用户名: 密码: 验证码:
飞轮储能技术及其在电力系统控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力系统的安全稳定一直受到广泛关注。快速发展的储能技术,为提高电力系统安全性与稳定性提供了一种有效办法。柔性功率调节器(Flexible Power Conditioner, FPC)是一种集成了飞轮储能技术和双馈电机技术两者优点的新型FACTS装置,具有电能存储、有功功率和无功功率解耦调控等多种功能。本文主要开展以FPC为代表的飞轮储能技术及其在电力系统控制中的应用研究。
     本文首先概述了利用储能技术提高电力系统稳定性的研究背景及该领域的研究现状。研究对比了几种主要储能技术的特性和目前的在提高电力系统稳定性方面的应用现状,分析表明:飞轮储能技术是一种更适用于提高系统稳定性领域的储能技术。阐述了柔性功率调节器(FPC)的原理、构成及研究现状。
     本文其余部分由以下几章组成:
     (1)第2章介绍了所研制的380V/4kW FPC样机的构成,对该样机进行了全面的运行特性实验研究,对实验数据进行了分析,结果表明,FPC样机可以直接变频启动,在亚同步状态和超同步状态下均可以进行有功功率和无功功率的双向独立调控,具有良好的动态运行特性,从而验证了FPC技术的可行性。
     (2)机电波理论(Electromechanical-wave Propagation)是一种分析和研究电力系统有功功率振荡的新思路,第3章将其应用于含FPC的电力系统分析与控制研究,分析了单机系统中机电波传播特性,提出了基于该理论的FPC控制方法,为所研制的380V/4kW FPC样机设计了控制器。动模实验结果表明,FPC能够有效地增强系统稳定性,验证了本章所提方法的可行性。
     (3)为了在储能功率有限的情况下能够更有效地阻尼系统低频振荡,第4章提出了一种基于飞轮储能技术的的交流互联电网稳定控制方法,即利用飞轮储能装置配置区域间振荡模式对应特征根、增大系统区域间振荡模式的阻尼。研究了飞轮储能装置控制参数的优化和安装地点的选取,分析了飞轮储能装置功率响应时间对所提方法控制效果的影响,提出了实用化的控制策略,并进行了仿真分析验证。结果表明,所提控制方法在储能功率有限的情况下,仍然具有令人满意的控制效果。
     (4)交流联网可能会带来互联电网的动态稳定性问题。通过对比分析交流和直流两种联网方式的差异,第5章提出了利用飞轮储能技术实现交流互联电网分区解耦控制的思路,即通过飞轮储能技术消除两个交流互联的区域电网之间相互影响,各区域电网只需按照本区域的电网特性进行稳定控制,通过理论分析证明了该思路的可行性,探讨了飞轮储能装置安装位置、功率限幅、响应时间对分区解耦控制效果的影响,提出了实用化的控制策略,对两个电力系统的仿真结果验证了控制策略的有效性。
     (5)飞轮储能技术已成为一种新型的调频手段,并投入商业运营。第6章介绍了美国纽约州20MW调频电站工程,并从废气排放和性价比两个方面,对比分析了飞轮储能调频技术相比于其他调频技术的优势,研究表明,飞轮储能调频技术可以大幅度减少废气排放,并具有较大的成本优势。
The security and stability of the power system have been concerned widely. The rapid development of energy storage technologies provides an effective means to improve the power system security and stability. The flexible power conditioner (FPC) is a novel FACTS device which integrating both the characteristics of flywheel energy storage and the doubly-fed induction generator. It can perform multi-functions including energy storage, dynamic active and reactive power conditioning. In this dissertation, the flywheel energy storage technology represented as FPC and its application in power system control are researched.
     At first, the overview of background and research status of using energy storage technology to improve the power system stability is given in the dissertation. The characteristics of several major energy storage technologies and its current applications on improveing power system stability are analyzed and compared. And the result illustrate that the flywheel energy storage technology is a more suitable energy storage technology for improving power system stability. The principle, constitution and research situation of the FPC are described as well.
     The rest of the dissertation is organized as follows:
     (1) In Chapter 2, a 380V/4kW FPC prototype has been developed and detailed laboratory test of the dynamic operation characteristics of the prototype is performed. The test results show that the prototype can perform frequency conversion start without supplementary starting equipment, and exchange the active power and reactive power with the grid independently and quickly at both the sub-synchronous and super-synchronous operation states. The feasibility of the FPC is validated. Satisfactory characteristics dynamic operations are obtained.
     (2) The electromechanical wave propagation, which is a new idea for analyzing and studying active power oscillations, is applied to the analysis and control of the power system with FPC in Chapter 3. The characteristic of the electromechanical wave propagation on the system with single generator is analyzed as well the control method of the FPC based on the electromechanical wave propagation is proposed. The corresponding controller of 380V/4kW FPC prototype is designed as the proposed method. The test results show that the FPC can effectively improve the system stability. The feasibility of the proposed control method based on electromechanical wave propagation is validated.
     (3) Chapter 4 proposes a novel control method for improving AC interconnected grids stability based on flywheel energy storage, by configuring the inter-area mode corresponding eigenvalue and damping the inter-area mode effectively even in the case of the capacity of the flywheel energy storage device is limited. The optimization of the control coefficients and the selection of the position are discussed. The influence of the response time on control effect is analyzed and the practical control strategy is proposed. The validation of the control method is verified by digital simulations. Satisfactory results in the case of limited the flywheel energy storage device output power are obtained.
     (4) The dynamic stability of the interconnection grids would be affected by AC interconnection. By comparisons between the AC and DC interconnection, Chapter 5 proposes a novel method by which the region decoupling control for AC interconnected girds could be achieved by using flywheel energy storage, that is, the stability control of the region gird could be implemented just according to its own characteristic, by that the flywheel energy storage device eliminates the mutual influence between the interconnected girds. The feasibility of the region decoupling control is proved by theoretical analysis. The influences of the flywheel energy storage device location, output power and response time on the proposed control are discussed. The practical control strategy is proposed. Its validity is verified by simulations in two power system.
     (5) Flywheel energy storage technology has become a new means for frequency regulation, and has been running live on the grids and earning revenue. Chapter 6 describes the 20 MW Frequency Regulation Plant in ISO-NY in USA. The emissions and cost comparison for the flywheel energy storage technology for frequency regulation and other frequency regulation technologies are analyzed. The highly favorable emissions and cost performances of the flywheel-based frequency regulation technology are obtained.
引文
[1]何诗丝.“十一五”期间我国电网建设发展概况[J].电器工业.2006,(5):11-16.
    [2]余贻鑫,李鹏.大区电网弱互联对互联系统阻尼和动态稳定性的影响[J].中国电机工程学报,2005,25(11):6-11.
    [3]刘振亚.智能电网技术[M].北京:中国电力出版社,2010.
    [4]马世英,印永华,唐晓骏,等.大区互联电网无功规划原则和方法[J].电力建设.2006,27(12):6-10.
    [5]杜至刚,牛林,赵建国.发展特高压交流输电,建设坚强的国家电网[J].电力自动化设备.2007,27(5):1-5.
    [6]朱方,赵红光,刘增煌,等.大区电网互联对电力系统动态稳定性的影响[J].中国电机工程学报,2007,27(1):1-7.
    [7]朱方,汤涌,张东霞.我国交流互联电网动态稳定性的研究及解决策略[J].电网技术.2004,28(15):1-5.
    [8]孙景强,陈志刚,曹华珍.南方电网2010年低频振荡问题[J].电网技术.2007,31(S2): 93-97.
    [9]胡飞雄,李建设,曾勇刚.南方交直流混合电网稳定若干问题及其控制措施[J].电网技术.2007,31(S2):103-106.
    [10]李杨楠,刘文颖,潘炜.西北750 kV电网动态稳定特性分析和控制策略[J].电网技术.2007,31(12):63-68.
    [11]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8.14”大停电的警示[J].电力系统自动化.2003,27(18):1-6.
    [12]鲁顺,高立群,王坷,等.莫斯科大停电分析及启示[J].继电器.2006,34(16):27-31.
    [13]高翔,庄侃沁,孙勇.西欧电网“11.4”大停电事故的启示[J].电网技术.2007,31(1):25-31.
    [14]李丹,韩福坤,肖晋宇,等.华北电网广域实时监测系统[J].电网技术.2004,28(23):52-56.
    [15]贺仁睦,韩志勇,周密,等.互联电力系统未知机理低频振荡分析[J].华北电力大学学报(自然科学版).2009,36(1):1-5.
    [16]董明齐,杨东俊,黄涌.2008年冰灾期间华中电网WAMS系统实测低频振荡事件分析[J].华中电力,21(5):22-25.
    [17]董明齐,刘文颖,袁娟,等.基于增加联络线的互联电网低频振荡抑制方法[J].电力系统自动化.2007,31(17):94-98.
    [18]王仲鸿.交流特高压在中国应用的经济和安全分析研究[J].电力自动化设备.2007,27(10):1-5.
    [19]Dechanupaprittha S, Hongesombut K, Watanabe M, et al. Stabilization of Tie-Line Power Flow by Robust SMES Controller for Interconnected Power System With Wind Farms[J]. IEEE Trans on Applied Superconductivity.2007,17(2):2365-2368.
    [20]Wang Li, Chen Shiang-Shong, Lee Wei-Jen, et al. Dynamic Stability Enhancement and Power Flow Control of a Hybrid Wind and Marine-Current Farm Using SMES[J]. IEEE Trans on Energy Conversion.2009,24(3):626-639.
    [21]Ali M H, Park M, Yu I K, et al. Improvement of Wind-Generator Stability by Fuzzy Logic Controlled SMES[J]. IEEE Trans on Aerospace and Electronic Systems.2009, 45(3):1045-1051.
    [22]王少荣,彭晓涛,唐跃进,等.电力系统稳定控制用高温超导磁储能装置及实验研究[J].中国电机工程学报.2007,27(22):44-50.
    [23]王康,兰洲,甘德强,等.基于超导储能装置的联络线功率控制[J].电力系统自动化.2008,32(8):5-9.
    [24]史林军,陈中,王海风,等.应用飞轮储能系统阻尼电力系统低频振荡[J].电力系统自动化.2010,34(8):29-33.
    [25]程时杰,文劲宇,孙海顺.储能技术及其在现代电力系统中的应用[J].电气应用.2005,(4):1-8.
    [26]张步涵,曾杰,毛承雄,等.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技术.2006,(15):54-58.
    [27]费万民,张艳莉,吕征宇.大容量静止无功发生器与电池储能的集成[J].电力系统自动化.2005,(10):41-44.
    [28]刘正耀.应用锂离子二次电池的风光电能互补系统[J].北京大学学报(自然科学版).2006,(S1):66.
    [29]Lee Dong-Jing, Wang Li. Small Signal Stability Analysis of an Autonomous Hybrid Renewable Energy Power Generation Energy Storage System Part Ⅰ Time Domain Simulations[J]. IEEE Trans on Energy Conversion.2008,23(1):311-320.
    [30]Mercier P, Cherkaoui R, Oudalov A. Optimizing a Battery Energy Storage System for Frequency Control Application in an Isolated Power System[J]. IEEE Trans on Power Systems.2009,24(3):1469-1476.
    [31]肖晓军,高剑南.几种发展中的化学电源简介[J].化学教学.1999,(7):28-29.
    [32]张磊,魏晓斌,张光.阀控式密封铅酸蓄电池的容量与温度关系分析[J].内燃机车.2007,(9):19-20.
    [33]张华民,周汉涛,赵平,等.储能技术的研究开发现状及展望[J].能源工程.2005,(3):1-7.
    [34]张华民.高效大规模化学储能技术研究开发现状及展望[J].电源技术.2007,(8):587-591.
    [35]温兆银.钠硫电池及其储能应用[J].上海节能.2007,(2):7-10.
    [36]王振文,刘文华.钠硫电池储能系统在电力系统中的应用[J].中国科技信息.2006,(13):41-46.
    [37]戴永年,杨斌,姚耀春,等.锂离子电池的发展状况[J].电池.2005,(3):193-195.
    [38]黄彦瑜.锂电池发展简史[J].物理.2007,(8):643-651.
    [39]安晓雨,谭玲生.空间飞行器用锂离子蓄电池储能电源的研究进展[J].电源技术.2006,(1):70-73.
    [40]杨裕生,蔡生民,林祖赓,等.简述发展大规模蓄电的液流蓄电池[J].科技导 报.2006,(8):63-66.
    [41]周汉涛,张华民,赵平,等.多硫化钠/溴氧化还原液流电池[J].可再生能源.2005,(3):62-64.
    [42]赵平,张华民,高虹,等.多硫化钠/溴液流电池研究进展[J].现代化工.2007,(5):18-21.
    [43]崔艳华,孟凡明.钒电池储能系统的发展现状及其应用前景[J].电源技术.2005,(11):776-780.
    [44]朱顺泉,孙娓荣,汪钱,等.大规模蓄电储能全钒液流电池研究进展[J].化工进展.2007,(2):207-211.
    [45]张华民,赵平,周汉涛,等.钒氧化还原液流储能电池[J].能源技术.2005,(1):23-26.
    [46]杨裕生,张立,文越华,等.液流电池蓄电技术的进展与前景[J].电源技术.2007,(3):175-178.
    [47]刘新苗.动态电压恢复器(DVR)直流储能系统的研究[D].武汉:华中科技大学.2009.
    [48]董全峰,张华民,金明钢,等.液流电池研究进展[J].电化学.2005,(3):237-243.
    [49]张远明,李伟善.多硫化钠/溴与全钒液流电池的发展现状[J].电池工业.2006,(6):414-416.
    [50]张琦,王金全.超级电容器及应用探讨[J].电气技术.2007,(8):67-70.
    [51]朱磊,吴伯荣,陈晖,等.超级电容器研究及其应用[J].稀有金属.2003,(3):385-390.
    [52]周强,王金全,杨波.超级电容器:性能优越的储能器件[J].电气技术.2006,(6):64-68.
    [53]尹婷,陈轩恕,刘飞,等.基于混合储能系统的动态电压恢复器[J].高电压技术.2009,35(1):181-185.
    [54]张国驹,唐西胜,齐智平.超级电容器与蓄电池混合储能系统在微网中的应用[J].电力系统自动化.2010,34(12):85-89.
    [55]朱武,操瑞发,应彭华,等.超级电容器系统在改善并网风电场输出中的应用[J].电网技术.2008,32(S2):256-259.
    [56]鲁鸿毅,何奔腾.超级电容器在微型电网中的应用[J].电力系统自动化.2009,33(2):87-91.
    [57]唐西胜,齐智平.超级电容器蓄电池混合电源[J].电源技术.2006,(11):933-936.
    [58]王云玲,曾杰,张步涵,等.基于超级电容器储能系统的动态电压调节器[J].电网技术.2007,(8):58-62.
    [59]鲁蓉,张建成.超级电容器储能系统在分布式发电系统中的应用[J].电力科学与工程,2006,(3):63-67.
    [60]尹忠东,彭军.超级电容储能的并联电能质量调节器[J].四川电力技术.2005,(1):12-17.
    [61]刘海波,毛承雄,陆继明,等.电子电力变压器储能系统及其最优控制[J].电工技术学报.2010,25(3):54-60.
    [62]杜晓纪,赵彩宏,肖立业.1MJ高温超导储能磁体的设计方案研究[J].低温物理学报.2005,(S1):1058-1062.
    [63]蒋晓华,褚旭,吴学智,等.20kJ/15kW可控超导储能实验装置[J].电力系统自动化.2004,(4):88-91.
    [64]谢江波,王惠龄,吴钢,等.35kJ高温超导磁储能(SMES)的热输运实验研究[J].低温工程.2006,(1):31-34.
    [65]余江,曾建平.SMES及其在电力系统中的应用[J].电力自动化设备.2000,(3):32-34.
    [66]韩种,李艳,余江,等.超导电力磁储能系统研究进展(一)—超导储能装置[J].电力系统自动化.2001,(12):63-68.
    [67]张辉,康勇,刘平,等.超导电力磁储能系统研究进展(二)—能量控制装置[J].电力系统自动化.2001,(14):67-71.
    [68]侯炳林,朱学武.高温超导储能应用研究的新进展[J].低温与超导.2005,(3),46-50.
    [69]吴起凡,吴美潮.超导储能与超导变电站[J].电工技术.2004,(2),76-78.
    [70]Ali M H, Murata T, Tamura J. A Fuzzy Logic Controlled Superconducting Magnetic Energy Storage for Transient Stability Augmentation[J]. IEEE Trans on Control Systems Technology.2007,5(1):144-150.
    [71]Ali M H, Murata T, Tamura J. Transient Stability Enhancement by Fuzzy Logic-Controlled SMES Considering Coordination With Optimal Reclosing of Circuit Breakers[J]. IEEE Trans on Power Systems.2008,23(2):631-640.
    [72]Ali M H, Wu Bin. Comparison of Stabilization Methods for Fixed Speed Wind Generator Systems[J]. IEEE Trans on Power Delivery.2010,25(1):323-331.
    [73]樊冬梅,雷金勇,甘德强.超导储能装置在提高电力系统暂态稳定性中的应用[J].电网技术.2008,32(18):82-86.
    [74]刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化.2008,32(16):83-88.
    [75]赵韩,杨志轶.飞轮储能装置设计初探[J].太阳能学报.2002,(4):493-497.
    [76]汤双清,杨家军,廖道训.飞轮储能系统研究综述[J].三峡大学学报(自然科学版).2002,(1):78-82.
    [77]Cardenas R, Pena R, Asher G, et al. Control strategies for power smoothing using a flywheel driven by a sensorless vector-controlled induction machine operating in a wide speed range [J]. IEEE Trans on Industrial Electronics.2004,51(3):603-614.
    [78]Cimuca G O, Saudemont C, Robyns B, et al. Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator[J]. IEEE Trans on Industrial Electronics.2006,53(4):1074-1085.
    [79]Kenny B H, Jansen R, Kascak P, et al. Integrated power and attitude control with two flywheels [J]. IEEE Trans on Aerospace and Electronic Systems,2005,41(4): 1431-1449.
    [80]程三海,韦忠朝,王雪帆.飞轮储能技术及其应用[J].电机电器技术.2000,(6):31-33.
    [81]卫海岗,戴兴建,张龙,等.飞轮储能技术研究新动态[J].太阳能学报.2002,(6):748-753.
    [82]李德海,卫海岗,戴兴建.飞轮储能技术原理、应用及其研究进展[J].机械工程.2002,(4):5-7.
    [83]魏凤春,张恒,蔡红,等.飞轮储能技术研究[J].洛阳大学学报.2005,(2):27-30.
    [84]赵旭升,沈国良.飞轮储能电池的结构特点及其应用[J].硫磷设计与粉体工程.2004,(6):44-46.
    [85]刘春和,张俊,潘龙飞.飞轮—新的储能方式[J].微特电机.2003,(5):38-40.
    [86]蒋书运,卫海岗,沈祖培.飞轮储能技术研究的发展现状[J].太阳能学报.2000,(4):427-433.
    [87]周宇,蒋书运,赵雷.磁悬浮储能飞轮系统研究进展[J].低温与超导.2003,(1):42-46.
    [88]赵韩,杨志轶,王忠臣.新型高效飞轮储能技术及其研究现状[J].中国机械工程.2002,(17):1521-1525.
    [89]陈习坤,汤双清,刘刚.飞轮储能电池在并网型风力发电系统中的应用[J].机械与电子.2005,(3):26-28.
    [90]汤双清,阎丽芬,廖道训,等.飞轮电池在分布式发电系统中的应用研究[J].水力发电.2004,(2):58-62.
    [91]张建成.用于配电网的飞轮储能系统设计[J].华北电力大学学报.2005,(S1):38-40.
    [92]Rojas A, Lazarewicz M L. Flywheel Energy Matrix Systems:Today's Technology Enables Efficient Combined Cycle Operation[C]. Proceedings of the 2003 International Joint Power Generation Conference.2003:1057-1062.
    [93]Lazarewicz M L, Rojas A. Grid Frequency Regulation by Recycling Electrical Energy in Flywheels[C]. IEEE Power Engineering Society 2004 General Meeting.2004, (2):2038-2042.
    [94]Lazarewicz M L, Arseneaux J A. Status of Pilot Projects Using Flywheels for Frequency Regulation[C]. IEEE Power Engineering Society 2006 General Meeting.2006:1-4.
    [95]Lazarewicz M L, Ryan T M. Integration of Flywheel-based Energy Storage for Frequency Regulation in Deregulated Markets [C]. IEEE Power Engineering Society 2010 General Meeting.2010:1-6.
    [96]Lu N,Weimar M R, Makarov Y V, et al. An Evaluation of the Flywheel Potential for Providing Regulation Service in California[C]. IEEE Power Engineering Society 2010 General Meeting.2010:1-6.
    [97]Fioravanti R, Enslin J. Emissions Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant[R]. KEMA-Inc. Project:BPCC.0003.001 Beacon Flywheel Project under Beacon Power Contract Number:12952 of October 13,2006.
    [98]Thijssen G,Enslin J. Cost Comparison for a 20 MW Flywheel-based Frequency Regulation Power Plant[R]. KEMA-Inc. Project:BPCC.0003.002 Beacon Flywheel Project under Beacon Power Contract Number:12952 of October 13,2006.
    [99]陈伟,石晶,任丽,等.微网中的多元复合储能技术[J].电力系统自动化.2010,34(1):112-115.
    [100]Makarov Y V, Nyeng P, Yang B, et al. Wide-Area Energy Storage and Management System to Balance Intermittent Resources in the Bonneville Power Administration and California ISO Control Areas[R]. Pacific Northwest National Laboratory:United States Department of Energy under Contract DE-AC05-76RL01830 Subcontract Bonneville Power Administration 00028087.2008.
    [101]李刚.飞轮储能型柔性功率调控装置原理及其控制技术的研究[D].武汉:华中科技大学.2007.
    [102]杨浩.多功能柔性功率调节器的数学模型和运行特性研究[D].武汉:华中科技大学.2006.
    [103]王学军.用于多功能柔性功率调节器(FPC)的三相电压源变换器(VSC)的研 究[D].武汉:华中科技大学.2006.
    [104]黄安.FPC稳态特性分析及其协同控制策略研究[D].武汉:华中科技大学.2007.
    [105]杨怀栋.基于双PWM变换器的柔性功率调节器矢量励磁控制技术的实现[D].武汉:华中科技大学.2007.
    [106]文劲宇,李刚,程时杰,等.一种增强电力系统稳定性的多功能柔性功率调节器[J].中国电机工程学报.2005,25(25):6-11.
    [107]杨浩,文劲宇,李刚,等.多功能柔性功率调节器运行特性的仿真研究[J].中国电机工程学报.2006,26(2):19-24.
    [108]赵阳,邹旭东,刘新民,等.多功能柔性功率调节器控制技术[J].中国电机工程学报.2008,28(9):116-121.
    [109]李刚,文劲宇,程时杰,等.多功能柔性功率调节器的启动与并网研究[J].电力系统自动化.2006,30(2):17-22.
    [110]辛颂旭,李刚,文劲宇,等.柔性功率调节器用变换器故障状态运行特性分析[J].中国电机工程学报,2007,27(25):67-72.
    [111]李刚,文劲宇,程时杰,等.利用柔性功率调节器提高电力系统稳定性[J].中国电机工程学报,2006,26(23):1-6.
    [112]李刚,程时杰,文劲宇,等.基于储能型稳控装置的电力系统阻尼特性分析[J].电力系统自动化.2007,31(17):11-15.
    [113]黄安,李刚,程时杰,等.多功能柔性功率调节器的稳态工作特性研究[J].电网技术.2006,30(22):13-18.
    [114]刘勇,李刚,文劲宇,等.柔性功率调节器用PWM整流器的设计[J].电气应用.2007,26(5):56-59.
    [115]李刚,刘晓瑞,文劲宇,等.多功能柔性功率调节器的矢量励磁控制[J].电力自动化设备.2007,27(3):5-9.
    [116]邹旭东,刘新民,段善旭,等.储能调相功率调制系统柔性功率调节器[J].电工技术学报.2009,24(6):146-153.
    [117]Li Gang, Cheng Shijie, Wen Jinyu, et al. Power System Stability Enhancement by a Double-fed Induction Machine with a Flywheel Energy Storage System[J]. Istanbul University-Journal of Electrical and Electronics Engineering.2006,6(1):69-76.
    [118]Li Gang, Cheng Shijie, Wen Jinyu, et al. Power System Stability Enhancement by a Double-fed Induction Machine with a Flywheel Energy Storage System [C]. IEEE Power Engineering Society 2006 General Meeting.2006:1-7.
    [119]Li Gang, Cheng Shijie, Wen Jinyu, et al. State Space Formulation and Stability Analysis of a Doubly-fed Induction Machine with a Flywheel Energy Storage System[C]. International Conference on Power System Technology 2006.2006:1-6.
    [120]Zhao Yang, Zou Xudong, Huang Daocheng, et al. Research on Excitation Control of Flexible Power Conditioner Doubly Fed Induction Machine[C]. IEEE Power Electronics Specialists Conference 2007.2007:92-97.
    [121]Huang Daocheng, Zhao Yang, Zou Xudong, et al. Direct-start of the Flexible Power Conditioner with Back-to-back Converters [C]. IEEE Power Electronics Specialists Conference 2007.2007:2745-2750.
    [122]Oudalov A, Chartouni D, Ohler C. Optimizing a Battery Energy Storage System for Primary Frequency Control[J]. IEEE Trans on Power Systems,2007,22(3): 1259-1266.
    [123]Thorp J S, Seyler C E, Phadke A G. Electromechanical wave propagation in large electric power systems[J]. IEEE Trans on Circuits and Systems I:Fundamental Theory and Applications.1998,45(6):614-622.
    [124]Lesieutre B C, Scholtz E, Verghese G C. Impedance matching controllers to extinguish electromechanical waves in power networks [C]. IEEE Conference on Control Applications-Proceedings.2002, (1):25-30.
    [125]Parashar M, Thorp J S, Seyler C E. Continuum modeling of electromechanical dynamics in large electric power systems [J]. IEEE Transactions on Circuits and Systems I:Regular Papers.2004,51(9):1848-1858.
    [126]王德林.电力系统连续体机电波模型与机电扰动传播研究[D].成都:西南交通 大学.2007.
    [127]王德林,王晓茹,Thorp J S.电力系统的连续体系机电波模型[J].中国电机工程学报.2006,26(22):30-37.
    [128]王德林,王晓茹.电力系统连续体机电波的传播特性研究[J].中国电机工程学报.2007,27(16):43-48.
    [129]王德林,王晓茹.电力系统中机电扰动的传播特性分析[J].中国电机工程学报.2007,27(19):18-24.
    [130]Tsai S J, Zhang Li, Phadke A G, et al. Frequency Sensitivity and Electromechanical Propagation Simulation Study in Large Power Systems[J]. IEEE Trans on Circuits and Systems I:Regular Papers.2007,54(8):1819-1828.
    [131]Thomas A J, Mahajan S M. Electromechanical Wave Analysis Through Transient Magnetic Modeling[J]. IEEE Transactions on Power Delivery.2009,24(4): 2336-2343.
    [132]王德林,郭成.基于连续体模型的电力系统机电扰动传播研究[J].电力自动化设备.2010,30(8):23-27.
    [133]王晓茹,Liu Yilu.大规模电力系统频率动态分析[J].南方电网技术.2010,40(1):11-17.
    [134]汤涌,孙华东,易俊,等.两大区互联系统交流联络线功率波动机制与峰值计算[J].中国电机工程学报,2007,30(19):1-6.
    [135]关天祺,梅生伟,卢强,等.超导储能装置的非线性鲁棒控制器设计[J].电力系统自动化,2001,9:1-6.
    [136]Kundur P. Power System Stability and Control[M]. New York:Mc Graw-Hill,1994.
    [137]Singh B, Kasal G K. Voltage and Frequency Controller for a Three-Phase Four-Wire Autonomous Wind Energy Conversion System[J]. IEEE Trans on Energy Conversion,2008,23(2):509-518.
    [138]Torrico-Bascope R P, Oliveira J, Demercil S, et al. A UPS With 110-V/220-V Input Voltage and High-Frequency Transformer Isolation[J]. IEEE Trans on Industrial Electronics,2008,55, (8):2984-2996.
    [139]Strunz K, Louie H. Cache Energy Control for Storage:Power System Integration and Education Based on Analogies Derived From Computer Engineering[J]. IEEE Trans on Power Systems,2009,24(1):12-19.
    [140]Rahman M H, Yamashiro S. Novel Distributed Power Generating System of PV-ECaSS Using Solar Energy Estimation[J]. IEEE Trans on Energy Conversion, 2007,22(2):358-67.
    [141]Santoso S. On Determining the Relative Location of Switched Capacitor Banks[J]. IEEE Trans on Power Delivery,2007,22(2):1108-116.
    [142]Santoso S, Hansen D. Practical Solutions for Broadband and Time-Varying Interharmonic Problems[J]. IEEE Trans on Power Delivery,2007,22(2):1228-1234.
    [143]Cardenas R, Pena R, Asher G. Power smoothing using a flywheel driven by a switched reluctance machine[J]. IEEE Trans on Industrial Electronics,2006,53(4): 1086-1093.
    [144]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [145]刘取.电力系统稳定性及发电机励磁控制[M].北京:中国电力出版社,2007.
    [146]武诚,徐政,常勇.高压侧电压控制对电力系统小扰动稳定性的影响[J].电工技术学报,2009,24(1):146-152.
    [147]陈中,杜文娟,王海风,高山.基于阻尼转矩分析法的储能系统抑制系统低频振荡[J].电力系统自动化,2009,12(33):8-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700