe C. S., et al. Physics from IR image sequences:Quantitative analysis of transport models and parameters of air-sea gas transfer [J]. GeophysicalMonograph Series,2002,127:103-108.
    [132] Hesshaimer Vago, Heimann Martin, Levin Ingeborg. Radiocarbon evidence for a smalleroceanic carbon dioxide sink than previously believed [J]. Nature,1994,370(21):201-203.
    [133] Ho David T., Bliven L. F., Wanninkhof R., et al. The effect of rain on air-water gasexchange [J]. Tellus B,1997,49(2):149-158.
    [134] Ho David T., Asher W. E., Bliven L. F., et al. On mechanisms of rain-induced air-watergas exchange [J]. Journal of Geophysical Research,2000,105(C10):24045-24057.
    [135] Ho David T., Zappa C. J., McGillis W. R., et al. Influence of rain on air-sea gas exchange:Lessons from a model ocean [J]. Journal of Geophysical Research,2004,109(C8): C8S-C18S.
    [136] Ho David T., Law Cliff S., Smith Murray J., et al. Measurements of air-sea gas exchangeat high wind speeds in the Southern Ocean: Implications for global parameterizations [J].Geophysical Research Letters,2006,33(20): L16611.
    [137] Holthuijsen L. H. Waves in oceanic and coastal waters [M]. New York, United States ofAmerica: Cambridge University Press,2007. p387.
    [138] Holzner Steven. Physics for Dummies [M]. Wiley Publishing Inc,2006.
    [139] Hoover Thomas E. and Berkshire David C. EFFECTS OF HYDRATION ON CARBONDIOXIDE EXCHANGE ACROSS AN AIR-WATER INTERFACE [J]. Journal of GeophysicalResearch,1969,74(2):456.
    [140] Houghton J. T., Ding Y., Griggs D. J., et al. Climate change2001: the scientific basis [M].881. UK, Cambridge: Cambridge University Press Cambridge,2001. p881.
    [141] Hu Dunxin, Hu Shijian, Wu Lixin, et al. Direct Measurements of the Luzon Undercurrent[J]. Journal of Physical Oceanography,2013, doi:10.1175/JPO-D-12-0165.1, in press.
    [142] Hu Wei and Guan Changlong. Estimate of Global Sea-Air CO2Flux withSea-State-Dependent Parameterization [J]. Journal of Ocean University of China,2008,7(3):237-240.
    [143] Hwang P. A., Teague W. J., Jacobs G. A., et al. A statistical comparison of wind speed,wave height, and wave period derived from satellite altimeters and ocean buoys in the Gulf ofMexico region [J]. Journal of geophysical research,1998,103(C5):10451-10468.
    [144] IPCC. Climate Change2007: Synthesis Report. Contribution of Working Groups I, II andIII to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. In:Team Core Writing, Pachauri R. K., Reisinger A. Eds.Geneva, Switzerland: IPCC,2007a:104.
    [145] Jacobs CMJ, Kohsiek W., Oost W. A. Air-sea fluxes and transfer velocity of CO2over theNorth Sea: results from ASGAMAGE [J]. Tellus Series B-Chemical and Physical Meteorology,1999,51(3):629-641.
    [146] J hne B., Huber W., Dutzi A., et al. Wind/wave-tunnel experiment on the Schmidt number—And wave field dependence of air/water gas exchange [J]. Gas transfer at water surfaces,1984:303-309.
    [147] J hne B., Libner P., Fischer R., et al. Investigating the transfer processes across the freeaqueous viscous boundary layer by the controlled flux method [J]. Tellus B,1989,41(2):177-195.
    [148] J hne B. and Hauβecker H. Air-water gas exchange [J]. Annual review of fluidmechanics,1998,30:443-468.
    [149] J hne Bernd, Münnich Karl Otto, B slnger Rainer, et al. On the parameters influencingair-water gas-exchange [J]. Journal of Geophysical Research-Oceans,1987,92(C2):1937-1949.
    [150] Jeffery C. D., Woolf D. K., Robinson I. S., et al. One-dimensional modelling of convectiveCO2exchange in the Tropical Atlantic [J]. Ocean Modelling,2007,19(3-4):161-182.
    [151] Jeffery C. D., Robinson I. S., Woolf D. K. Tuning a physically-based model of the air-seagas transfer velocity [J]. Ocean Modelling,2010,31(1-2):28-35.
    [152] Johnson K. S. Carbon dioxide hydration and dehydration kinetics in seawater [J].Limnology and Oceanography,1982:849-855.
    [153] Keeling C. D., Whorf T. P., Wahlen M., et al. Interannual extremes in the rate of rise ofatmospheric carbon-dioxide since1980[J]. Nature,1995,375(6533):666-670.
    [154] Keeling R. F., Piper S. C., Heimann M. Global and hemispheric CO2sinks deduced fromchanges in atmospheric O2concentration [J]. Nature,1996,381(6579):218-221.
    [155] Kheshgi H. S., Jain A. K., Wuebbles D. J. Model-based estimation of the global carbonbudget and its uncertainty from carbon dioxide and carbon isotope records [J]. Journal ofgeophysical research,1999,104(D24):31127-31143.
    [156] Komori S., Nagaosa R., Murakami Y. TURBULENCE STRUCTURE ANDMASS-TRANSFER ACROSS A SHEARED AIR-WATER-INTERFACE IN WIND-DRIVENTURBULENCE [J]. JOURNAL OF FLUID MECHANICS,1993,249:161-183.
    [157] Komori Satoru, Takagaki Naohisa, Saiki Rina, et al. The effect of raindrops on interfacialturbulence and air-water gas transfer [M]. In: Garbe C. S., Handler R. A., J hne B. Eds.Transport at the Air-Sea Interface. Berlin, Heidelberg: Springer-Verlag,2007:169-179.
    [158] Kshatriya Jignesh, Sarkar Abhijit, Kumar Raj. Determination of Ocean Wave Period fromAltimeter Data Using Wave-Age Concept [J]. Marine Geodesy,2005,28(1):71-79.
    [159] Kuss Joachim, Nagel Klaus, Schneider Bernd. Evidence from the Baltic Sea for anenhanced CO2air-sea transfer velocity [J]. Tellus Series B-Chemical and Physical Meteorology,2004,56(2):175-182.
    [160] Ledwell J. J. The variation of the gas transfer coefficient with molecular diffusity [M]. In:Donelan M. A., Drennan W. M., Saltzman E. S., et al. Eds. Gas transfer at water surfaces.Washington, DC: American Geophysical Union,1984:293-302.
    [161] Lin M. S., Song X. G., Jiang X. W. Neural network wind retrieval from ERS-1/2scatterometer data [J]. Acta Oceanologica Sinica,2006,25(3):35-39.
    [162] Liss P. S. and Slater P. G. Flux of Gases across the Air-Sea Interface [J]. Nature,1974,247:181-184.
    [163] Liss Peter S. and Merlivat Liliane. Air-sea gas exchange rate: Introduction and synthesis[M]. In: Buat-Ménard Patrick Eds. The role of air-sea exchange in geochemical cycling.185.Dordrecht, Holland: D. Reidel Publishing Company,1986,185(Proceedings of the NATOAdvanced Study Institute):113-127.
    [164] Liu Guoqiang, He Yijun, Shen Hui, et al. Global wind stress drag coefficients fromremotely sensed estimates of retrieved winds and wave steepness [J]. IEEE Transactions onGeoscience and Remote Sensing,2011,5(49):1499-1503.
    [165] Liu H. P. An alternative approach for CO2flux correction caused by heat and water vapourtransfer [J]. Boundary-Layer Meteorology,2005,115(1):151-168,10.1007/s10546-004-2420-5.
    [166] Lohrenz S. E., Cai W. J., Chen F., et al. Seasonal variability in air-sea fluxes of CO2in ariver-influenced coastal margin [J]. Journal of Geophysical Research,2010,115(C10): C10034.
    [167] MacIntyre S., Eugster W., Kling G. W. The critical importance of buoyancy flux for gasflux across the air-water interface [M]. In: Donelan M. A., Drennan W. M., Saltzman E. S., et al.Eds. Gas Transfer at Water Surfaces.127. Geophysical Monograph-American GeophysicalUnion,2002,127:135-140.
    [168] Mackay E. B. L., Retzler C. H., Challenor P. G., et al. A parametric model for ocean waveperiod from Ku band altimeter data [J]. Journal of Geophysical Research,2008,113: C3029.
    [169] Maier-Reimer E. and Hasselmann K. Transport and storage of CO2in the ocean-aninorganic ocean-circulation carbon cycle model [J]. Climate Dynamics,1987,2(2):63-90.
    [170] Maier-Reimer E., Mikolajewicz U., Hasselmann K. Mean circulation of the Hamburg LSGOGCM and its sensitivity to the thermohaline surface forcing [J]. Journal of PhysicalOceanography,1993,23(4):731-757.
    [171] McGillis W. R., Bock E. J., Frew N. M. Mass transfer from gas bubbles in fresh andseawater [M]. In: J hne Bernd and Monahan E. Eds. Air-Water Gas Transfer. Aeon Verlag,Heidelberg,1995:363-374.
    [172] McGillis W. R., Edson J. B., Hare J. E., et al. Direct covariance air-sea CO2fluxes [J].Journal of Geophysical Research-Oceans,2001a,106(C8):16729-16745.
    [173] McGillis W. R., Edson J. B., Ware J. D., et al. Carbon dioxide flux techniques performedduring GasEx-98[J]. Marine Chemistry,2001b,75(4):267-280.
    [174] McGillis Wade R., Edson James B., Zappa Christopher J., et al. Air-sea CO2exchange inthe equatorial Pacific [J]. Journal of Geophysical Research-Oceans,2004,109(C08S02).
    [175] McNeil Craig and D'Asaro Eric. Parameterization of air sea gas fluxes at extreme windspeeds [J]. Journal of Marine Systems,2007,66:110-121.
    [176] McVeigh Philip. Micro-meteorological&CO2fluxes in the coastal environment [D].Doctor Thesis. National University of Ireland,2009.
    [177] Melville W. K. The role of surface-wave breaking in air-sea interaction [J]. Annual reviewof fluid mechanics,1996,28(1):279-321.
    [178] Memery Laurent and Merlivat Liliane. Modelling of gas flux through bubbles at theair-water interface [J]. Tellus B,1985,37B (4-5):272-285.
    [179] Merlivat Liliane and Memery Laurent. Gas exchange across an air-water interface:Experimental results and modeling of bubble contribution to transfer [J]. Journal of Geophysicalresearch,1983,88(C1):707-724.
    [180] Miller Scott D., Marandino Christa, Saltzman Eric S. Ship-based measurement of air-seaCO2exchange by eddy covariance [J]. Journal of Geophysical Research-Atmospheres,2010,115(D02304).
    [181] Monahan E. C. and Spillane M. C. The role of oceanic whitecaps in air-sea gas exchange[M]. In: Donelan M. A., Drennan W. M., Saltzman E. S., et al. Eds. Gas transfer at watersurfaces. Washington, DC: American Geophysical Union,1984:495-503.
    [182] Moore J. K., Abbott M. R., Richman J. G., et al. SeaWiFS satellite ocean color data fromthe Southern Ocean [J]. Geophysical Research Letters,1999,26(10):1465-1468.
    [183] Nie D., Kleindienst T. E., Arnts R. R., et al. The design and testing of a relaxed eddyaccumulation system [J]. Journal of geophysical research,1995,100(D6):11411-11415,423.
    [184] Nightingale P. D., Liss P. S., Schlosser P. Measurements of air-sea gas transfer during anopen ocean algal bloom [J]. Geophysical Research Letters,2000a,27(14):2117-2120.
    [185] Nightingale P. D., Malin G., Law C. S., et al. In situ evaluation of air-sea gas exchangeparameterizations using novel conservative and volatile tracers [J]. Global BiogeochemicalCycles,2000b,14(1):373-387.
    [186] NOAA, NASA, USAF. U.S. Standard atmosphere1976[M]. Washington, D.C.: U.S.Government Printing Office,1976. p241.
    [187] Ocampo-Torres F. J. and Donelan M. A. On the Influence of Fetch and the Wave Field onthe CO2Transfer Process: Laboratory Measurements [M]. In: J hne B. and Monahan E. Eds.Air-Water Gas Transfer. Hanau: AEON Verlag&Studio,1995:543-552.
    [188] Olsen A., Trinanes J. A., Wannitilchof R. Sea-air flux of CO2in the Caribbean Seaestimated using in situ and remote sensing data [J]. REMOTE SENSING OF ENVIRONMENT,2004,89(3):309-325,10.1016/j.rse.2003.10.011.
    [189] Olsen A., Wanninkhof R., Trinanes J. A., et al. The effect of wind speed products andwind speed-gas exchange relationships on interannual variability of the air-sea CO2gas transfervelocity [J]. Tellus Series B-Chemical and Physical Meteorology,2005,57(2):95-106.
    [190] Ono T., Saino T., Kurita N., et al. Basin-scale extrapolation of shipboard pCO2data byusing satellite SST and Chla [J]. International Journal of Remote Sensing,2004,25(19):3803-3815.
    [191] Peacock Synte. Debate over the ocean bomb radiocarbon sink: Closing the gap [J]. Globalbiogeochemical cycles,2004,18(GB2022).
    [192] Perrie W., Zhang W., Ren X., et al. The role of midlatitude storms on air-sea exchange ofCO2[J]. Geophysical research letters,2004,31(9): L9306.
    [193] Philipps S. and Ablain M. Jason-2validation and cross calibration activities.2009,http://www.aviso.oceanobs.com/fileadmin/documents/calval/validation_report/J2/annual_report_j2_2008.pdf, viewed in March8,2013. P74.
    [194] Picot N. and Desai S. AVISO and PODAAC User Handbook IGDR and GDR JasonProducts (Edition4.1)[M]. Phys. Oceanogr. Distrib. Active Archive Cent., Jet Propul. Lab.,Calif. Inst. of Technol., Pasadena, Calif.,2008.
    [195] Popova E. E., Ryabchenko V. A., Fasham M. J. R. Biological pump and vertical mixing inthe Southern Ocean: Their impact on atmospheric CO2[J]. Global Biogeochemical Cycles,2000,14(1):477-498.
    [196] Portabella M. and Stoffelen A. Development of a global scatterometer validation andmonitoring [J]. Final report for the EUMETSAT OSI SAF,2007:1-37.
    [197] Portabella M. and Stoffelen A. On Scatterometer Ocean Stress [J]. Journal of Atmosphericand Oceanic Technology,2009,26(2):368-382.
    [198] Prytherch John, Yelland Margaret J., Pascal Robin W., et al. Direct measurements of theCO2flux over the ocean: Development of a novel method [J]. Geophysical Research Letters,2010a,37(L03607).
    [199] Prytherch John, Yelland Margaret J., Pascal Robin W., et al. Open ocean gas transfervelocity derived from long-term direct measurements of the CO2flux [J]. Geophysical ResearchLetters,2010b,37(L23607).
    [200] Quilfen Y., Chapron B., Collard F., et al. Calibration/validation of an altimeter waveperiod model and application to TOPEX/Poseidon and Jason-1altimeters [J]. Marine Geodesy,2004,27(3-4):535-549.
    [201] Rajesh Kumar R., Prasad Kumar B., Satyanarayana ANV, et al. Parameterization of seasurface drag under varying sea state and its dependence on wave age [J]. Natural hazards,2009,49(2):187-197.
    [202] Rangama Y., Boutin J., Etcheto J., et al. Variability of the net air-sea CO2flux inferredfrom shipboard and satellite measurements in the Southern Ocean south of Tasmania and NewZealand [J]. Journal of Geophysical Research-Oceans,2005,110: C9005.
    [203] Raven J., Caldeira K., Elderfield H., et al. Ocean acidification due to increasingatmospheric carbon dioxide [M]. Cardiff, UK: The Clyvedon Press Ltd,2005. p60.
    [204] Raymond P. A. and Cole J. J. Gas exchange in rivers and estuaries: Choosing a gas transfervelocity [J]. Estuaries and Coasts,2001,24(2):312-317.
    [205] Redfield A. C. The exchange of oxygen across the sea surface [J]. Journal of MarineResearch,1948,7(3):347-361.
    [206] Robert DeCarvalho, Shannon Brown, Bruce Haines, et al. Global cross calibration andvalidation of the Jason-1and Jason-2OSTM data products.2009,http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2009/oral/deCarvalho.pdf, viewedin March8,2013. P21.
    [207] Robertson J. E. and Watson A. J. Thermal skin effect of the surface ocean and itsimplications for CO2uptake [J]. Nature,1992,358.
    [208] Roether W. Field measurement of air-sea gas transfer: a methodical search [J].Boundary-Layer Meteorology,1983,27(1):97-103.
    [209] Rutgersson A., Smedman A., Sahlée E. Oceanic convective mixing and the impact onair-sea gas transfer velocity [J]. Geophysical Research Letters,2011,38(2): L2602.
    [210] Rutgersson Anna and Smedman A. Enhanced air-sea CO2transfer due to water-sideconvection [J]. Journal of Marine Systems,2010,80:125-134.
    [211] Sabine C. L., Feely R. A., Gruber N., et al. The oceanic sink for anthropogenic CO2[J].Science,2004,305(5682):367-371.
    [212] Sarkar A., Kumar R., Mohan M. Estimation of ocean wave periods by spacebornealtimeters [J]. Indian Journal of Marine Sciences,1998,27(1):43-45.
    [213] Sarma V., Saino T., Sasaoka K., et al. Basin-scale pCO2distribution using satellite seasurface temperature, Chl a, and climatological salinity in the North Pacific in spring and summer[J]. Global Biogeochemical Cycles,2006,20(3).
    [214] Sarma V. V. S. S., Abe Osamu, Honda M., et al. Estimating of gas transfer velocity usingtriple isotopes of dissolved oxygen [J]. Journal of Oceanography,2010,66(4):505-512.
    [215] Sarmiento J. L., Orr J. C., Siegenthaler U. A perturbation simulation of CO2uptake in anocean general circulation model [J]. Journal of Geophysical Research,1992,97(C3):3621-3645.
    [216] Sarmiento J. L., Monfray P., Maier-Reimer E., et al. Sea-air CO2fluxes and carbontransport: A comparison of three ocean general circulation models [J]. Global BiogeochemicalCycles,2000,14(4):1267-1281.
    [217] Schimpf U., Garbe C., J hne B. Investigation of transport processes across the sea surfacemicrolayer by infrared imagery [J]. Journal of Geophysical research,2004,109(C8): C8S-C13S.
    [218] Schmidt R. and Schneider B. The effect of surface films on the air-sea gas exchange in theBaltic Sea [J]. Marine Chemistry,2011,(126):56-62.
    [219] Shailen Desai and Bruce Haines. Global calibration and validation of the Jason-2GDR-Dproducts.2012,http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2012/oral/01_thursday_27/05_regional_and_global_calval_II/02_CV2_DesaiHaines.pdf, viewed in March8,2013. P22.
    [220] Siems Wolfgang. Modelluntersuchungen zur Verdunstung und zum Gasaustauschzwischen Wasser und Luft, der Einfluss von Wellen und Oberfl chenverunreinigungen[D].Thesis. Univ. of Hamburg,1980.
    [221] Six K. D. and Maier-Reimer E. Effects of plankton dynamics on seasonal carbon fluxes inan ocean general circulation model [J]. Global Biogeochemical Cycles,1996,10(4):559-583.
    [222] Smith J. M. Wave breaking on an opposing current [J]. Coastal Engineering TechnicalNote CETN IV-17, US Army Engineer Research and Development Centre, Vicksburg MS,1999.
    [223] Soloviev A., Donelan M., Graber H., et al. An approach to estimation of near-surfaceturbulence and CO2transfer velocity from remote sensing data [J]. Journal of Marine Systems,2007,66(1-4):182-194.
    [224] Soloviev A. V. and Schlüssel P. Parameterization of the cool skin of the ocean and of theair-ocean gas transfer on the basis of modeling surface renewal [J]. Journal of PhysicalOceanography,1994,24(6):1339-1346.
    [225] Stephens M. P., Samuels G., Olson D. B., et al. Sea-air flux of CO2in the North Pacificusing shipboard and satellite data [J]. Journal of Geophysical Research,1995,100(C7):13513-13571,583.
    [226] Sutherland W. LII. The viscosity of gases and molecular force [J]. The London, Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1893,36(223):507-531.
    [227] Sweeney C., Gloor E., Jacobson A. R., et al. Constraining global air-sea gas exchange forCO2with recent bomb14C measurements [J]. Global Biogeochemical Cycles,2007,21(GB2015), doi:10.1029/2006GB002784.
    [228] Takagaki Naohisa and Komori Satoru. Effects of rainfall on mass transfer across the air‐water interface [J]. Journal of Geophysical Research: Oceans,2007,112(C06006), doi:10.1029/2006JC003752.
    [229] Takahashi T., Sutherland S. C., Sweeney C., et al. Global sea-air CO2flux based onclimatological surface ocean pCO2, and seasonal biological and temperature effects [J].Deep-Sea Research Part Ⅱ-Topical Studies In Oceanography,2002,49:1601-1622.
    [230] Takahashi T., Sutherland S. C., Wanninkhof R., et al. Climatological mean and decadalchange in surface ocean pCO2, and net sea-air CO2flux over the global oceans [J]. Deep SeaResearch Part II: Topical Studies in Oceanography,2009,56(8-10):554-577.
    [231] Takahashi Taro and Sutherland Stewart C. Global ocean surface water partial pressure ofCO2database: measurements performed during1957-2009(Version2009)[M].2010.
    [232] Taylor P. K. and Yelland M. J. The dependence of sea surface roughness on the height andsteepness of the waves [J]. Journal of Physical Oceanography,2001,31(2):572-590.
    [233] Toba Y. Local balance in the air-sea boundary processes I. On the Growth Process ofWind Waves [J]. Journal of Oceanography,1972,28(3):109-120.
    [234] Tsai Wu-ting and Liu Kon-Kee. An assessment of the effect of sea surface surfactant onglobal atmosphere-ocean CO2flux [J]. Journal of geophysical research,2003,108(C4):3127,doi:10.1029/2000JC000740.
    [235] Upstill-Goddard R. C., Watson A. J., Liss P. S., et al. Gas transfer velocities in lakesmeasured with SF6[J]. Tellus B,1990,42(4):364-377.
    [236] Upstill-Goddard R. C., Watson A. J., Wood J., et al. Sulphur hexafluoride and helium-3assea-water tracers: deployment techniques and continuous underway analysis for sulphurhexafluoride [J]. Analytica chimica acta,1991,249(2):555-562.
    [237] Van Scoy Kim A., Morris Kevin P., Robertson Jane E., et al. THERMAL SKIN-EFFECTAND THE AIR-SEA FLUX OF CARBON-DIOXIDE-A SEASONAL HIGH-RESOLUTIONESTIMATE [J]. Global Biogeochemical Cycles,1995,9(2):253-262.
    [238] Walsh J. J., Dieterle D. A., Lenes J. A numerical analysis of carbon dynamics of theSouthern Ocean phytoplankton community: the roles of light and grazing in effecting bothsequestration of atmospheric CO2and food availability to larval krill [J]. Deep Sea Research PartI: Oceanographic Research Papers,2001,48(1):1-48.
    [239] Wanninkhof Rik. Kinetic fractionation of the carbon isotopes13C and12C during transferof CO2from air to seawater [J]. Tellus Series B-Chemical and Physical Meteorology,1985,37(3):128-135.
    [240] Wanninkhof Rik and Bliven L. F. Relationship between gas exchange, wind speed, andradar backscatter in a large wind-wave tank [J]. Journal of Geophysical Research,1991,96(C2):2785-2796.
    [241] Wanninkhof Rik. Relationship between wind-speed and gas-exchange over the ocean [J].Journal of Geophysical Research-Oceans,1992,97(C5):7373-7382.
    [242] Wanninkhof Rik, Asher W., Weppernig R., et al. Gas transfer experiment on GeorgesBank using two volatile deliberate tracers [J]. Journal of Geophysical Research,1993,98(C11):20220-20237,248.
    [243] Wanninkhof Rik and Knox Molly. Chemical enhancement of CO2exchange in naturalwaters [J]. Limnology and Oceanography,1996,41(4):689-697.
    [244] Wanninkhof Rik and McGillis Wade R. A cubic relationship between air-sea CO2exchange and wind speed [J]. Geophysical Research Letters,1999,26(13):1889-1892.
    [245] Wanninkhof Rik, Sullivan Kevin F., Top Zafer. Air-sea gas transfer in the Southern Ocean[J]. Journal of Geophysical Research-Oceans,2004,109: C8S-C19S.
    [246] Wanninkhof Rik, Olsen Are, Tri anes Joaquin. Air-sea CO2fluxes in the caribbean seafrom2002-2004[J]. Journal of Marine Systems,2007,66(1-4):272-284.
    [247] Wanninkhof Rik, Asher William E., Ho David T., et al. Advances in quantifying air-seagas exchange and environmental forcing [J]. Annual Review of Marine Science,2009,1:213-244.
    [248] Ward B., Wanninkhof R., McGillis W. R., et al. Biases in the air-sea flux of CO2resultingfrom ocean surface temperature gradients [J]. Journal of Geophysical Research,2004,109: C8S.
    [249] Watson Andrew J., Upstill-Goddard Robert C., Lisst Peter S. Air-sea gas exchange inrough and stormy seas measured by a dual-tracer technique [J]. Nature,1991,349:145-147.
    [250] Webb E. K., Pearman G. I., Leuning R. Correction of flux measurements for densityeffects due to heat and water vapour transfer [J]. Quarterly Journal of the Royal MeteorologicalSociety,1980,106(447):85-100.
    [251] Weber R. O. Remarks on the definition and estimation of friction velocity [J].Boundary-Layer Meteorology,1999,93(2):197-209.
    [252] Weiss A., Kuss J., Peters G., et al. Evaluating transfer velocity-wind speed relationshipusing a long-term series of direct eddy correlation CO2flux measurements [J]. Journal of MarineSystems,2007,66:130-139,10.1016/j.jmarsys.2006.04.011.
    [253] Weiss R. F. Carbon dioxide in water and seawater: the solubility of a non-ideal gas [J].Marine Chemistry,1974,2(3):203-215.
    [254] Woolf David K. Bubbles and the air-sea transfer velocity of gases [J]. Atmosphere Ocean,1993,31:517.
    [255] Woolf David K. Bubbles and their role in gas exchange [M]. In: Liss P. S. and Duce R. A.Eds. The Sea Surface and Global Change. Cambridge, United Kingdom: Cambridge UniversityPress,1997:173-205.
    [256] Woolf David K. Parametrization of gas transfer velocities and sea-state-dependent wavebreaking [J]. Tellus Series B-Chemical and Physical Meteorology,2005,57(2):87-94.
    [257] Woolf David K. Breaking Waves&Bubbles.2010.
    [258] Wu J. Wind-stress coefficients over sea surface near neutral conditions-A revisit [J].Journal of Physical Oceanography,1980,10(5):727-740.
    [259] Yelland M. J., Taylor P. K., Consterdine I. E., et al. The use of the inertial dissipationtechnique for shipboard wind stress determination [J]. Journal of Atmospheric and OceanicTechnology,1994,11(4):1093-1108.
    [260] Zappa C. J., Asher W. E., Jessup A. T. Microscale wave breaking and air-water gastransfer [J]. Journal of Geophysical research,2001,106:9385-9391.
    [261] Zappa C. J., Asher W. E., Jessup A. T., et al. Effect of microscale wave breaking onair-water gas transfer [J]. Geophysical monograph,2002,127:23-29.
    [262] Zappa Christopher J., Raymond Peter A., Terray Eugene A., et al. Variation in surfaceturbulence and the gas transfer velocity over a tidal cycle in a macro-tidal estuary [J]. Estuaries,2003,26(6):1401-1415.
    [263] Zappa Christopher J., McGillis Wade R., Raymond Peter A., et al. Environmentalturbulent mixing controls on air‐water gas exchange in marine and aquatic systems [J].Geophysical Research Letters,2007,34: L10601, doi:10.1029/2006GL028790.
    [264] Zemmelink H. J., Gieskes WWC, Klaassen W., et al. Simultaneous use of relaxed eddyaccumulation and gradient flux techniques for the measurement of sea-to-air exchange ofdimethyl sulphide [J]. Atmospheric Environment,2002,(36):5709-5717.
    [265] Zemmelink H. J., Gieskes W. W. C., Klaassen W., et al. Relaxed eddy accumulationmeasurements of the sea-to-air transfer of dimethylsulfide over the northeastern Pacific [J].Journal of Geophysical Research,2004,(109): C1025.
    [266] Zeng L. and Wang D. Intraseasonal variability of latent-heat flux in the South China Sea[J]. Theoretical and applied climatology,2009,97(1):53-64.
    [267] Zeng L., Shi P., Liu W. T., et al. Evaluation of a satellite-derived latent heat flux productin the South China Sea: A comparison with moored buoy data and various products [J].Atmospheric Research,2009,94(1):91-105.
    [268] Zhang X. Contribution to the global air-sea CO2exchange budget from asymmetricbubble-mediated gas transfer [J].2012,64,1726010.3402/tellusb.v64i0.17260.
    [269] Zhao Dongliang, Toba Yoshiaki, Suzuki Y., et al. Effect of wind waves on air-sea gasexchange: proposal of an overall CO2transfer velocity formula as a function of breaking-waveparameter [J]. Tellus Series B-Chemical and Physical Meteorology,2003,55(2):478-487.
    [270] Zhao Dongliang and Xie Lian. A Practical Bi-parameter Formula of Gas Transfer VelocityDepending on Wave States [J]. Journal of Oceanography,2010,66(5):663-671.
    [271] Zülicke Christoph. Air-sea fluxes including the effect of the molecular skin layer [J]. DeepSea Research Part II: Topical Studies in Oceanography,2005,52(9-10):1220-1245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700