用户名: 密码: 验证码:
N~+、α粒子、~(60)Co-γ对陆地棉花粉的诱变效应研究及诱变后代鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
诱变是棉花育种中创造变异的重要手段之一。棉花辐射诱变一般以种子为材料,但辐照种子长成的M1植株易出现嵌合体。花粉中含有精细胞,对辐射诱变敏感,突变的精细胞可通过受精遗传给后代,有助于提高选择效率和加速辐射育种进程。此外,辐照花粉也是创造非整倍体等遗传材料的有效方法。60Co-γ射线是棉花育种中应用最为广泛的诱变手段。离子束注入技术在植物、微生物诱变研究方面已取得丰硕成果。但是由于离子束穿透能力很弱,它能否进入细胞,一直存在争议。而且低能离子与生物体的相互作用涉及复杂的生物学效应,离子注入后对植物细胞的直接损伤及诱变效应方面的机理研究还很缺乏。a粒子属于直接电离粒子,具有较高的传能线密度,能引发细胞之间的辐射信号传导及其细胞间旁效应的产生。由于α粒子的穿透力较弱,a粒子的辐射生物学研究多集中在哺乳动物细胞方面,在植物上研究α粒子的生物效应尚少有报道,尚不清楚它是否能作为一种有效的植物诱变源。本研究以陆地棉为材料,分别用N+、α粒子和60Co-γ射线作为辐射源,从花粉粒表面结构、内部超微结构、花粉粒萌发率、授粉后萌发花粉管的数量和长度、花粉管微丝骨架、花粉管Ca2+浓度梯度以及N+注入后引起M1代DNA和RNA水平上的变异等方面研究N+、α粒子及60Co-γ射线辐射对花粉粒的诱变生物学效应,比较三种诱变源的诱变机理,为棉花诱变育种提供了新的方法。对60Co-γK射线诱变花粉后代的主要农艺性状的变异规律进行了研究,丰富了花粉诱变育种技术。研究内容和结果如下:
     1.棉花雄性配子体发生和发育的检测方法
     将荧光染料DAPI染色DNA、罗丹明标记的鬼笔环肽染色花粉管微丝、Fluo-3am染色花粉管中Ca2+、荧光显微镜和激光扫描共聚焦显微镜等方法应用到检测棉花雄性配子体的发生发育过程。发现陆地棉花蕾的大小与花粉母细胞及雄配子体的发育程度紧密相关,花粉母细胞减数分裂期形成雄配子时期的花蕾纵、横径大约在0.4-0.5、0.3-0.4 cm之间。处于减数分裂期的花蕾取样时间在夏季早晨5:00-7:00为宜。通过荧光染料DAPI染色,可直接观察减数分裂各时期特征及其变化过程;经过4%多聚甲醛溶液固定过的棉花成熟花粉粒,在10%次氯酸钠水溶液中,55℃水浴处理30 min,可脱去花粉粒外壁,棉花花粉粒萌发以前,其内部生殖核的分裂并不完全同步,同时存在单核花粉粒、双核花粉粒和三核花粉粒等三种不同类型的花粉粒;陆地棉花粉管内微丝主要以微丝束的方式沿花粉管连续纵向排列,花粉管顶端10-20μm的区域内,不存在微丝网络;花粉管内的游离Ca2+呈现顶端Ca2+浓度较近顶端高的极性分布。研究的方法和结果为开展与棉花花粉粒有关的生殖生物学研究提供了途径和依据。
     2.N+、α粒子和60Co-γ对陆地棉花粉的诱变效应研究及诱变后代鉴定
     2.1以10、20和30 keV的N+注入陆地棉花粉粒。发现N+通过刻蚀方式作用于花粉粒,对花粉内部结构、花粉活力以及花粉管的微丝骨架结构均产生程度不同的影响,影响程度与注入能量有关,能量越大,对花粉的损伤效应越明显。
     2.2.通过对20 keV的N+注入后的花粉授粉后发育的M1(胚珠)DNA的SSR标记分析,在DNA水平上检测N+诱变后的多态性变化,结果表明,N+注入陆地棉花粉后再给雌蕊授粉,在一定程度上改变了花粉中精细胞的DNA序列,会对胚珠的DNA多态性产生影响。说明N+注入花粉,能产生可遗传的变异;通过抑制消减杂交技术,获得20 keV的N+诱变陆地棉花粉后M1代特异表达的cDNA片段,在mRNA水平上检测N+的诱变效应。已测序的有50个缩减cDNA克隆中,52%的序列在数据库中都有同源的棉属来源的EST。38个EST与其他物种已知基因部分区域的同源性为56%-100%,占总EST的76%;5条EST序列能在数据库中检索到同源性序列,但其功能尚不清楚;9个EST能在数据库中发现为推测蛋白;4个EST在GenBank中没有查到对应的同源序列(序列号分别为:GH291233;GH291234;GH291235和GH291236)
     2.3.以陆地棉花粉为材料,研究不同注入机各参数(离子能量、总剂量、剂量率、脉冲剂量、间隔时间)对陆地棉花粉注入效应的影响。发现N+注入时的抽真空过程对陆地棉花粉活力无影响,离子能量、总剂量、剂量率、脉冲剂量和注入间隔时间等5个参数均在不同程度上影响注入结果。5个参数对注入效果的影响顺序为能量>剂量率>总剂量>脉冲剂量>间隔时间。因此,在实际的离子注入时,应根据实验目的综合考虑这些参数的效应,比如采用高能量-低剂量-长间隔时间可能是提高注入花粉活力较为有效的方法。
     2.4.以20 Gy的60Co-,γ射线辐照陆地棉花粉粒,发现60Co-γ射线对花粉粒的表面结构无影响;但对花粉粒内部结构产生明显的破坏作用,内壁变薄,不规则且部分向内凹陷,内质网解聚,内含物增多;与对照(自然花粉)相比,花粉粒活力降低了38%,授粉后胚珠的DNA多态性明显增加;M1发芽率降低了41.03%。棉株的主根长,最长侧根长度,平均侧根长度,侧根数和株高等分别比对照下降了22.24%,18.93%,11.80%,28.02%和23.05%。雄性不育株占56.7%。铃数的变异系数最大,达119.79%,比对照增加103.21%,其次为衣分、茎粗、籽指、果枝数、最长果枝,变异系数分别比对照增加了74.59%、75.96%、69.83%、33.25%、29.62%;株高变异系数最小(20.15%),比对照增加了11.843%。M2代植株中的雄性不育株占24%。M2代铃数的变异系数最大(33.08%),较对照增加21.94%,其次为籽棉产量、果枝数、株高、单铃重,分别较对照增加了16.26%、3.83%、3.99%、7.25%。衣分的变异系数最小(4.90%),比对照增加0.50%。M2代各农艺性状的变异系数及变异幅度均小于M1代。M3代的株高、果枝数、铃数、产量和单铃重5个性状的均值皆低于对照,衣分均值高于对照,降低与升高的幅度皆小于M2代。在M1、M2、M3代等3个诱变后代中,M3代各农艺性状的变异系数最小,M1代的变异系数最大。M3代大多数的变异株系表现稳定,基本无分离,因此,在诱变后代选择上,M1代种子可混收,M2代再分单株收获。M3代可获得部分纯合株系。
     2.5.以陆地棉成熟花粉粒为材料,结合超薄切片、荧光染色等技术。通过观察花粉的表面结构、内部结构、以及花粉萌发出的花粉管的生长和内部的微丝骨架结构的变化,分析α粒子及60Co_γ射线的诱变效应,以及诱变效应与辐照剂量间的关系,比较两种辐射源产生的辐射效应及机理方面的差异。结果表明,α粒子是通过刻蚀方式作用于花粉粒,不同于60Co-γ射线通过高能量射线穿透花粉粒作用于花粉粒。两种辐照方式均通过对花粉的内部结构产生损伤使花粉萌发率及萌发花粉管的数目下降,破坏花粉管微丝骨架。相同剂量时,60co-γ射线的损伤作用大于a粒子的作用。
     2.6从诱变育种的角度来说,α粒子由于其发射仪器的限制,每次处理的花粉数量有限,不能在田间大量授粉;N+虽然对花粉的损伤效应明显,但田间授粉,后代变异不明显;20 Gy的60Co-γ射线是较为适宜的陆地棉成熟花粉育种的辐照剂量,花粉活力较高,后代性状变异明显;过高的剂量会抑制花粉管的萌发和生长,田间授粉不能收获种子。
Mutagenesis is the important means to create genetic variation in cotton breeding. A large number of energy rays are frequently applied in mutant breeding, such as X-,β-, and y-rays, neutrons, and protons. In most cases, seeds were used as mutation materials, but it is easy to obtain chimera in the M1 progeny. Pollen grains are haploid, which has a nutritional nucleus and two sperms. Pollen grain is sensitive to all kinds of mutagens. Pollination with irradiated pollen grains could directly transfer the mutation of sperms to the offspring of the pollinated plant. Furthermore, pollen irradiation is the effective means for creating dysploid. Gamma rays belong to the most efficient tools to create mutants in plants, with the advantages of convenient operation, short cycle, and high mutation quantity. Ion beams have been applied as a nuclear technique since the late 1950s, especially in the field of surface modification of materials. In the 1990s, this technology was first applied to improve crop cultivars by Chinese scientists, achieving great success in plant and microorganism. But the short path of ion-implantation was in doubt on whether the low-energy ions could enter plant cells. And the interaction between the organism and these ions is complicated. At present, the biological effect of ion-implantation is mostly emphasized on statistical analysis of phenotypic and genetic effects. Detailed information of interaction between ion beam implantation and the structure, vigor and skeleton system of cell is still insufficient. Alpha-particles, which are directly ionizing particles with a high linear energy transfer (LET), have a strong interaction with the target substance. Alpha-particles have been widely used as a mutagenic source in mammalian cells. However, low doses of ionizing particle radiation have beneficial effects on mammalian cells. Because plant cells have tough cell walls and because alpha-particles transfer energy to very limited regions, it is not known whether alpha-particles could be used as an effective mutagen on plant breeding. In this study, we used upland cotton as irradiation material to compare the effects induced by irradiation of y-rays, nitrogen ions and alpha-particles in the following:the ultrastructure of the pollen exine and interior walls, the germination rate of the pollen grains, the number of pollen tubes in the styles after pollination, and the F-actin distribution in the pollen tubes. The effects of the law of genetic variation of their M1, M2 and M3 progeny induced by 60Co-γray were also studied. The results will be valuable not only for enriching the germplasm resources but also to the foundation of mutation material foreground for the location and clone of correlative genes. The main results were as follows:
     1. The examination methods of development of upland cotton male gametophyte
     We used DAPI labeling and fluorescence microscope to visualize the meiosis of the male gametophyte. The results showed that the size of bud is closely related with the development of pollen mother cell. The buds were harvested in the 7 am-9 am, whose glossy and elongated bell-shaped at the size of (0.4-0.5)×(0.3-0.4) cm were in meiosis. The difference in the stages of meiosis existed not only in different individual plant, different bud of the same in dividual inflorescence, but also in different cell of the same bud. The procedure of detaching the exine of Gossypium hirsutum L. pollen grain was established in this experiment. The pollen grain was fixated with 4% paraformaldehyde solution, oxidated with 10% sodium hypochlorite solution, heat shocked at 55℃for 30 minutes and pressed. After these treatments, the exine could be detached along the full de-exined pollen grains. The pollen grain and de-exined pollen grain were stained with DAPI. The nucleus of cotton pollen grain was not observed, but the nucleus of de-exined pollen grain was showed clearly. The inner wall had not fluorescence. The three nuclei of the pollen grain of Gossypium hirsutum L. were determinated firstly. We used TRITC-phalloidin labeling and laser scanning confocal microscope to visualize the F-actin cytoskeleton of the pollen tubes after germination in liquid medium. The results showed that F-actin bundles oriented along the longitudinal axis in the long pollen tube and extend only 10 to 20μm away from the tip of the pollen tube. Growing pollen tubes were loaded with the Ca2+ sensitive ratiometric dye Fluo-3 am, the result showed that the [Ca2+]i at the tip increased during the peaks of the Ca2+ oscillations, and that the Ca2+ gradient extended further down the shaft of the tube.
     2. The study on mutation effects of N+、αandγrays on Gossypium hirsutum L. pollen grains and identification of mutation progeny
     2.1 To study the radiobiological effects of low-energy nitrogen ions on plant cells, nitrogen ions of varied energies (10 keV,20 keV and 30 keV) were implanted in upland cotton pollen grains. Irradiation effects on pollen grains were assessed in terms of the ultrastructural changes in the exine and interior walls of pollen grains, the germination rate, the number of pollen tubes in styles after pollination, the extent of the tip-focused Ca2+ gradient and the ultrastructural changes in the F-actin of pollen tubes that developed from the treated pollen grains upon germination in liquid medium. The results showed that nitrogen ion passed through the pollen grains by etching and penetrating the exine and interior walls and destroying cell structures. More pollen grains were destroyed as the energy of the nitrogen ions increased. The pollen grain germination rate as well as the number and length of the pollen tubes after nitrogen ion implantation were decreased with increased ion implantation energy. Damaging effects were also observed for the tip-focused Ca2+ gradient and the F-actin of pollen tubes. The function and structure of pollen tubes in pollination and fertilization may be affected by the changes in the ultrastructure of pollen grains and the gene expression profile of pollen tubes.
     2.2 The SSR-based molecular markers technique was used to determine the polymorphisms of ovule DNA. The ovule was developed after the pistils were pollinated by the pollen grains which had been implanted with nitrogen ions. The result showed that the ovule DNA polymorphisms was changed, which indicated that the DNA sequences of sperm cell were altered. The suppressive subtraction hybridization (SSH) technique was used to isolate the cDNA fragments that showed differential expression between the M1 progeny developed after the pistils were pollinated by the nature and pollen grains implanted with the nitrogen ions. Two differential expression cDNA libraries were constructed using the cDNAs of the treated-M1 progeny as driver and the cDNAs of untreated-M1 progeny as tester, vice versa. The results demonstrated that the insertion fragments of SSH library were ranging from 450 to 700 bp.50 clones were randomly picked for PCR and sequencing. After matching the result in GenBank dbEST and the BLASTN,50 sequences were obtained. Of them,38 had 56%-100% similarity with known genes, which was 76% of the total EST; 5 sequences had their homology with the sequences in GenBank with unknown function, which was 10% of the total EST; 9 were hypothetical protein, which was 18% of the total EST; 4 had no similarity with the sequences in GenBank, which might be new genes; or the gene could not search the similarity with the sequences of other species, because the sequences located in the easy-varied 3'-end, which was 8% of the total EST.
     2.3 Effect of parameters of ion implantation machine, including ion energy, total dose, dose rate, impulse energy and implantation interval on the pollen grains of upland cotton implanted with nitrogen ions were studied. The best parameters were screened out. The results also showed that the vacuum condition before the nitrogen ion implantation does not affect the pollen viability. From the perspective of effects, the 5 parameters run as energy>dose rate >total dose> impulse dose> interval. Whereby the comprehensive considerations shall be given for the ion implantation based on the test objects. For instance, the high energy-low dose-long interval might be an effective option to improve the offspring vitality.
     2.4 20 Gy 60Co-y ray irradiation effects on upland cotton pollen grains were tested in terms of the ultrastructural changes in the exine and interior of pollen grains, their germination rate, the single primer amplification reaction polymorphism of ovule developed after the pistils were pollinated with the pollen grains which had been irradiated with 60Co-y ray, and the law of genetic variation of their M1, M2 and M3 progeny. The results showed that 60Co-y ray had no effects on the exine wall of the pollen grains. The interior structure of pollen grain was destroyed significiantly. The interior wall became thin and irregular, and part of it concavitied to the inner. The endoplasmic reticulum depolymerized. The amount and the density of pollen grain inclusions increased. The number of pollen tubes in style decreased by 38%, compared with the control group. The single primer amplification reaction polymorphism of ovule increased. The germination rate of M1 progeny was decreased by 41.03%. In M1 progeny, the length of taproot, longest lateral root, average lateral root, the number of lateral root, and the height of seedling decreased by 22.24%,18.93%,11.80%,28.02%,23.05%, respectively., compared with the control group. The percentage of sterility plants was 56.7%. The coefficients of variations of boll number, lint percentage, perimeter of stem, seed index, fruit branch number, longissimus fruit branch and plant height increased by 103.206%,74.588%、75.96%,69.83%、33.25% and 29.624%,11.843%, respectively., compared with the control group. In M2 progeny, the percentage of sterility plants was 56.7%. And the coefficients of variations of boll number, cotton yield, fruit branch number, plant height, boll weight, and lint percentage increased by 21.944%,16.261%、3.827%.3.986%.7.25% and 0.497%, respectively. Compared with the control group, the coefficients of variations and change range of agronomic traits in M2 progeny were less than them in M1 progeny. In M3 progeny, the means of plant height, fruit branch number, boll number, cotton yield and boll weight were all less than that of the control group, respectively. And the lint percentage was more than that of the control group. The coefficients of variations of the agronomic traits in M3 progeny was least, compared with that in the progeny of M1 and M2. The mutants were inherited stably. Therefore, in the progeny selection, the M1 seeds are mixed harvested, and single-plant harvested in M1 seeds.
     2.5 We compared the effects of irradiation by y-rays and alpha-particles on the structure and function of upland cotton pollen grains during pollination. We used mature pollen grains of upland cotton as irradiation material to observe changes in the following: the ultrastructure of the pollen exine and interior walls, the germination rate of the pollen grains in culture medium, the number of pollen tubes in the styles after pollination, and the F-actin distribution in the pollen tubes in medium. We found that alpha-particle and y-ray irradiation have different biological effects on the structure and function of cotton pollen grains.
     2.6 Because the quantity limitation of irradiated pollen grains every time, alpha-particles do not apply to mutation breeding (Field pollination need a mass of pollen grains.). Nitrogen ions have obviously damage effect on the pollen grains, but the mutation progeny have no evident variation.20 Gy 60Co-γray is suitable for cotton mutation breeding. The pollen grains irradiated by 20 Gy 60Co-y ray were pollinated in the field, a large number of mutants was obtained in the mutation progeny.
引文
1.卞坡,谷运红,霍裕平,等.离子束的生物效应及应用[J].河南农业大学学报,1999,33(2):178-182.
    2.蔡凌.辐射诱变在植物抗病育种中的应用[J].安徽农学通报,2000,6(6):44-45.
    3.常凤启,李银心,刘选明,等.低能N+注入诱导拟南芥变异及突变体特异表达cDNA克隆[J].自然科学进展,2003b,13(3):259-262.
    4.陈冬花,梁前进,张根发等.离子注入拟南芥种子引起M1和M2代变异的遗传分析.高技术通讯,2001,11(10):22.
    5.陈光尧,王国槐,罗峰.60Coγ辐照对甘蓝型油菜农艺性状和品质的影响[J].华北农学报,2007,22(5):56-59.
    6.陈静娴,徐义流,杨昶清.离子注入桃胚细胞形态观察初报[J].安徽农学院学报,1991,18(4):251-257.
    7.陈若雷,宋道军,余增亮等RAPD分析N+注入紫花苜蓿种子后幼苗基因组DNA变异[J].高技术通讯,2001,11(11):12.
    8.陈曦,周冀衡,施荣华,等.氮离子注入对烟草生长的生物效应[J].烟草科技,1999,2:35-36.
    9.陈学珍,李华,金文林,等.菜豆、豇豆辐射诱变效应的研究-60Co-γ射线处理对菜豆生长发育的影响[J].北京农业科学,2000,18(4):8-11.
    10.陈子元.从辐射育种的发展来展望航天育种的前景[J].核农学报,2002,16(5):261-263.
    11.常凤启,刘选明,李银心,等.低能N辐照拟南芥诱导基因组DNA碱基变异分析[J].中国科学(c辑),2003a,33(2):117-124.
    12.程备久,李展,田秋元,等.氮离子注入对棉花花粉形态和生活力及育性的影响[J].西北植物学报,1994b,14(2):85-89.
    13.程备久,李展,王公明,等.氮离子注入棉花种子的诱变效应[J].核农学报,1993,7(2):73-80.
    14.程备久,田秋元,余增亮.离子注入诱发棉花过氧化物酶同功酶及农艺性状变异的研究[J].棉花学报,1994,6(1):41-47.
    15.丁亮,陈睦传,沈明山等RAPD分析氮离子注入甜菊种子后的幼苗基因组DNA变异[J].生物物理学报,1999,15(4):798-803.
    16.董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展[J].种子,2005,(7):54-58.
    17.杜海彪,丘冠英,杜严华.三种类型辐射对质粒超螺旋DNA损伤的研究[J].生物物理学报,1997,13(2):261-266.
    18.杜严华,何颖,丘冠英.不同能量氮离子束诱发DNA链断裂的测定及量效曲线分析[J].自然科 学进展,2001,11(6):134-139.
    19.范平.棉花辐射后代变异新类型的探讨[J].原子能农业应用,1980,(1):13-19.
    20.冯殿齐,刘静,孙仲序,等.利用氮离子注入技术转化抗寒基因(afp)初步研究[J].山东农业大学学报(自然科学版)[J],2005,36(1):86-92.
    21.郭金华,谢传晓,徐剑,等.N+离子注入对大豆种子活力及其幼苗的抗氧化酶活性影响[J].2003,12(5):368-372.
    22.郭旺珍,张天真,潘家驹,等.我国陆地棉品种的遗传多样性研究初报[J].棉花学报,1997,9(5):242-247.
    23.何才平.钙与植物的向性生长[J].植物学通报,1992,9(1):21.
    24.何卓培,周庆祺,徐淑平,等.辐射诱变育成棉花高衣分品系[J].实验生物学报,2001,34(1):51-53.
    25.胡保民,张天真,潘家驹.辐照陆地棉花粉后代的生物学和细胞学效应[J].核农学报,1996,10(1):16-20.
    26.黄宝才,缪炳良,张志明.稻米品质诱变育种之我见[J].江苏农业科学,1999,3:15-16.
    27.黄群策,代西梅.低能氮离子束对不同倍性水稻的诱变效应[J].杂交水稻,2004,19(3):57-61.
    28.黄群策,李玉峰.离子束生物技术在水稻育种中的应用前景[J].杂交水稻,2002,17(5):5-8.
    29.黄群策,梁秋霞,李国平.离子注入对黑松花粉粒和花粉管内骨架系统的损伤效应[J].原子核物理评论,2008,25(3):282-286.
    30.黄群策,梁秋霞,李玉峰等.低能氮离子注入同源四倍体水稻的生物学效应[J].激光生物学报,2003,12(5):355-359.
    31.黄卫东,余增亮.低能离子辐照苏氨酸的初步研究[J].生物物理学报,1997,13(2):250.
    32.蒋建雄,张天真.利用CTAB/酸酚法提取棉花组织总RNA[J].棉花学报,2003,15(3):166-167.
    33.李贵成,王林辉,罗红兵.重离子辐射玉米种子的细胞学观察[J],湖南农业大学学报,2004,33(5):556-558.
    34.李国平,黄群策,秦广雍.用激光扫描共聚焦显微镜观察雪松花粉和花粉管[J].激光生物学报,2006,15(1):1-8.
    35.李华盛,范术丽,沈法富.从棉花ESTs数据库中筛选微卫星标记的初步研究[J].棉花学报,2005,17(4):211-216.
    36.李立祥,李爱青.N离子注入棉花花粉诱发农艺性状变异的研究[J].激光生物学报,1997,6(3):1160-1164.
    37.李汝忠,高国强,王留明.不同陆地棉品种辐射效应研究初报[J].棉花学报,1997,9(2):108-109.
    38.李胜国,刘玉乐,田波.植物花粉发育的分子生物学研究进展[J].生物工程进展,1997,17(2):17-22.
    39.李熙远,李定国,汤谷香.棉花γ2代主要经济性状间的相关分析[J].湖北农学院学报,1998, 18(1):4-7.
    40.李煦远.高产、优质、多抗棉花品种鄂棉15的选育[J].湖北农学院学报,1994,14(4):14-17.
    41.李雪华.大豆突变体库的初步构建及突变类型的鉴定[D],南京农业大学硕士(学位),2003,6-9.
    42.李岩,阎隆飞,徐是雄.百合花粉及花粉管内微丝和微管的分布[J].植物学报,1998,40(10):890-894.
    43.梁秋霞,曹刚强,黄群策,等.超低能离子束注入后番茄的生物学效应[J].激光生物学报,2006,15(4):387-393.
    44.梁世平,夏惠君,周嫦等.烟草花粉脱外壁过程中发现的一种特殊花粉壁结构[J].电子显微学报,1996,15(5):401
    45.刘录祥,程俊源.植物诱变育种新技术研究进展[J].核农学通报,1997,(4):187-190.
    46.刘炜,李自超,史延丽,等.利用SSR标记进行粳稻品种的遗传多样性研究[J].西南农业学报,2005,18(5):509-513.
    47.刘文欣,孔繁玲,郭志丽,等.建国以来我国棉花品种遗传基础的分子标记分析[J].遗传学报,2003,30(6):560-570.
    48.刘泽雯,黄惠芳.棉花辐射育种的适宜剂量及遗传规律[J].山西农业科学,1980,(5):5-7.
    49.刘志芳,邵俊明,唐掌雄,等.不同能量重离子注入农作物的诱变效应[J].核农学报,2006,20(1):1-5.
    50.逯腊虎,李振兴,倪中福,等.小麦杂种优势群研究:Ⅵ.普通小麦与穗分枝小麦、轮回选择后代材料、西藏半野生小麦和斯卑尔脱小麦早熟诱变系的SSR分子标记遗传差异研究[J].麦类作物学报,2007,27(2):201-206.
    51.陆璃,吕金印,刘军,等.60Coγ射线辐照对小麦种子根尖细胞有丝分裂的影响[J].西北农林科技大学学报,2005,33(9):57-62.
    52.陆挺,周宏宇,汪新福等.离子注入植物引起生物效应的机理[J].北京师范大学学报(自然科学版),1996,32(2):227-229.
    53.罗红兵,赵葵,郭继宇,等.重离子辐照玉米种子M1代诱变效应研究[J].原子核物理评论,2004,21(3):238-242.
    54.骆蒙,孔秀英,刘越,等.小麦抗病基因表达谱中的文库构建与筛选方法研究[J].遗传学报,2002,29(9):814-819.
    55.吕晓桂,罗辽复.低能离子束在植物种粒和微生物中的穿透深度[J].生物物理学报,2006,(22):56-61.
    56.米丽萍,卫春,黄俊生,等.水稻凋亡基因rPDCD5的克隆和表达分析[J].遗传,2004,26(6):893-897.
    57.缪炳良.诱发突变在作物育种中的作用及其今后研究方向之我见[J].核农学通报,1994,15(4):193-198.
    58.潘大陆.选育鲁棉1号的辩证法[M].济南:山东农业科学出版社.1983,(4):13-18.
    59.丘冠英.辐射生物物理学[M].武汉:武汉大学出版社,2000.
    60.任杰,吴李君,王荣富,等.α粒子注入拟南芥胚胎/胚对其生长的影响及其可能机制[J].辐射研究与辐射工艺学报,2006,24(4):224-228.
    61.沈季孟,邓景扬,朱凤绥.离子注入太谷核不育小麦杂交种子对出苗、苗期性状及植株生长的影响[J].北京农业科学,1993,11(1):6-8.
    62.宋道军,余汛,姚建明.低能离子束对微生物细胞刻蚀与损伤研究[J].生物物理学报,1998,30(6):253-255.
    63.宋道军,余汛,余增亮.低能离子束对微生物细胞的直接作用和间接作用研究[J].高技术通讯,1999(1):47-50.
    64.宋宪亮,孙学振,张天真,等.棉花遗传多态性研究进展[J].西北植物学报,2004,24(12):2393-2397.
    65.宋云,张怀渝,畅志坚.离子束用于诱变育种的研究进展[J].分子植物育种,2004,2(2):301-305.
    66.孙君灵,杜雄明,周忠丽,等.陆地棉品种γ射线诱变后代的遗传变异规律[J].华北农学报,2006,21(2):27-33.
    67.苏学合,高国强,时香玉,等.陆地型长绒棉鲁原343系的选育[J].核农学报,2000,14(3):180-183.
    68.苏学合,朱斗北,王增贵.辐照埃及棉选育陆地棉性状的长绒棉突变体的研究[J].核农学报,1994,8(1):1-6.
    69.苏一,李毅,辛华.离子注入绿豆种胚中注入深度的研究[J].天津师大学报(自然科学版),1996,16(4):32.
    70.孙立华,李和标.具广亲和性的水稻隐性高杆细胞突变体[J].遗传学报,1994,21(1):67-73.
    71.孙君灵,杜雄明,孙其信,等.棉花γ辐射诱变后代M5农艺经济性状的遗传变异[J].棉花学报,2006,18(2):83-88.
    72.孙君灵,杜雄明,孙其信,等.棉花γ射线诱变后代的SSR标记遗传多样性[J].中国农业科学,2006,39(10):1967-1976.
    73.王浩波,高秀武,王凤辰等.N+离子束对萌发西瓜种子和西瓜花粉的诱变效应研究[J].中国西瓜甜瓜,2005,1:4-6.
    74.王洪燕.利用DNA荧光探针DAPI检测番茄花粉粒的发育时期[J].枣庄学院学报,2006,23(2):93-94.
    75.王开发,杨振京,张盛隆.花粉中的孢粉素[J].养蜂科技,1999,5:11-13.
    76.王琳清.我国植物诱变育种进展剖析[J].核农学通报,1992,13(6):282-298.
    77.王卫东,刘磊安,薛建明.低能氮离子和氢离子注入胸腺嘧啶和尿嘧啶的剂量效应[J].核农学报,2005,19(1):49-51.
    78.王卫东,王宁,苏明杰,等.离子注入过程中真空和温度对小麦幼苗生长的影响[J].河南农业科学,2006,2:35-38.
    79.王晓静,沈火林,杨学妍,等.大葱雄性不育系及保持系花药和花粉发育的细胞学比较研究[J].中国瓜菜,2007,2:7-10.
    80.王燕,王卫东,秦广雍,等.氮离子注入对拟南芥的生理影响初步研究[J].华北农学报,2004,19(1):82-85.
    81.王远东,赵久然,郭景伦,等.诱变育种在创造玉米新种质中的应用[J].北京农业科学,1999,17(2):12-16.
    82.王转,臧庆伟,郭志爱,等.小麦幼苗期水分胁迫所诱导基因表达谱的初步分析[J].遗传学报,2004,31(7):842-849.
    83.吴健,苏明杰,戴桂馥,等.低能N离子、紫外线和60Co-γ射线对绛红小单孢菌产庆大霉素的诱变效应初步研究[J].辐射研究与辐射工艺学报,2003,21(2):120-124.
    84.吴敬音.棉花花粉粒三酸去壁法的改进[J].江苏农业科学,1982,9:46.
    85.吴丽芳,余增亮.离子注入法获得大豆-小麦分子远缘杂种及后代的变异分析[J].核农学报,2000,14(4):206-211.
    86.吴旺泽,王蒂,王清,等.马铃薯花粉的制备与人工萌发[J].园艺学报,2005,32(1):39-43.
    87.吴跃进,余增亮,刘贵付,等.离子束诱变在水稻广亲和系改良中应用研究[J].核农学通报,1990,11(4):4-7.
    88.吴跃进,王学栋,余增亮,等.离子注入水稻诱变的研究[J].安徽农业科学,1989,(2):12-14.
    89.夏惠君,周嫦,杨弘远.烟草脱外壁花粉的制备[J].武汉大学学报(自然科学版),1995,41(6):773-776.
    90.夏寿萱.放射生物学[M].北京:军事医学科学出版社,1998:46.
    91.徐秉芳,梁世平,周嫦,等.芸薹属脱外壁花粉的分离和人工萌发[J].植物学报,1996,38(12):963-968.
    92.徐冠仁.植物诱变育种学[M].北京:中国农业出版社,1996,1-18,294-303.
    93.徐欢,袁其朋.过氧化氢酶在Blakeslea trispora抵抗氧胁迫中的保护作用[J].酿酒,2007,34(4):54-57.
    94.徐秋华,张献龙,聂以春.长江、黄河流域两棉区陆地棉品种的遗传多样性比较研究[J].遗传学报,2001,28(7):683-690.
    95.徐是雄.植物细胞骨架[M].北京:科学出版社,1996.
    96.徐是雄,胡适宜.棉花形态和解剖结构图谱[M].北京:北京大学出版社,1985.11-12.
    97.徐是雄,李春贵,朱澄.洋水仙花粉和花粉原生质体中微管骨架的免疫荧光及共焦显微镜观察[J].植物学报,1993,35(7):513-518.
    98.阎隆飞,石德权.高等植物中的收缩蛋白[J].生物化学与生物物理学报,1963,3:490-495.
    99.杨弘远,周嫦.植物有性生殖实验研究四十年[M].武汉:武汉大学出版社,2001.103-135.
    100.杨惠玲,王世亨,范兆田,等.低能离子注入彩棉种子的深度与浓度分布研究[J].新疆师范大学学报,2005,24(2):44-46.
    101.杨剑波,吴李君,吴家道,等.离子束辐照M13mp18 DNA结构和功能影响的初步研究[J],中国科学B辑,1995,25(12):1273-1278.
    102.杨克珍,叶德.植物雄配子体发生和发育的遗传调控[J].植物学通报,2007,24(3):293-301.
    103.杨再强,王立新.观赏植物辐射诱变育种研究进展.四川林业科技,2006,27(3):19-23.
    104.姚建铭,王纪,袁成凌,等.离子注入花生四烯酸产生菌诱变选育[J],生物工程学报,2000,16(4):478-481.
    105.殷凤生,林国平,孙学永.离子注入对烟草苗期生长发育的影响[J].安徽农业技术师范学院学报,1996,10(3):18-22.
    106.虞龙,许安,王纪,等.低能离子注入在Vc高产菌株选育中的应用[J].激光生物学报,1999,8(3):217-220.
    107.余立祥,于艳杰,唐灿明.陆地棉花粉氮离子注入效应与注入机参数的关系[J].江苏农业科学,2006,3:40-41.
    108.于艳杰,吴李君,唐灿明,等.氮离子注入处理后的棉花花粉活力测定方法研究[J].棉花学报,2007,19(2):102-105.
    109.余增亮.离子束生物技术引论[M].合肥:安徽科技出版社,1998:12.
    110.余增亮,何建军,邓建国,等.离子注入水稻诱变育种机理初探[J].安徽农业科学,1989,39(1):12-16.
    111.余增亮,何建军,邓建国,等.离子注入水稻诱变机理初探[J].安徽农业科学,1989,(1):12-16.
    112.余增亮,邱励俭.离子注入生物效应及育种研究进展[J].安徽农学院学报,1991,18(4):276-281.
    113.袁成凌,余增亮.低能重离子生物学研究进展[J].辐射研究与辐射工艺学报,2004,22(1):1-5.
    114.翟学军,李俊兰,李之树.棉花辐射效应的研究ⅠM1主要农艺及经济性状的变异[J].核农学通报,1994,15(1):12-15.
    115.翟学军,王国印,李俊兰,等.棉花辐射效应研究Ⅱ.M2主要经济性状的变异[J].棉花学报,1995,7(2):82-85.
    116.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12 (5):267-269.
    117.张伟,张蜀宁,张红亮.萝卜花粉母细胞减数分裂及其雄配子体发育[J].南京农业大学学报,2007,30(3):38-41.
    118.张铭堂.诱变[J].科学农业,1996,44(2):37-52.
    119.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269.
    120.郑冬官,方萁英,黄德样,等.离子注入在棉花育种中的诱变功效[J].安徽农业大学学报,1994,21(3):315-317.
    121.周嫦.三种植物花粉原生质体的大量分离与初步培养[J].植物学报,1988,30(4):362-367.
    122.周光明,卫增泉,李文建等.碳离子诱导的双链断裂[J].生物物理学报,1998,14(1):145-1491.
    123.朱乾浩.137Cs γ射线对四个栽培棉种的辐射诱变效应及其突变体研究[M].浙江农业大学博士学位论文,1997:60-62.
    124.朱乾浩,季道藩.棉花辐射诱变育种研究进展[J].棉花学报,1997,9(3):113-119.
    125.朱乾浩,俞碧霞,季道藩.137Csγ射线对陆地棉花粉及其M1的辐射效应[J].核农学报,1998,12(20): 71-77.
    126. Bedinger P.. The remarkable biology of Pollen [J]. Plant Cell,1992,4:879-887.
    127. Bhojwani S. S., Cocking E. C. Isolation of pollen protoplasts from pollen tetrads [J]. Nature New Biology,1972,239:29-30.
    128. Brighigna L., Fiordi A. C., Palandri M. R.. Ultrastructural investigations on the two-nucleate Pollen of Tillandsia caputmedusae Morr (Bromelliaceae) [J]. Am J Bot,1981,68:1033-1041.
    129. Calabrese E. J.. Hormesis:from marginalization to mainstream:a case for hormesis as the default dose-response model in risk assessment [J]. Toxicol. Appl. Pharmacol,2004,197,125-136.
    130. Calabrese E. J., Linda A. B.. Toxicology rethinks its central belief [J]. Nature,2003,421:691-692.
    131.Ceballos H., Sanchez T., Denyer K., et al. Induction and identification of a small-granule, high-amylose mutant in cassava (Manihot esculenta Crantz) [J]. J Aqric Food Chem,2008,56 (16): 7215-7222.
    132. Chen T., Teng N. J., Wu X. Q., et al.. Disruption of actin filaments by latrunculin B affects cell wall construction in Picea meyeri pollen tube by disturbing vesicle trafficking [J]. Plant Cell Physiol,2007,48(1),19-30.
    133. Chen Y., Jiang B. Y., Chen Y. S., et al. Formation of Plasmid DNA strand breaks induced by low-energy ion beam:Indication of nuclear stopping effects. Radiat. Environ. Biophys,1998,37: 101-106.
    134. Cheng B. J., Kan X. Z., Zhu S. W., et al. A Preliminary study on DNA mutation induction of maize pollen implantation by low energy N+ beam [J]. Plasma Science and Technology,2001,3 (1): 659-664.
    135. Chu Z. L., Mckinsey T. A., Liu L., et al.. Suppression of tumor necrosis factor-induced cell death by inhibitor of apoptosis c-IAP2 is under NF-kappa B control [J]. PNAS,1997,94 (19): 10057-10062.
    136. Coleman A. W., Goff L. J.. Applications of fluorochrpmes to pollen biology.I.Mithramycin and 4', 6-diamidino-2-phenylindole (DAPI) as vital stains and for quantitation of nuclear DNA [J]. Stain Technol.,1985,60 (3):145-154.
    137. Condeelis J. S.. The identification of F-actin in the pollen tube and protoplast of Amaryllis Belladonna [J]. Exptl Cell Res,1974,88:435-439.
    138. Derksen J., Knuiman B., Hoedemaekers K., et al.Growth and cellular organization of Arabidopsis pollen tubes in vitro [J]. Sex Plant ReProd,2002,15:133-139.
    139. Derksen J., Pierson E. S., Traas J. A.. Microtubules in vegetative and generative cells of pollen tubes [J]. European Journal of Cell Biology,1985,38:142-148.
    140. Derksen J., Rutten T., Lichtscheidl I. K., et al. Quantitative analysis of the distribution of organelles in tobacco. Protoplasma,1995a,188 (3-4):267-276.
    141. Derksen J., Rutten T., Van Amstel T., et al. Regulation of pollen tube growth [J]. Acta Botanica Neerlandica,1995b,44:93-119.
    142. Deshpande A., Goodwin E. H., Bailey S. M., et al..Alpha-particle-induced sister chromatid exchange in normal human lung fibroblasts:evidence for an extranuclear target [J].Radiat.Res, 1996,145 (3):260-267.
    143. Diatchenko L., Lau Y. F., Campbell A. P., et al.. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. PNAS,1996, 93:6025-6030.
    144. Dong G. J., Pan W. D.Liu G. S.. The analysis of proteome changes in sunflower seeds induced by N+ implantation [J]. J Biosci.,2006,31(2):247-253.
    145. Doris F. P., Steer M. W.. Effeets of fixatives and permeabilization buffers on pollen tubes: Implications for localization of actin microfilaments using phalloidin staining [J]. Protoplasma, 1996,195:25-36.
    146. Du Y. H., Huang S. H., Tang Z., et al., Determination of DNA single-strand breaks by low-energy heavy ion and analysis of dose-effect curves. Chin. Sci. Bull.,1999,44(8):711-715.
    147. Du Y. H., Qiu G. Y. Changes of gene expression of E.coli induced by Low-energy nitrogen ions. Progress in Natural Science,2004,14(5):439-442.
    148. Duhoux E.. Protoplast isolation of gymonsperm pollen [J]. Z Pflanzenphysiol.,1980,99:207-214.
    149. Dumas C., Mogensen H. L.. Gametes and fertilization:maize as a model system for experimental embryogenesis in flowering plants [J]. Plant Cell,1993,3:1337-1348.
    150. Faure J. E., Aldon D., Rougier M., et al.. Emerging data on Pollen tube growth and fertilization in flowering Plants,1990-1995 [J]. Protoplasma,1996,193 (1-4):132-143.
    151. Feijo J. A., Malho R., Obermeyer G.. Ion dynamics and its possible role during in vitro pollen germination and tube growth [J]. Protoplasma,1995,187:155-167.
    152. Feinendegen L. E.. Evidence for beneficial low level radiation effects and radiation hormesis [J]. British Journal of Radiology,2005,78:3-7.
    153. Feng H. Y., Yu Z. L., Chu P. K.. Ion implantation of organisms [J]. Materials Science and Engineering:R:Reports,2006,54:49-120.
    154. Feng H. Y., Wu L. J., Yu L. X., et al. Mutagenic effect of a keV rang N+ beam on Mammalian cells. Nuclear Instruments and Methods in Physics Research B,2005,234:477-486.
    155. Foti A. M., Milano F., Torrisl L.. Amino acid decompositions induced by keV ions irradiation [J]. Nuclear Instruments and Methods in Physics Research,1990, (B46):361-363.
    156. Franke W. W., Seib E.. Tubulin-containing structures in anastral mitotic apparatus of endosperm cells of the plant lcucojicm acstivum as revealed by Immunofluo-rcsocnccmicroscopy [J]. Cytobiologic,1977,15:24-48.
    157. Franklin-Tong V. E., DrΦbak B. K., Allan A. C., et al., Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-triphosphate [J]. Plant Cells,1996,8:1305-1321.
    158. Fu Y., Yang Z. B., Wu G.. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes [J]. J Cell Biol.,2001,152 (5):1019-1032.
    159. Gao W., Chen Z. J., Yu J. Z., et al. Wide-cross whole-genome radiation hybrid mapping of the cotton (Gossypium barbadense L.) genome [J], Mol Genet Genomics,2006,275:105-113.
    160. Gao W. X., Chen Z. J., Yu J. Z., et al.. Wide-Cross Whole-Genome Radiation Hybrid Mapping of Cotton (Gossypium hirsutum L.) [J], Genetics,2004,167:1317-1329.
    161. Gao W., Zheng Y. F., Slusser J. R., et al.. Impact of enhanced ultraviolet-B irradiance on cotton growth, development, yield, and qualities under field conditions [J]. Agricultural and Forest Meteorology,2003,120 (1-4):241-248.
    162. Geitmana A., Snowman B. N., Emons A. M. C., et al.. Alterations in the actin Cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas [J]. The Plant Cell, 2000,12:1329-1351.
    163. Geitmann A. J., Hudak F., Venningerholz F., et al. Immunogold localization of pectin and callose pollen grains and pollen tubes of Brugmansia suaveolens:implications for the self incompatibility reaction [J]. J Plant Physiol,1995,147:225-235.
    164. Gibbon B. C., Kovar D. R., Staiger C. J.. Latrunculin B has different effects on pollen germination and tube growth [J]. The Plant Cell,1999,11:2349-2363.
    165. Harderl L. D., Thomson J.D..Evolutionary options for maximinzing pollen dispersal of animal pollinated plants [J]. The American Naturalist,1989,133(3):323-344.
    166. Hepler P. K., Vidali L., Cheung A. Y. Polarized cell growth in higher plants [J]. Annu Rev Cell Dev Biol,2001,17:159-187.
    167. Heslop-Harrison J., Heslop-Harrison Y.. Conformation and movement of the vegetative nucleus of the angiosperm pollen tube association with the actin cytoskeleton [J]. J. Cell Sci,1989,93: 299-308.
    168. Heslop-Harrison J., Helslop-Harrison Y.. Sites of origin of the peripheral micro tubule system of the vegetative cell of the angiosperm pollen tube [J]. Ann Bot,1988a,62:455-461.
    169. Holdaway-Clarke T. L., Hepler P. K.. Control of pollen tube growth:role of ion gradients and Fluxes [J]. New Phytologist,2003,159:539-563.
    170. Hong S. H., Yu C. W., Lin C. H.. Hydrogen peroxide functions as a stress signal in plants [J]. Bot. Bull. Acad. sin.,2005,46:1-10.
    171. Hu B. R., Han W., Wu L. J., et al.. In situ visualization of DSBs to assess the extranuclear/extracellular effects induced by low-dose a-particle irradiation [J]. Radiat Res,2005, 164(3),286-291.
    172. Huang Z. L., Jing Y. P., Zhu G. L., et al. Effects of nitrogen on Ca+ concentration and membrane potential of pollen cell [J]. Chin. Sci. Bull,2001,46(20):1691-1693.
    173. Joos U., Van Aken J., Kristen U.. Microtubules are involved in maintaining the cellular polarity in pollen tubes of Nicotiana sylvestris [J].Protoplasma,1994,179:5-15.
    174. Kitamura S., Inoue M., Ohmido N., et al.. Chromosomal rearrangements in interspecific Hybrids between Nicotiana gossei Domin and N. tabacum L., obtained by crossing with pollen exposed to heliumion beams or gamma-rays [J]. Nuclear Instruments and Methods in Physics Research B, 2003,206:548-552.
    175. Kost B., Mathur J., Chua N. H.. Cytoskeleton in plant development [J]. Curr. Plant Biol.,1999,2: 462-470.
    176. Kost B., Spielhofer P., Chua N. H.. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes [J]. Plant J,1998,16:393-401.
    177. Koti S., Reddy K. R., Kakani V. G., et al.. Soybean (Glycine max) pollen germination characteristics, flower and pollen morphology in response to enhanced ultraviolet-B radiation [J]. Annals of Botany,2004,94:855-864.
    178. Koti S., Reddy K. R., Reddy V. R., et al.. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths [J]. Journal of Experimental Botany,2005,56:725-736.
    179. koti S., Reddy K. R., Kakani V. G., et al.. Soybean (Glycine max) Pollen Germination Characteristics, Flower and Pollen Morphology in Response to Enhanced Ultraviolet-B Radiation [J]. Annals of Botany,2004,94:855-864.
    180. Kuang W. W., Thompson D. A., Hoch R. V., et al.. Differential screening and suppression subtractive hybridazation identified genes differentially expressed in an estrogen receptor-positive breast carcinoma cell line [J]. Nucleic Acids Res,1998,26:1116-1123.
    181. Lancelle S. A., Hepler P. K.. Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum. Protoplasma,1992,167:215-230.
    182. Li G. P., Huang Q. C., Qin G. Y., et al.. The effects of low-energy nitrogen ion implantation on pollen exine substructure and pollen germination of Cedrus deodara [J]. Plasma Sci. technol.,2005, 7(6):3176-3180.
    183..Li Y., Yan L. F., Xu S. X.. Distribution of F-actin and Microtubules in Pollen and Pollen Tube of Lilium davidii [J]. Acta Botanica Sinica,1998,40 (10):890-894.
    184. Li Y., Zee S. Y., Liu Y. M., et al. Circular Factin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii [J]. Planta,2001,213:722-730.
    185. Liu J., Yao J. M.. Study on Mutagenic Breeding of Bacillus Subtilis and properties of its antifungal substances [J]. Plasma Science and Technology,2004,6 (4):2433-2436.
    186. Lorimore S. A., Kadhim M. A., Pocock D. A., et al.. Chromosomal instability in the descendants of unirradiated surviving cells after alpha-particle irradiation [J]. Proc. Nat Acad Sci, USA,1998,95: 5730.
    187. Mackerness A. H., John S., Jordan C. F., et al.. Early signaling components in ultraviolet-B responses:distinct roles for different reactive oxygen species and nitric oxide [J]. FEBS Letters.2001,489 (2-3):237-242.
    188. Malho R.. Expanding tip growth theory [J]. Trends Plant Sci.,1998,3:40-42.
    189. Malho, R. Read N. D., Pais M. S., et al.. Role of cytosolic free calcium in the reorientation of pollen tube growth [J]. Plant J,1994,5 (3):331-341.
    190. Malho R., Read N. D., Trewavas A. J., et al.. Calcium channel activity during Pollen tube growth and reorientation [J]. The Plant Cell,1995,7:1173-1184.
    191. Malho R., Trewavas A. J.. Localized apical increases of cytosolic free calcium control pollen tube orientation [J]. Plant Cell,1996,8:1935-1949.
    192. Maluszynski M. Application of in vivo and in vivtro mutation techniques for crop improve [J]. Euphytica,1995,85:303-315.
    193. Mascarenhas J. P.. Molecular mechanisms of pollen tube growth and differentiation [J]. Plant Cell, 1993,5:303-314.
    194. Mathur J., HUlskamp M.. Microtubules and microfilaments in cell morphogenesis in higher Plants [J]. Current Biol.,2002,12:R669-R676.
    195. Miller D. D., Callaham D. A., Gross D. J. et al.. Free Ca2+ gradient in growing pollen tubes of Lilium [J]. J Cell Sci,1992,101:7-12.
    196. Milller D. D., Lancalle S. A., Hepler P. K.. Actin microfilaments does not form a dense meshwork in Liliun longiflorum pollen tube tips [J]. Protoplasma,1996,195:123-132.
    197. Misra P., Datta S. K., Chakrabarty D.. Mutation in flower colour and shape of Chrysanthemum morifolium induced by γ-radiation [J]. Biologia Plantarum,2003,47:153-156.
    198. Muller H. J.. Artificial transmutation of the gene [J]. Science,1927,66:84-87.
    199. Nagasawa H., Little J. B.. Induction of sister chromatid exchanges by extremely low dose of alpha particles [J]. Cancer Res.1992,52(22),6394-6396.
    200. Naito K., Kusaba M., Shikazone N., et al.. Transmissible and non-transmissible mutations induced by irradiating Arabidopsis thaliana pollen with y-rays and carbon ions [J]. Genetics.,2005,169 (2): 881-889.
    201. Nelson J. M., Brooks A. L., Metting N. F., et al.. Clastogenic effects of defined numbers of 3.2 MeV Alpha particles on individual CHO-K1 cells [J]. Radiation Research.1996,145(5):568-574.
    202. Osbprne T. S., Lunder A. O.. Seed radiosensitivity a new constant [J].Science,1964,145:710-711.
    203. Palevitz B., Cresti M.. Cytoskeletal changes during generative cell division and sperm formation in Tradescantia virginiana [J].Protoplasma,1989,150:54-71.
    204. Paterson A. H., Curt L. B., Wendel J. F.. A rapid method for extraction of cotton genomic DNA suitable for RFLP or PCR analysis [J]. Plant Mol Biol Rep,1993,11(2):122-127.
    205. Picton J. M., Steer M. W.. A model for the mechanism of tip extension in pollen tubes [J]. J Theor Biol,1982,98:15-20.
    206. Picton J. M., Steer M. W.. The effects of ruthenium red, lanthanum, isothiocyanate and trifluoperazine on vesicle transport, vesicle fusion and tip extension in pollen tubes [J]. Planta,1985, 163 (1):20-26.
    207. Pierson E. S., Cresti M.. Cytoskeleton and cytoplasmic organization of pollen and pollen tubes [J]. Int. Rev. Cytot.,1992,140:73-125.
    208. Pierson E. S., Derksen J., Traas J. A.. Organization of microfilament and microtubules in pollen tubes grown in vitro or in vivo in various organism [J]. Eur. J. Cell Biol.,1986,41:14-18.
    209. Pierson E. S., Li Y. Q., Zhang H. Q., et al.. Pulsatory growth of pollen tubes:investigation of a possible relationship with the periodic distribution of cell wall components [J]. Acta Bot Neerl, 1995,44(2):121-128.
    210. Pierson E. S., Miller D., Callaham D., et al.. Pollen tube growth is coupled to the extracellular Calcium ion flux and the intracellular calcium gradient:effect of BAPTA-type buffers and Hypertonic media [J].The Plant Cell,1994,6:1815-1828.
    211. Pierson E. S., Miller D. D., Callaham D. A., et al. Tip localized calcium entry fluctuates during Pollen tube growih [J]. Developmental Biology,1996,174:160-173.
    212. Picton J. M., Steer M. W.. A model for the mechanism of tip extension in pollen tubes [J]. J Theor Biol,1982,98:15-20.
    213. Rathore K. S., Cork R. J., Robinson K. R.. A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes [J]. Dev. Biol.,1991,148:612-619.
    214. Ren H. Y., Huang Z. L., Chen Z. L., et al.. Effects of nitrogen ion implantation on Lily pollen germination and the distribution of the actin cytoskeleton during pollen germination [J]. Chin. sci. Bull.,2000,45 (18):1677-1680.
    215.Rundle S. J., Zielinski R. E.. Alterations in barley ribulose-1,5-bisphosphate carboxylase/ oxygenase activase gene expression during development and in response to illumination [J]. J Biol Chem,1991,266 (22):14802-14807.
    216. Sailaja K., Reddy K. R., Reddy V. R., et al.. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths [J]. Journal of Experimental Botany,2005,56(412): 725-736.
    217. Shikazono N., Suzuki C., Kitamura S., et al.. Analysis of mutations induced by carbon ions in Arabidopsis thaliana [J]. Journal of Experimental Botany,2005,56(412):587-596.
    218. Smith L. G.. Cytoskeletal control of plant cell shape:getting the fine points [J]. Current. Opin. Plant Biol.,2003,6:63-73.
    219. Srivastava P, Singh R. P.. Effect of gamma radiation (60Co) on gladiolus Floriculture research trend in India [C]. Proceeding of the national symposium on India floriculture in the new millennium, 2002:25-27.
    220. Stadler L. J.. Mutation in barley induced by X-rays and radium [J]. Science 1928,68(1756): 186-187.
    221. Staiger C. J.. Signaling to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol., 2000,51:257-288.
    222. Staiger C. J., Yuan M., Valenta R., et al.. Microinjected profiling affects cytoplasmic streaming in plant cells by rapidly depolymerizing actin microfilaments [J]. Current Biology,1994,4:215-219.
    223. Steer M. W., Steer J. M.. Pollen tube tip growth [J]. New Phytol,1989,111:323-358.
    224. Tan C. Y., Xia Y. Y., Zhang J. H. et al.. Proton transmitting energy spectra and transmission EM examine of biological samples [J]. Chin Phys Lett,1999,16:123-125.
    225. Taylor L. P., Heler P. K.. Pollen germination and tube growth [J]. Ann Rev Plant Physiol Plant Mol Biol,1997,48:461-491.
    226. Tiwari S. C., Polito V. S.. The initiation and organization of microtubules in germination pear (Pyrus communis L.) Pollen [J]. Eur J Cell Biol,1990,53:384-389.
    227. Vidali L., Hepler P. K.. Actin and pollen tube growth [J]. Protoplasma,2001,215:64-76.
    228. Vonstein O. D., Thies W. G., Hofmann M.. A high throughput screening for rarely transcribed differentially expressed genes [J]. Nucleic Acids Res,1997,25:2598-2602.
    229. Wasteneys G. O.. Progress in understanding the role of microtubules in plant cells [J]. Curr. OPin.Plant Biol.,2004,7:651-660.
    230. Wu C., Bordeos A., Madamba M. R., et al. Rice lesion mimic mutants with enhanced resistance to diseases [J]. Mol Genet Genomics,2008,279(6):605-619.
    231. Wu C., Zhou B., Zhang T.. Isolation and characterization of a sterile-dwarf mutant in Asian cotton (Gossypium arboreum L.) [J]. J Genet Genomics,2009,36(6):342-353.
    232. Wu L. F., Yu Z. L.. Radiobiological effects of a low-energy ion beam on wheat [J]. Radiat Environ Biophys,2001,40(1),53-57.
    233. Wyatt R.. Inflorescence architecture:How flower number,arrangement, and phenology affect pollnation and fruit-set [J]. American Journal of Botany,1982,69(4):585-594.
    234. Xie C. X., Guo J. H., Yao J. M., et al., Evidence for base substitutions and repair Of DNA mismatch damage induced by low energy N+ ion beam implantation in E.coli [J]. High Technology Letter, 2003,9(2):1-6.
    235. Xu B. F., Liang S. P., Zhou C., et al.. Brassica de-exined pollen as a new experimental system studying pollen germination [J]. Acta Botanica Sinica,1997,39(6):489-493.
    236. Yang T. C., Tobias C. A.. Potential use of heavy-ion radiation in crop improvement [J]. Gamma-Field Symposia,1979,18:141-142.
    237. Yu Y. J., Wu L. J., Wu Y. J., et al.. The damaging effects of nitrogen ion beam implantation on upland cotton (Gossypium hirsutum L.) pollen grains [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2008,266(18), 3959-3967.
    238. Yu Z. L..Introduction to ion beam biotechnology [M], New York:Springer Publishing House, 2006:78-83.
    239. Yu Z. L.. Ion beam application in genetic modification [J]. IEEE Transactions on Plasma Science, 2000,28(1):128-131.
    240. Yu Z. L., Deng J. G., He J. J., et al.. Mutation breeding by ion implantation [J]. Nuclear Instruments and Methods in Physics Researeh,1991, B59/60:705-708.
    241. Yu Z. L., Shao C. L.. Dose effect of the tyrosine sample planted by low energy N+ ion beam [J]. Radiat Phys Chem,1994,43(4):349-351.
    242. Yue J. Y., Yu L. X., Wu Y. J., et al.. Effect of implantation machine parameters on N+ ion implantation for upland cotton (Gossypium hirsutum L.) pollen [J]. Plasma Science and Technology, 2008,10(5),640-644.
    243. Zhang W. H., Rengel Z.. Determination of intracellular Ca2+ in cells of intact wheat roots:loading of acctoxymethyl ester of fluo-3 under low temperature [J]. Plant J,1998,15(1):147-151.
    244. Zhou H., Randers P. G., Waldren C. A., et al.. Induction of a bystander mutagenic effect of alpha particles in mammalian cells [J]. PNAS.2000,97(5),2099-2104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700