用户名: 密码: 验证码:
黄瓜离体子叶节花分化的生理和分子基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
关于成花机理的研究一直是植物发育生物学中的热点问题,也是生物学中的一个基本理论问题。成花过程包括花的诱导、花原基与花器官原基的形成以及花器官的发育等阶段,本文研究的重点是花原基与花器官原基的分化形成。本实验以黄瓜为材料,开展了黄瓜子叶离体培养物直接成花实验系统的建立和优化、成花的形态变化时程、成花的生理生化变化、运用RNA原位杂交技术分析CFL基因在花芽分化中的时空表达以及开花基因工程等方面的研究。主要研究结果如下:
     1.试验了在不同pH值培养基上连续培养和预培养对离体黄瓜子叶直接形成花芽的影响。连续培养时,以pH6.5时花芽形成百分率最高,为55.0%;pH预培养时,以pH7.0预培养2d的效果最好,花芽分化率可达71.4%,并使花芽形成高峰期提前20d左右。
     通过切去1/2子叶和不同长度下胚轴、调节培养基中激素配比及浓度、采用子叶节培养等进一步的试验发现,三碘苯甲酸(TIBA)和多效唑(PP333)极显著地协同促进完全切除下胚轴的黄瓜离体子叶节直接成花,TIBA与PP333相配合的最适浓度为1.0~1.5mg/L,直接成花率高达90%。这一实验系统操作简单、周期短、成花率高、重复性好,为后续研究奠定了基础。
     2.对黄瓜0~7d幼苗及去顶后在诱花和诱芽培养基上培养0~8d的子叶节进行了系统的石蜡切片观察,未发现0~7d幼苗的子叶叶腋存在明显的潜伏芽。去顶后1~2d在子叶叶柄基部与切口之间的表皮下细胞分裂形成突起,去顶后6d诱花与诱芽的突起表现出形态差异,诱花子叶节突起的上端变钝,而诱芽子叶节突起的上端成尖锥状。去顶后8d诱花子叶节分化形成完整的花芽。扫描电镜观察证实,去顶后3d可见原基突起,4d原基出现二次突起,6d时即可区分出花芽和营养芽之间的形态差异。通过上述观察,明确了黄瓜子叶节花芽分化的形态时程。
     3.通过在有Ca~(2+)和无Ca~(2+)培养基上进行转换试验,发现黄瓜子叶节离体培
    
    浙江大学博士学位论文
    中文摘要
    养物花分化过程中存在C扩+敏感期。子叶节在无C扩+培养基中分别培养。、1、2、
    3、4、5、6d后,转入含6llun。比CaC12的培养基中培养24h,再转回到无c扩干
    培养基继续培养。结果表明在无caz+培养基中培养冬3d后,进行24 h Caz+脉冲
    处理显著增加子叶节的花芽分化率,其中以无C扩+培养4d后C扩+脉冲处理的效
    果最为明显,花芽分化率达34.3%。认为黄瓜子叶节离体培养O碑d是花分化的
    c扩+作用敏感期。
     用高效液相色谱法(HPLC)测定了黄瓜子叶节花芽分化期(0一6d)内源激
    素及多胺的变化。结果显示,子叶培养O一Zd生长素(IAA)、赤霉素(GA3)、
    玉米素(ZT)、脱落酸(ABA)等4种内源激素均明显下降,4一sd略有上升,
    表明O~2 d IAA、G与和ABA的剧降有利于花原基形成,3一sd较高的ZT含量
    有利于花器官原基的形成。除腐胺(Put)外,精胺(Spm)、亚精胺(spd)、尸
    胺(Cad)在O一ld均下降,1碎d上升,4一sd再下降,Put在0-ld急剧上升,
    而后持续下降,表明高水平的内源多胺总量和Put可能有利于花原基分化,Zd
    后Spm含量上升有利于花器官原基分化,而Cad含量变化可能是区别花芽和营
    养芽分化的特征之一。
     4.首次利用RNA原位杂交技术,研究了LFY同源基因—C万艺基因在黄
    瓜花芽分化和营养芽分化及形成中的表达模式。结果显示:去顶培养3d后,CF艺
    基因首先表达于原基顶端;4d后表达增强,表达范围扩展到原基中心区域:sd
    一6d,CF’L基因强表达于整个花原基、花器官原基或叶原基;7d后,CF’L基因
    仅表达于花瓣和雄蕊,或叶腋原基和最幼嫩叶原基,表达强度也减弱:在成熟组
    织中没有检测到CF艺基因的表达。结果说明CF艺基因在黄瓜营养性分生组织、
    叶原基、花分生组织和花器官原基形成之初发挥重要作用,在花原基和花器官原
    基形成时表达最强;仅靠CF艺基因的杂交信号不能确认原位组织具有花属性,
    但是,花分生组织属性的获得、花器官原基的启动确实需要有CFL基因的表达。
     5.通过基因工程方法将C万Z基因异源导入大岩桐,期望得到提早开花的转
    基因新品种,为控制重要的粮食作物和名贵花卉的开花时间提供实验依据,国内
    外还不多见。利用pBC KS十质粒载体上的Smal和Sacl酶切位点,将CFz
    基因成功克隆到表达载体pBI 1 21(含CaMv35S启动子)上,命名为pBI一cfl。
    通过根癌农杆菌 EHA105介导,叶盘法转化大岩桐,经过抗性压力筛选、诱
    
    浙江大学博士学位论文 中文摘要
    导分化后,共获得45株再生植株。经过PCR检测、DNA点杂交和PCR一
    Southern杂交表明,目的基因已经整合到大岩桐基因组中。目前,对转CFL
    基因再生植株的Northern杂交、开花性状表现、生理生化分析和后代遗传行
    为的观察和研究正在进行之中。
The mechanism of flowering, an unresolved problem of life sciences, has become one of the hottest fields of plant developmental biology since 1990's. Floral development in higher plants normally requires several steps: floral induction, formation of floral meristems, initiation of floral organ primordia and floral organ development. Cucumber (Cucumis sativus L.) is an important horticultural crop and good experimental material for floral development research, because it is an autonomous-flowering plant, and floral bud in the axil of the first leaf can normally be observed. Used this material for their study, Pang et al (1993) established a system for study on the mechanism of the transition from vegetative shoot apical meristem to floral meristem, initiation of floral primordia and floral organ primordia and sex determination. In this paper, the effort of improving this experimental system, morphological changes of floral bud formation, physiological and biochemical analysis at early stage of floral bud diff
    erentiation, expression pattern of CFL gene and flowering genetic engineering were investigated, respectively. The main results are as follows:
    1. The effect of culture and preculture with different medium pH on floral bud formation on cucmber cotyledons was studied. When cotyledons were cultured continuously on inducing medium with pH 6.5, the percentage of floral formation was 55.0; When cotyledons were precultured on medium with pH 7.0 for two days, floral formation was 71.4 %, and the peak of floral bud formation was 20 days ahead of contiuate culture.
    Synergistic promotion of 2,3,5 - triiodobenzoic acid (TIBA) and paclobutrazol (PP333) to direct floral bud formation was found when cotyledonary nodes cultured in vitro were cut off half blade and full length of hypocotyle. In inducing medium supplemented with 1.0 ~ 1.5 mg / L TIBA and PP333, the highest frequency of floral bud formation was 90 %. Through these efforts, this experimental system has been improved and wide used for further study on floral development in cucumber, because of its simply operating, short period and well repeat.
    
    
    2. The morphological changes in the cotyledonary nodes of cucumber seedlings cultured on inducing floral bud medium (IFBM) and on inducing vegetative bud medium (IVBM) respectively, were studied during 0 to 7 days before decapitation and during 0 to 8 days after decapitation with light microscope. No latent bud was observed at the cotyledonary axils of 7-day-old seedlings. On the first day after decapitation, epidermal and / or subepidermal cells between cut region and base of cotyledonary petiole started to divide. On the second day after decapitation, these dividing cells resulted in globular protuberances. To the sixth day after decapitation, there appear an apparent differentiation between protuberances in seedlings in IFBM and in IVBM, and the former top become blunt and the latter top become tip. In addition, the rare floral bud formation in cut region were observed on the sixth day after decapitation. On the eighth day after decapitation, floral buds with sepal, petal and stamen primordia were formed on the flanks of cut in IFBM. The morphological changes in cotyledonary nodes were studied during 0 to the sixth day after decapitation with scanning electron microscope as well. The results showed that primordia were formed on the same place on the third day, and there appeared a whorl of secondary prominences on the surface of primordia on the fourth day. After further development for two days, the morphological differences between floral and vegetative buds were observed clearly.
    3. A calcium sensitive period during differentiation of cucumber cotyledonary node was found by exchanging calcium-free medium from medium supplemented with 6.0 mmol /L CaCh. Cotyledonary nodes of cucumber, which cultured on calcium-free medium for 0, 1, 2, 3,4, 5, 6 d respectively, were transferred to medium with 6.0 mmol / L CaCla for 24 h, then returned to calcium-free medium. Cotyledonary nodes cultured on calcium-fr
引文
上野博.作用特性植物矮化剂実用性.植物化学调節,1989,24(2):127-141
    马志超,藏荣春,储可铭.高效液相色谱法测定番茄愈伤组织中的多胺.分析化学,1991,19(11):1317-1319
    王立林.离体条件下花芽分化研究的概况.植物学通报,1989,6(2):72-76
    王利琳,梁海曼.激动素在黄瓜子叶器官分化中的作用.云南植物研究,2000,22 (2):175-180
    史继孔,张万萍,樊卫国,等.银杏雌花芽分化过程中内源激素含量的变化.园艺学报,1999,26(3):194-195
    刘复权,朱广廉,罗达,吴相钰,许智宏.黄瓜中LFY同源基因CFL的克隆和分析.植物学报,1999,41(8):813-819
    李凤玉,梁海曼.PP333脉冲处理黄瓜去顶苗对成花和POD同工酶及可溶性蛋白谱的影响.浙江大学学报(农业与生命科学版),2001,27(5):385-389
    李德葆,周雪平,许建平,何祖华编著.基因工程操作技术.上海:上海科学技术出版社,1996
    李颖章,韩碧文.菊苣薄层培养花芽、营养芽分化中内源激素的变化动态.植物学报,1996,38(2):131-135
    阮勇凌,张上隆,储可铭,等.温州蜜柑花芽分化期枝内CTK类型和脱落酸含量及其变化.中国农业科学,1991,24(1):55-59
    陈力耕,刘淑芳,胡西琴.葡萄高效再生体系的建立及转化LEAFY基因的研究.浙江大学学报(农业与生命科学版),2001,27(5):523-526
    陈大明,金永丰,张上隆.柑桔LEAFY同源基因片段分离及特性研究.园艺学报.2001,28:295-300
    陈青,薛朝阳,吴俊杰,等.烟草花叶病毒移动蛋白基因转化烟草及在转基因烟草中的表达.浙江大学学报(农业与生命科学),2001,27:119-123
    邵寒霜,李继红,郑学勤,等.拟南芥LFYcDNA的克隆及转化菊花的研究.植物
    
    学报,1999,41(3):268-271
    邵寒霜,李继红,王胜培.Lfy cDNA高效单子叶植物表达载体的构建及转化兰花研究初探.热带作物学报,2000,21(3):58-62
    庞基良,孙坚红,梁海曼.切割子叶和根对黄瓜幼苗去顶后直接形成花芽的影响.植物生理学通讯,1993,29(5):340-343
    庞基良,孙坚红,梁海曼.低营养条件下Paclobutrazol(PP333)对黄瓜去顶苗直接形成花芽的影响.实验生物学报,1994,27(3):359-365
    庞基良,张和珠,梁海曼.黄瓜去顶苗花决定临界期的研究.植物生理学报,1999,25(1):93-97
    庞基良,王利琳,张和珠,杨霞等.三碘苯甲酸和多效唑对黄瓜去顶苗直接成花的协同促进效应和作用部位.植物生理学通讯,2001,37(1):33-35
    庞基良,王利琳,胡江琴,等.重瓣紫蓝大岩桐组培苗的花同源异型现象.实验生物学报,2003,36(1):76-81
    金冬雁,黎孟枫等译.Sambrook J, Fritseh E F, Maniatis T 编著.分子克隆实验指南(第二版).北京:科学出版社,1992
    周菊华,马月珍,罗紫娟等.离体黄瓜子叶直接开花的研究.科学通报,1992,37(20):1905-1908
    姜维梅,杜勤,梁海曼,等.黄瓜子叶培养物花芽形成过程的观察.云南植物研究,1998,20(1):76-80
    郭卫东,沈向,李嘉瑞,等.利用Lfy cDNA转化猕猴桃的研究.园艺学报,1999,41(2):116-117
    赵大中,陈民,种康,等.运用差异显示克隆春化相关基因.科学通报,1998,43(9):965-969
    钟华鑫,杜勤,周利民,梁海曼.黄瓜子叶有丝分裂与离体培养反应关系的研究.科学通报,1993,38(16):1506-1509
    贾慧君,郑槐明,黄士崑.盆栽紫薇花芽分化中内源激素的变化(简报).植物生理学通讯,1993,29:39-41
    顾红雅,陈章良译.植物分子生物学实验手册.北京:高等教育出版社,1998
    夏小娣,陆文樑.外源激素对诱导风信子同一花被外植体不同部位细胞分化花芽
    
    的影响.植物生理学报,1995,21(1):8-14
    梁海曼.植物组织培养中与pH值变化有关的一些问题.植物生理学通讯,1987,(3):1—6
    彭抒昂,罗光,章文才.钙和钙调素在梨花芽分化中的动态研究.武汉植物学研究,1999,17:178-180
    雍伟东,种康,许智宏等.高等植物开花时间决定的基因调控研究.科学通报,2000,45(5):455-466
    滕胜,梁海曼,钟华鑫,王利琳.Ca~(2~)对黄瓜子叶离体培养物花芽分化的影响.植物生理学报,2000,26:413-416
    Abels S, Theologis A. Early genes and auxin action. Plant Physiol, 1996,111:9-17
    Abearn KD, Johnson HA, Weigel D, Ry Wagner D. NFL1, a Nicotiana tabacum LEAFY like gene, control meristem initiation and floral structure. Plant Cell Physiol, 2001,42: 1130-1139
    Ali AHN, Jarvis BC. Effects of 2,3,5-triiodobenzoic acid on the regeneration of callus and adventitious roots on stem cutting of mung bean, Phaseolus aureus Roxb. Biochem Physiol Pflanzen, 1988,183:509-513
    Altamura MM, Tomassi M. Auxin, photoperiod and puterscine affect flower neoformation in normal and rolB-transformed tobacco thin cell layers. Plant Physiol Biochem, 1998, 36(6):441-448
    Alvarez J, Smyth DR, 1998: Genetic pathways controlling carpel development in Arabidopsis thaliana. J Plant Res, 111: 295-298
    Andersen SE, Bastola DR, Minocha SC. Metabolism of polyamines in transgenic cells of carrot expressing a mouse ornithine decarboxylase cDNA. Plant Physiol, 1998, 116:299-307
    Angenent GC, Fanken J, Busscber M, Van Dijiken A, Van Went JL, Does HJM, Van Tunen AJ. A novel class of MADS box genes is involved in ovule development in petunia. Plant Cell, 1995,7:1569-1582
    Apelbaum AK, Canellakls ZN, Applewhite PB, et al. Binding of spermidine to a unique protein in thin-layer tobacco tissue culture. Plant Physiol, 1988, 88: 996-998
    
    
    Aribaud M, Martin-Tanguy J. Polyamine metabolism, floral initiation and floral development in chrysanthemum (Chrysanthemum merifolium Ramat.). Plant Growth Regul, 1994,15: 23-31
    Aukerman MJ, Lee L, Weigel D, Amasino RM. The Arabidopsis flowering-time gene LUMINIDEPENDENCE is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J, 1999,18: 195-203
    Ausubel FM. Arabidopsis genome, A milestone in plant biology. Plant Physiol, 2000,24:1451-1454
    Avasarala S, Yang J, Caruso JL. Production of phenocopies of the lanceolata mutant in tomato using polar auxin transport inhibitors. JExp Bot, 1996,47: 709-712
    Bernier G. The control of floral evocation and morphogenesis. Annu Rev Plant Physiol Plant Mol Biol, 1988,39:175-219
    Blazkova A, Machackova I, Krekule J. The role of cytokinins in the hormonal control of photoperiodic flower induction of Chenopodium rubrum L. In vitro. Physiol Plant, 1992, 85 (3 pt 2) : A25,137
    Bldzquez MA, Green R, Nilsson O, Sussman MR, Weigel D. Gibberellins promote flowering of Arabidopsis gy activating the LEAFY promoter. Plant Cell, 1998,10: 791-800
    Blazquez MA, Soowal LN, Lee L, Weigel D. LEAFY expression and flower initiation in Arabidopsis. Development, 1997,124: 3835-3844
    Blazquez MA, Weigel D. Independent regulation of flowering by phytochrome B and gibberellws in Arabidopsis. Plant Physiol, 1999,120: 1025-1032
    Bowman JL, Sung DR, Meyerowitz EM. Genetic interactions among floral homeotic gems of Arabidopsis. Development, 1991,112: 1-20
    Bowman JL. Making cauliflower out of Arabidopsis the specification of floral meristem identity. Flower News left, 1992,14: 7-9
    Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E. Inflorescence commitment and architecture in Arabidopsis. Science, 1997,275: 80-83
    Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ. DNA methylation,
    
    vernalization and the initiation of flowering. Proc Natl Acad Sci USA, 1993, 90: 287-291
    Busch MA, Bombliss K, Weigel D. Activation of a floral homeotic gene in Arabidopsis. Science, 1999,285: 585-587
    Caffaro SV, Mateos JL, Vicente C. Changes in the activity of an enzymatic marker bound to plasmalemma during the photoperiodic flowering induction in soybean. Phyto Harm, 1996,36: 9-28
    Caffaro SV, Vicente C. Polyamine implication during soybean flowering induction and early reproductive transition of vegetative buds. Plant Physiol Biochem, 1994,32: 391-397
    Castle LA, Sung ZR. The EMBRYONIC FLOWER genes of Arabidopsis control shoot maturation. Flowering Newslett, 1995,19: 12-19
    Chandler J, Dean C. Factors influencing the vernalization response and flowering time of late flowering mutants of Arabidopsis thaliana (L.) Heynh. J Exp Bot, 1994,45: 1279-1288
    Chandler J, Wilson A, Dean C. Arabidopsis mutants showing an altered response to vernalization. Plant J, 1996,10(4) : 637-644
    Chary KS, Forook SA. Factors effecting in vitro flowering in Brassica juncea L. Czern and Coss. In Vitro, Cell Dev Biol, 1995,31A (3 pt 2) : 82A, P1133
    Chandler J, Smykal P, Melzer S. FPF1 and flowering time control via GA signaling. Flowering Newslett, 2001,issue 31
    Chasan R. Arabidopsis in Madison: Genes and phenotypes spread like weeds. Plant Cell, 1995,7: 1737-1748
    Chen WS. Changes in cytokinins before and during early flower bud differentiation in lychee (Litchi chinensis Sonn.). Plant Physiol, 1991,96:1203-1206
    Chen L-J, Cheng J-G, Castle L, Sung ZR. EMF genes regulate Arabidopsis inflorescence development. Plant Cell, 1997,9: 2011-2024
    Chou ML, Yang C-H. FLD interacts with genes that affect different developmental phase transitions to regulate Arabidopsis shoot development. Plant J, 1998,15: 231-242
    
    
    Chou M-L, Yang C-H. Late-flowering genes interact with early-flowering genes to regulate flowering time in Arabidopsis thaliana. Plant Cell Physiol, 1999,40: 702-708
    Chou M-L, Huang M-D, Yang C-H. EMF genes interact with late-flowering genes in Regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol, 2001,42:499-507
    Coen ES, Romero JM, Doyle S, Elliot R, Murphy G, Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell, 1990,63:1311-1322
    Coen ES, Meyerowitz EM. The war of the whorls: genetic interactions controlling flower development. Nature, 1991,353:31-37
    Coen ES, Carpenter R. The metamorphosis. Plant Cell, 1993,5: 1175-1181
    Cousson A, Tran Thanh Van K. In vitro control of de novo flower differentiation from tobacco thin cell layer cultured on a liquid medium. Physiol Plant, 1981,51(1) :77
    Cousson A. Manipulation of morphogenesis by medium pH time course. Physiol Plant, 1990,79(2(pt2) ): A2,12
    Crane KE , Ross CW. Effects of wounding on cytokinesis activity in cucumber cotyledons. Plant Physiol,1986,82(4) :1151-1152 .
    Daoudi EH, Doumas P, Bonnet-Maniubert M. Changes in amino acids and polyamines in shoots and buds of Douglas-fir trees induced to flower by nitrogen and gibberellin treatments. Canad J Forest Res, 1994,24:1854-1863
    Daoudi EH, Bonnet-Masinbert M. Conjugateeeeeed polyamines and flowering differentiation in Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco). Can J Bot, 1998,76: 782-790
    Demeulemeester MAC, DE Proft MP. in vivo and in vitro flowering response of chicory (Cichorium intybus L,) : influence of plant age and vernalization. Plant Cell Rept, 1999,18: 781-785
    Dewitte W, Chiappetta A, Azmi A, Witters E, Stmad M, Rembur J, Noin M, Chriqui D, Van Onckelen H. Dynamics of cytokinins in apical shoot meristems of a
    
    day-neutral tobacco during floral transition and flower formation. Plant Physiol, 1999,119:111-121
    Ding S-F, Chen W-S, Su C-L, Du BS, Twitchin B, Bhaskar VK. Changes in free and conjugated indole-3-acetic acid during early stage of flower bud differentiation in Polianthes tuberosa. Plant Physiol Biochem, 1999,37: 161-165
    Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize. Nature, 1997,386:485-488
    Donnison IS, Francis D. Experimental control of floral reversion in isolated shoot apices of the long-day plant Silene coeli-rosa. Physiol Plant, 1994,93: 329-335
    Eckardt NA. MADS monsters controlling floral organ identity. Plant Cell, 2003, 15: 803-805
    El-Sallami IH. Effect of bulb-soaking and folia application of some growth regulators on growth, flowering, bulb formation and chemical contents in narcissus plant. Assint J Agricul Sci, 1977, 8: 37-57
    Evans LT, King RW, Mander LN, Pharis RP, Duncan KA. The differential-effects of C-16,17-dihydrogibberellins and related-compounds on stem elongation and flowering in Lolium temulentum. Planta, 1994,193: 107-114
    Finlayson SA, Lee I-J, Morgan. Phytochrome B and the regulation of circadian ethylene production in sorghum. Plant Physiol, 1998,116:17-25
    Finlayson SA, Lee I-J, Mullet JE, Morgan PW. The mechanism of rhythmic ethylene production in sorghum: The role of phytochrome B and simulated shading. Plant Physiol, 1999,119: 1083-1089
    Finnegan EJ, Peacock WJ, Dennis ES. Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Sci USA, 1996, 93: 8449-8454
    Flanegan EJ, Ganger RK, Kovac K, Peacock WJ, Dennis. DNA methylation and the promotion of flowering by vernalization. Proc Natl Acad Sci USA, 1998,95: 5824-5829
    Foster KR, Morgan PW. Genetic regulation of development in Sorghum bicolor. IX. The ma3R allele disrupts diurnal control of gibberellin biosynthesis. Plant Physiol,
    
    1995,108:337-343
    Fouche JG, Jouve L, Hausman JP, et al. Are temperature-induced early changes in auxin and polyamine levels related to flowering in Phalaenopsis ? J Plant Physiol, 1997,150: 232-234
    Friedman H, Springelestein H, Goldschmidt EE. Flowering response of Pharbitis nil to agents affecting cytoplasmic pH. Plant Physiol, 1990,94(1) : 114
    Friedman H, Goldschmidt EE, Spiegelstein H, Halvey AH. A rhythmin the flowering response of photoperiodically-induced Pharbitis nil to agents affecting cytosolic calcium and pH. Physiol Plant, 1992,85:57-60
    Friedman H, Goldschmidt EE, Halevy AH. Involvement of calcium in the photoperiodic flower induction process in Pharbitis nil. Plant Physiol, 1989,89:530-534
    Geier V, Werner O, Popp M. Indole-3-acetic acid uptake in isolated protoplasts of the moss Furnaria hydrometrica. Physiol Plant, 1990,80:584-592
    Gocal GFW, King RW. Changes in gene expression following long-day floral induction in Lolium termulentum. Plant Physiol, 1996,111(2 supp): 150,681
    Guo H, Yang H, Mockder TC. Regulation of flowering time by Arabidopsis photoreceptors. Science, 1998,279:1360-1363
    Halevy AH, Spiegelstein H, Goldschmidt EE. Auxin inhibition of flower induction of Pharbitis is not mediated by ethylene. Plant Physiol, 1991,95: 652-654
    Hantke SS, Carpenter R, Cone ES. Expression of floricaula in single cell layers of periclinal chimeras activates down stream homeotic genes in all layers of floral meristems. Development, 1995,121:27-35
    Havelange A, Lejeune P, Bernier G, Kaur-Sawhney R, Glaston AW. Putrescine export from leaves in relation to floral transition in Sinapis alba. Physiol Plant, 1996,96: 59-65
    Havelange A. Levels and ultrastructural localization of calcium in Sinapis alba during the floral transition. Plant Cell Physiol, 1989,30:351-358
    Havelange A, Bernier G. Cation fluxes in the saps of Sinapis alba during the floral transition. Physiol Plant, 1993,87(3) : 353-358
    
    
    Hazebrock JP, Metzger JD, Menxager ER. Thermoinductive regulation of gibberellin metabolism in Thlaspi arvense L. Ⅱ. Cold induction of enzymes in gibberellin synthesis. Plant Physiol, 1993,102: 547-552
    Hempel FD. Inductive light treatments, the initiation of flower primordia and the expression of floral meristem identity genes in Arabidopsis. J Exp Bot, 1996,47 (supp): 7, CP2,4
    Hempel FD, Weigel D, Mandel MA. Floral determination and expression of floral regulatory genes in Arabidopsis. Development, 1997,124: 3845-3853
    Hepler PK, Wayne RO. Calcium and plant development. Annu Rev Plant Physiol, 1985,36: 397-439
    Hofer J, Tunner T, Hellens R et al. UNIFOLIATA regulates leaf and morphogenesis in Pea. Current Bio, 1997,7:581-587
    Huala E, Sussex IM. LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell, 1992,4: 901-913
    Huang H, Ma H. FON1, an Arabidopsis gene that terminates floral meristem activity and controls flower organ number. Plant Cell, 1997,9: 115-134
    Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn GW, Coen ES. Parallels between UNUSUAL FLORAL ORGANS and FIMFRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell, 1995,7: 1501-1510
    Jack T, Brockman LL, Meyerowitz EM. The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell, 1992,68: 683-697
    Jackson D. in situ hybridization in plants. In Molecular Plant Pathology: A Practical Approach. Eds. Bowles D J, Gurr S J and Mcpherson M. Oxford University Press, 1991
    Jumin HB, Nito N. In vitro flowering of Fortnuella hindsii (Champ.) Swingle. Plant Cell Rept, 1996,15:484-488
    Junko J, Saeko K, Keisuke N et al. Down regulation of RFL, the FLO/LFY homolog of rice, accompanied with panicle branch initiation. Proc Natl Acad Sci USA,
    
    1998, 95:1979-1982
    Kaur-Sawhney R, Tiburcio AF, Galston AW. Spermidine and flower-bud differentiation in thin-cell-layer explants of tobacco. Planta, 1988,171: 282-284
    Kaur-Sawhney R, Kandpal G, Me Gonigle B, et al. Further experiments on spermidine mediated floral bud formation on thin-cell-layer explants of Wisconsin 38 tobacco. Planta, 1990,181: 212-215
    Khurand JP, Cleland CF. Role of salicyslic acid and benjoic acid in flowering of a photoperiodically insensitive strain, Lemna paucicostata LP6. 13th Int Confer Plant Growth Substance, 1988,400
    Kim WT, Campbell A, Moriguchi T, Yi HC, Yang SF. Auxin induces three genes encoding encoding aminocyclopropane-1-carboxylate synthase in mung bean hypocotyls. J Plant Physiol, 1997,150: 77-84
    King RW, Moritz T, Evans LT, Junttila O, Herlt AJ. Long day induction of flowering in Lolium temulentum involves sequential increases in specific gibberellins at the shoot apex. Plant Physiol, 2001,127: 624-632
    Kiss HG. The role of plant growth regulators in floral development. Plant Physiol, 1994,105 (1 supp): 140,763
    Koornneef M, Alonso-Blanco C, Peelers AIM, Soppe W. Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol, 1998,49: 345-370
    Koornneef M, Blanco CA et al. Genetic control of flowering time in Arabidopsis Annu Rev plant Physiol. Plant Mol Biol, 1998,49: 345-70
    Kotoda N, Komori S, Soejima J, Abe K, Kato H, Masuda T, Inomata Y, Wada M. The Expression of AFL gene during floral bud formation in apple. Plant Cell Physiol, 1998,39 (supp): s63,212 (D1P05)
    Krizek BA, Meyerowitz EM. The Arabidopsis genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development, 1996,122: 11-22
    Kumar TA, Reddy GM. Role of benzyladenine, Ca2+ ions and AGAMOUS like gene in regulation of in vitro flowering hi Arachis hypogaea L. In Vitro (Cell Dev
    
    Biol),l996,32 (3ptⅡ) 83A,1071
    Lang A. Physiology of flowering. Annu Rev Plant Physiol, 1952,3: 265-306
    Lee Y, Wolfe DS, Nilsson O, Weigel D. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS. Curr Biol, 1997,7: 95-104
    Levy YY, Dean C. The transition to flowering. Plant Cell, 1998a,10: 1973-1989
    Levy YY, Dean C. Control of flowering time. Curr Opin Plant Biol, 1998b,1: 49-54
    Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky F. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell, 1999,11: 1007-1018
    Lin C-T. Photoreceptors and regulation of flowering time. Plant Physiol, 2000,123: 39-50
    Liu Z, Meyerowitz EM. LEUNIG regulates AGAMOUS expression in Arabidopsis flowers. Development, 1995,121: 1195-1208
    Lord EM. The concepts of heterochrony and homeosis in the study of floral morphogenesis. Flower Newsletter, 1991,5:4-13
    Luckwill LC. In Luckwill LC, Catting CR. Physiology of tree crops, Academic Press. New York, eds, 1970, pp254-273
    Lumsden P J, wellesbourne HRI, Youngs JA. Photoperiodic induction of flowering in short-day plants: effect of agents which alter cellular calcium status on components of the induction process. J Exp Bot, 1996,47(supp):14,CP2. 40
    Luo D, Carpenter R, Vincent C, Copsey L, Coen ES. Origin of floral asymmetry in Antirrhinum. Nature, 1996, 383:794-799
    Ma H, de Pamphilla C. The ABCs floral evolution. Cell, 2000,101: 5-8
    Maeda T, Asami T, Yoshida S, Takeno K. The processes inhibited and promoted by abscisic acid in photoperiodic flowering of Pharbitis nil. J Plant Physiol, 2000,157: 421-128
    Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature, 1992,360: 273-277
    Mandel MA, Yanofsky MF. A gene triggering flower formation in Arabidopsis.
    
    Nature, 1995a,377: 522-524
    Mandel MA, Yanofsky MR The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALAL Plant Cell, 1995b,7: 1763-1771
    Mazzella MA, Cerdan PD, Staneloni RJ, Casal JJ. Hierarchical coupling of Phytochromes and cryptochromes reconciles stability and light modulation of Arabidopsis development. Development, 2001,128: 2291-2299
    McDaniel CN, King RW, Evans LT. Floral determination and in vitro floral determination in isolated shoot apices of Lolium temulen L.. Planta, 1991, 105:9-16
    Michaels SD, Amasino RM. Flowering locus C encodes a novel MADS domain protein that acts as a represser of flowering. Plant Cell, 1999,11: 949-956
    Minorsky PV. The hot and the classic. Plant Physiol, 2000,124: 1481-1482
    Mizukami Y, Ma H. Determination of Arabidopsis floral meristem identity by AGAMOUS. Plant Cell, 1997,9: 393-408
    Mellerowicz EJ, Morgan K, Walden A, Coker A, Walter C. PRFLL-A Pinus radiata homologue of FLORICAULA and LEAFY is expressed in buds containing vegetative Shoot and undifferentiated male cone primordial. Planta, 1998,106: 619-629
    Metzger JD. Comparison of biological activities of gibberellins and gibberellin-precursors native to Thlapsi arvensis L. Plant Physiol, 1990b,94:151-156
    Molinero-Rosales N, Jamilena M, Zulita S, Comez P, Capel J, Lozano R. FALSIFLORA, the Tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J, 1999,20:685-693
    Myster J, Junttila O, Lindgard B, Moe R. Temperature alternation and the influence of gibberellins and indoleacetic acid in elongation growth and flowering of Begonia x hiematis Fotsch. Plant Growth Reg, 1997,21:135-144
    Neff MM, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochromel during Arabidopsis development. Plant Physiol, 1998,118:
    
    27-36
    Nemhanser JL, Zembryski P, Roe JL. Auxin signalling in Arabidopsis flower development. Curr Opin Plant Biol, 1998,1: 531-535
    Nilsson O, Lee I, Blazquez MA, Weigel D. Flowering-time genes modulate the response to LEAFY activity. Genetics, 1998,150:403-410
    Ohta M, Onai K, Furukawa Y, Aoki K, Araki T, Nakamura K. Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol, 2001,127:252-261
    Oka M, Miyamoto K, Okada K, Ueda J. Auxin polar transport and flower formation in Arabidopsis thaliana transformed with indoleacetamide hydrolyase. Plant Cell Physiol, 1999,40:231-237
    Oka M, Ueda J, Miyamoto K, Okada K. Activity of auxin polar transport in inflorescence axis of flower mutants of Arabidopsis thaliana: relevance to flower formation and the status of growth. Plant Cell Physiol, 1998,39(supp): s75, 259 (D3a10)
    Okamura JK, den Boer B GW, Lotys-Prass C, et al. Flowers Into shoots: Photo and hormonal control of a meristem identity switch in Arabidopsis. Proc Natl Acad Sci USA,1996,93: 13831-13836
    Okamura JK, Szeto W, Lotys-Prass C, Jofuku KD. Photo and hormonal control of meristem identity in the Arabidopsis flower mutants apetala2 and apetalal. Plant Cell, 1997,9: 37-47
    Ono M, Ono K S, Yamada K, et al. Axillary bud flowering after apical decapitation in Pharbitis in relation to photoinduction. Physiol Plant, 1993,87: 1-6
    Ono M, Sage-Ono K, Inoue M, Kamada M. cDNA cloning and characterization of the Pharbitis nil FLORICAULA and LEAFY homolog. Plant Cell Physiol, 1996,37 (supp):s118,430(2aH11)
    Onouchi H, Coupland G. The regulation of flowering of Arabidopsis in response to daylength. J Plant Res, 1998,111: 271-275
    Pang Ji-Liang, Liang Hai-Man, Liou Fei-Yan, Guo Da-Chu. Direct formation of male and female flowers from excised cotyledons of Cucumbers (Cucumis sativus L.).
    
    Chinese J Bot, 1993, 5(2) : 185-188
    Parcy F, Nilsson O, Busch MA, Weigel D. A genetic framework for floral patterning. Nature, 1998,395: 561-566
    Park DH, Somers DE, Kim YS. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science, 1999,285:1579-1582
    Pharis RP, King RW. Gibberellins and reproductive development in seed plants. Ann Rev Plant Physiol, 1985, 36: 517-568
    Pharis RP, Evans LT, King RW, Mander LN. Gibberellins, endogenous and applied, in relation to flower induction in the long-day plant Lolium temulentum. Plant Physiol, 1987,84:1132-1138
    Pineiro M, Coupland G. The control of flowering time and floral identity in Arabidopsis. Plant Physiol, 1998,117: 1-8
    Pneuli L, Carmel-Goren L, Hareven D, Guttinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E. The SELFPRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development, 1998,125: 1979-1989
    Potter JR, Triiodobenzoic acid as a direct inhiditor of root initiation in adventitious root formation in leafy pea cuttings. Plant Physiol, 1990,93(supp): 73,42
    Prasad K, Vijayraghavan U. Regulation of OSL, a LFY homologue, during rice panicle and spikelet development. www.jic.bbsrc.ac.uk/events/embo/Posterabstracts. doc Towards the isolation of flowering and runnering genes, 2000, P19
    Protacio CM, Flores H. Polyamine metabolism in tobacco in vitro flower system. Plant Physiol, 1989, 89(4supp): 98,586
    Putterill J, Robsan F, Lee K, Simon R, Coupland G. The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to Zinc finger transcription factors. Cell, 1995,80: 847-857
    Ravishankar M, Nalawadi UG, Hulamani NC. Use of growth regulators to manipulate alternate bearing rhythm in mango(mangefera indica L.). Karntaka J Agric Sci, 1993,6(1) : 7-12
    Reeves PH, Coupland G. Analysis of flowering time control in Arabidopsis by
    
    comparison of double and triple mutants. Plant Physiol, 2001,126: 1085-1091
    Rhee SY. Bioinformatic resources, challenges, and opportunities, Using Arabidopsis as model organism in a post-genomic era. Plant Physiol, 2000,124:1460-1464
    Rold d n M, G 6 mez-Mena C, Ruiz-Garcia L, Martin-Trillo M, Salinas J, Martinez-Zapater JM. Effect of darkness and sugar availability to the apex on morphogenesis and flowering time of Arabidopsis. Flowering Newslett, 1997,issue 24: 18-24
    Ruiz-Garcia L, Madueno F, Wilkinson M, Haughn G, Salinas J, Martines-Zapater JM. Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell, 1997,9: 1921-1934
    RyMeeks-Wagner DR, Dennis ES, Tran Thanh Van K, et al. Tobacco genes expressed during in vitro floral initiation and their expression during normal plant development. Plant Cell, 1989,1:25-35
    Sachs R M. Hort Sci Nutrient. 1977,2:220-222
    Samach A, Kohalmi S, Haughn G, Crosby W. UFO encounters of a floral kind. Plant Physiol, 1997,114 (3 supp): 60,215
    Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science, 2000,288: 1613-1616
    Sawa S, Weigel D, Machida Y, Okada K, Shimura Y. Role of Arabidopsis PIN gene on floral meristem formation. Plant Cell Physiol, 1996,37(supp): s119, 443 (2pH02)
    Scholten H J. Effect of polyamines on the growth and development of some horticultural crops in micro propagation. Sci Hort, 1998,77: 83-88
    Schultz EA, Haughn GM. LEAFY: a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell, 1991,3:771-781
    Schultz EA, Haughn GM. Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development, 1993,110:745-765
    Shannon S, Meeks-Wagner DR. A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell, 1991,3: 877-892
    
    
    Shannon S, Meeks-Wagner DRy. Genetic interaction that regulates inflorescence development in Arabidopsis. Plant Cell, 1993,5: 639-655
    Shepard KA, Purugganan MD. The genetics of plant morphological evolution. Curr Opin Plant Biol, 2002,5:49-55
    Shindo S, Sakakibara K, Sano R, Ueda K, Hasebe M. Characterization of a FLORICAULA I LEAFY homologue of Gnetum parvifolium and its implications for the evolution of reproductive organs in seed plants. Int J Plant Sci, 2001,162: 1199-1209
    Shinkle JR, Kadakia, Jones AM. Dim-red-light-induced increase in polar auxin transport in cucumber seedlings. 1. development of altered capacity, velocity, and response to inhibitors. Plant Physiol, 1998,116: 1505-1513
    Silverstone AL, Chang C-W, Krol E, Sun T-P. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J, 1997,12: 9-19
    Simpson GG, Dean C. Arabidopsis, the rosette stone of flowering time? Science, 2002, 296: 285-289
    Singh KB. Transcriptional regulation in plants: The importance of combinational control. Plant Physiol, 1998,118:1111-1120
    Smulders MJM, Crues AF, Barendse GWM, et al. Relevance of uptake, transport and conjugation of NAA for the extent of NAA-induced flower bud formation in tobacco explant. 13th Int Confer Plant Growth Substance, 1988,49
    Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu X, Llewellyn DJ, Peacock WJ, Dennis ES. Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol, 1998,37: 897-910
    Sung ZR, Betache WA, Shunong B, Bertrand-Garcia R. EMF, an Arabidopsis gene required for vegetative shoot development. Science, 1992,258: 1645-1647
    Sussman MR, Amasino RM, Young JC, Krysan PJ, Austin-Phillips S. The Arabidopsis in knock facility at the University of Wisconsin-Madison. Plant Physiol, 2000,124:1465-1467
    
    
    Swamy NR, Balder B. Studies on hormonal regulation of flowering using Cuscuta reflexa Roxb, a short day plant. Indian J Plant Physiol, 1988,84(4) : 343-348
    Tanahashi T, Kofuji R, Sano R, Kato M, Hasebe M. Expression analysis of FLORICAULA /LEAFY homologue in the moss, Physcomitrella patens, Scientific Program, 2001, May 27, Symposium, Moss Genomics, 21
    Tassoni J, Van Buren M, Franceschetti M, et al. Polyamine content and metabolism in Arabidopsis thaliana and effect of spermideine on plant development. Plant Physiol Biochem, 2000,38(5) : 383-393
    Theissen G, Saedler H. The golden decade of molecular floral development (1990-1999) : A cheerful obituary. Dev Genet, 1999,25: 181-183
    Thomas B, Vince-Prue D. Photoperiodism in Plants. 1997,2nd ed. San Diego, CA: Academic Press
    Tretyn A, Czapleewska J, Cymerski M, Kapcewicz J, Kendrich RE. The mechanism of calcium action on flower induction in Pharbitis nil. J Plant Physiol, 1994,144: 562-568
    Tretyn A, Cymerski M, Czaplewska J, Lukasiewicz H et al. Calcium and photoperiodic flower induction in Pharbitis nil. Physiol Plant, 1990,80:388-392
    Van Nocker S. The molecular biology of flowering, In "Horticultural Reviews", 2001,Vol 27, Janick J, ed. Wiley Publishers, pp 1-40
    Vijayraghavan U. How plants pattern flowers: Lessons from molecular genetic studies of flowering in Arabidopsis thaliana a model plant. Curr Sci, 2001, 80: 233-243
    Vondrakova Z, Krekule J, Machackova L. Is the root effect on flowering of Chenopodium rubrum mediated by cytokinins ? J Plant Growth Regul, 1998,17: 115-119
    Wada N, Shinozaki M, Iwamura H. Flower induction by polyamines and related compounds in seedlings of Morning Glory (Pharbitis nil cv. Kidachi). Plant Cell Physiol, 1994,35:469-72
    Wagner D, Meyerowitz EM. SPLAYED, a novel SW1 I SNF ATPase homolog, controls reproductive development in Arabidopsis. Curr Biol, 2002,12: 85-94
    Wang ZY, Tobing EM. Constitutive expression of the CIRCADIAN CLOCK
    
    ASSOCIATED 1 (CC41) gene disrupts circadian rhythms and suppresses its own expression. Cell, 1998,93:1207-1217
    Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM. LEAFY controls floral meristem identity in Arabidopsis. Cell, 1992,69: 843-859
    Weigel D, Meyerowitz EM. Activation of floral homeotic genes in Arabidopsis. Science, 1993,261: 1723-1726
    Weigel D, Meyerowitz EM. The ABCs of floral homeotic genes. Cell, 1994,78: 203-209
    Weigel D. The APETALA 2 domain is related to a novel type of DNA binding domain. Plant Cell, 1995,7:388-389
    Weigel D, Coupland G. LEAFY blooms in aspen. Nature, 1995, 377:482-483
    Weigel D, Blazquez M, Brent DR, Christensen S, Kashailsky I, Lee I, Nilsson O, Parcy F, Soowal LN, Wolfe DS. Flower development in weeds and trees. Plant Physiol, 1996,111(2 supp): 13,40003
    Werner H, Schaffer B. Influence of paclobutrazol on growth ang leaf nutrient content of mango(cv. Blanco). Acta Horticul, 1993,341: 225-231
    Wijayanti L, Fujioka S, Kobayashi M, Sakurai A. Involvement of abscisic acid and indole-3-acetic acid in the flowering of Pharbitis nil. J Plant Growth Regul, 1997,16:115-119
    Wolbarg CM, Ross JJ. Auxin promotes gibberellin biosynthesis in decapitated tobacco plants. Planta, 2001,214: 153-157
    Yang C-H, Chou M-L. FLD interacts with CO to affect both flowering time and floral initiation in Arabidopsis thaliana. Plant Cell Physiol, 1999,40: 647-650
    Yanofsky MF. Floral meristems to floral organ: Genes controlling early events in Arabidopsis flower development. Annu Rev Plant Physiol Plant Mol Biol, 1995,46: 167-188
    Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature, 1990,346: 35-39
    Zeevaart JAD. Gibberellins and flowering, In "The Biochemistry and Physiology of
    
    Gibberellins", 1983,Vol. 12, Crazier A, ed, 337-374, Praeges Publishers, N Y, ISBN 0-03-059056-6
    Zhao D-Z, Yu Q-L, Chen M, Ma H. The AKSl gene regulates B function gene expression is cooperation with UFO and LEAFY in Arabidopsis. Development, 2001,128: 2735-2746

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700