用户名: 密码: 验证码:
玉米真空干燥特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国东北地区是玉米的主要产区,每年冬季都有大量的玉米需要干燥到安全水分。玉米真空干燥具有干燥品质好、干燥温度低、节能、环保等优点;而连续式真空干燥可以提高玉米干燥的效率和产量。目前,玉米真空干燥技术取得了—定的成果,但是在理论研究上还存在缺陷和不足。
     本文以国家十一五安全绿色储粮关键技术研究开发与示范科技支撑项目“粮食干燥新技术装备和设施研究开发与示范”(2006BAD08B06)为依托,在与郑州粮食科学研究院多次研究探讨的基础上,以玉米真空干燥过程为研究对象,通过对玉米静态真空干燥特性(静态真空干燥实验和玉米真空干燥内部传热传质特性)和玉米动态真空干燥特性(动态真空干燥实验、玉米在干燥仓内的流动特性和干燥仓内的气体流场)的理论与实验研究,深入了解玉米真空干燥的特性,为解决玉米真空干燥存在的问题,促进该技术早日实现工业化应用,从而为降低能耗,保护环境,提高被干燥产品品质作出努力。本文的主要研究内容如下:
     在实验室的箱式真空干燥机上开展了玉米静态真空干燥的试验研究,研究了温度、真空度、水分和料层厚度对玉米真空干燥速率、裂纹率和发芽率的影响;采用正交实验方法确定了玉米真空干燥的最佳工艺条件。对干燥前、自然干燥和真空干燥的玉米样品的外观形态进行了对比观察,发现真空干燥的玉米的软质胚乳部位有明显的凸起。
     将玉米籽粒内部视为多孔结构,采用多孔介质传热传质理论建立了玉米内部的热质传递模型,该模型考虑了压力梯度下的水分迁移;模型采用二维有限元方法进行了求解,得到了真空干燥条件下的玉米内部的温度、水分和压力分布规律。采用黏弹性材料的力学性质,结合温度、水分和压力,研究了玉米真空干燥过程中的温度应力、湿度应力和压力梯度。
     在中试型玉米连续式真空干燥设备上,采用2007年自然收获的高水分东北玉米开展了相关的动态实验研究。通过实验结果和干燥过程中干燥仓内的温度监测曲线,对比研究了蒸汽供热和热水供热两种条件下的玉米连续干燥特性;用热水供热时,整个干燥仓内供热均匀,玉米的出机温度在38℃左右,玉米的水分在3个小时左右就达到了14%,出机玉米的质量较好,色泽正常,测量其容重为723kg/m3;实验确定了该干燥设备的性能,并提出了设备的改进方案。
     采用离散单元法对被干燥物料在塔形连续式真空干燥仓内的流动混合特性进行了研究,并与实验结果相验证。在此基础上,通过模拟确定了物料在干燥仓内不会堵塞的条件,即物料的最大直径与干燥仓内的菱形管间距之间的关系;研究了干燥仓内物料的停留时间一致性;确定了干燥仓内物料的横向混合特性;为改进颗粒物料的横向混合特性,提出并设计了导流板结构。
     塔形真空干燥仓内的气体流动是颗粒物料干燥过程中外部传质的重要条件,因此通过数值模拟的方法研究了塔形真空干燥仓内的气体流场。研究应用计算流体力学(CFD)方法,采用标准k-ε紊流模型,将干燥仓内的物料区视为多孔介质,利用达西定律、Ergun方程和多孔介质界面跳跃条件,建立了干燥仓内部气体流动三维数学模型,采用计算流体力学软件Fluent进行数值求解。通过分析干燥仓内的气流方向,压力和速度分布,确定了干燥仓所应设置的抽气口位置、数量和抽气口应采取的真空度配置方案。
Maize is mainly produced by northeast region in China. Every winter it has a great deal of maize need to be drying. The vacuum drying of maize has a lot of benefit, including good quality, lower drying temperature, economic, saving energy, and environment friendly etc. The continuous vacuum drying can raise the drying efficiency and production. Now, the vacuum drying technique of maize has been obtained the better result, but it still has the weakness and shortage.
     In this paper, the research is based on National Key Technology R&D Program (2006BAD08B06) supported by State Administration of Grain, P.R.China. Aimed at the maize vacuum drying process, the static and dynamic drying characteristics were studied with theory and experiments. The main research contents are as follows:
     The static vacuum drying experiments were carried out on box vacuum dryer. The effect of temperature, vacuum degree, initial moisture and bed thickness on vacuum drying rate, crack percent and germination percent were studied. Through the orthogonal experiment of temperature, vacuum degree and bed height, the optimal drying process was gotten. The appearance and shape of vacuum drying, natural drying and not-drying was compared with each other. The maize has the obvious for bulge in soft endosperm.
     The maize was considered as porous medium. The moisture transfer affected by pressure was adopted, and the heat and mass transfer inner maize was studied by heat and mass transfer theory for porous medium. The model was solved by FEM, and the distribution of temperature, moisture and pressure was gotten. The temperature stress, moisture stress and pressure gradient were studied by viscoelastic materials mechanics.
     The dynamic experiments were carried out by pilot scale continuous vacuum dryer. The maize was gotten from northeastern region of China. The drying characteristics of hot-water and hot-vapor was compared with each other through experiment results and temperature curve. When using hot-water supplying heat, the supplying heat was uniformity, the maize temperature of end-drying was about 38℃. The moisture was gotten 14% in 3 hours. The maize color was natural and the quality was better. Its bulk density was about 732 kg/m. The dryer performance was gotten and the improved method for dryer was given.
     The flowing characteristics of granular in tower vacuum dryer were studied by DEM method. Through the simulation, the relation between the biggest diameter of material and the distance of diamond pipes was gotten. The retention time of granular was studied and a mixture characteristic across the dryer was gotten. The guide plate was designed in order to improve the mixture characteristics.
     Because the gas flowing inner vacuum dryer was the important condition of mass transfer, the gas flowing field was studied by numerical simulation. CFD method was applied, and the model was adopted. The material zone was considered as porous zone. The Darcy's law, Ergun equation and interface jumping condition was used. The mathematical model of 3D for gas flowing was built and it was solved by Fluent software. By analyzing the gas flowing direction, pressure and velocity, the pumping pipe position, the pumping pipe numbers and the vacuum degree were determined.
引文
1. 肖红伟,高振江.干燥对玉米饲用和加工品质影响的研究进展[J],农业程学报,2008,24(7):290-295
    2. 石德权,郭庆法.我国玉米品质现状、问题及发展优质食用玉米对策[J],玉米科学,2001,9(2):3-7
    3. 赵德春,郭湘琳,曾庆辉,杨存志.北方高水分玉米多级顺流干燥智能控制技术的研究[J],农机化研究,2007,(10):51-52
    4. 郝立群,白岩,董梅.玉米干燥中的能耗[J],粮食加工,2005,(2):29-31
    5. 黄志刚.转筒干燥器中颗粒物料流动和传热传质过程的研究[D],北京:中国农业大学,2004
    6. 潘永康,王喜忠,刘相东.现代干燥技术(第二版)[M],北京:化学工业出版社,2006,5
    7. 刘勇献,苏娅,高水分玉米低温真空干燥新技术研究及应用[J],粮食储藏,2006(6):20-23
    8. 王继焕,刘启觉.粮食烘干机尾气余热利用与中间缓苏仓试验研究[J],武汉食品工业学院学报,1999,(2):44-47
    9. 张志军,徐成海,张世伟,何翔.粮食真空干燥的技术经济与环境分析[J],节能,2006,25(8):10-13
    10.徐成海,张世伟,关奎之.真空干燥[M],北京:化学工业出版社,2004,1
    11.华泽钊.冷冻干燥新技术[M],北京:科学出版社,2006,1
    12.G.—W.厄特延,P黑斯利著,徐成海等译.冷冻干燥[M],北京:化学工业出版社,2005,4
    13. Franks F. Freeze-drying of bioproducts:putting principles into practice[J], European Journal of Pharmaceutics and Biopharmaceutics,1998,45:221
    14. Fabio F., Machado, Eric J. Preparation of zinc oxide nanopowder by freeze-drying [J], Journal of Metastable and Nanocrystalline Matertals,2001,4:71-76
    15. Liapis A I, Litchfield R J. Optimal control of a freeze-dryer:I. Theoretical development and quasi steady state analysis [J], Chemical Engineering Science, 1979,34:975-981.
    16. Millman M J, Liapis A I, Marchello J M. Analysis of the lyophilization process using a sorption-sublimation model and various operation policies [J], AICHE Journal,1985,31:1594-1604.
    17. 肖维强,蔡长河,张爱玉.低温真空干燥焙制荔枝干、龙眼干的研究[J],食品科学,2004,25(8):218-219
    18.王娟,李远志,杨公明,陈人人,黄东.带式连续真空干燥加工香蕉粉的工艺研究[J],食品科学,2006,27(9):163-167
    19.王娟,李远志,陈人人,龚丽,陈波雷.带式连续真空干燥香蕉粉的失水特性研究[J],食品工业,2005,2005,31(6):19-21
    20.樊建,范家恒,张惠芬等.洋葱真空干燥工艺研究[J],昆明理工大学报,2001,26(2):73-76
    21. 曾明,沈包罗,袁新强,郑韵秋.硅溶胶壳型的真空干燥工艺参数研究[J],铸造技术,2006,27(10):1102-1104
    22.文怀兴,梁熠葆,许牡丹.高Vc红枣真空干燥技术与设备的的研究[J],轻工机械,2002,(4):31-33
    23. 车刚,李成华,汪春.蕨菜真空干燥的试验研究[J],农业工程学报,2006,25(5):165-168
    24. 朱正良,樊建,高雪松.厥菜真空干燥工艺研究[J],西南农业大学学报,2001,23(1):73-79
    25.赵丽娟,王明空,何俊萍,康云峰,王伟,徐立强.绿芦笋真空干燥工艺研究[J],食品科技,2007,(5):81-84
    26.姜晔.米邦塔仙人掌真空干燥工艺的研究[J],广西轻工业,2006,(5):11-14
    27. 徐彦国,张晓松,安小刚,赵敏刚,刘松琴,齐晓娣.真空盘式连续干燥器在维生素C生产中的开发应用[J],现代化工,2007,增刊:263-265
    28.王福娟,李成华.胡萝卜真空干燥工艺参数的试验研究[J],中国农机化,2005,(3):55-57
    29. 常学东,朱京涛,康维民等.板栗真空干燥动力学研究[J],食品工业科技,2003,24(2):34-36
    30. 李科友,吴万兴,史清华.魔芋甘露聚糖热风与真空干燥特性的研究[J],陕西林业科技,1998,(2):5-8
    31.王武,刘进杰,方红美,陈从贵.南瓜片真空干燥过程失水特性的试验研究[J],合肥工业大学学报,2002,25(5):786-789
    32. 姜元欣,许时婴,王璋.南瓜渣的微波真空干燥[J],食品与发酵工业,2004,(5)58-62
    33.徐艳阳,张憨,陈亦辉,钟齐丰.热风和微波真空联合干燥甘蓝试验[J],无锡轻工大学学报,2003,22(6):64-67
    34. 李晓玲,高瑞清,黑田尚宏,小林功.人工林杨木的高频真空干燥工艺[J],木材工业,2004,18(4):12-15
    35.张国琛,毛志怀,牟晨晓,潘澜澜.微波真空干燥扇贝柱的物理和感观特性研究,农业工程学报,2004,20(3):141-144
    36. 张国琛,毛志怀,牟晨晓,潘澜澜.微波真空与热风组合干燥扇贝柱的研究[J],农业工程学报,2005,21(6):144-147
    37. 李远志,郑素霞,罗树灿,费坤,陈德显.真空微波加工马铃薯脆片的工艺特性[J],食品与发酵工业,2003,29(8):40-43
    38. 王喜鹏,张进疆,徐成海,胡光华.胡萝卜的真空微波干燥特性研究及工艺优化[J],现代农业装备,2005,(Z2):84-86
    39. 王喜鹏,胡光华,张进疆.龙眼的真空微波干燥试验研究[J],现代农业装备,2004,(10):44-47
    40. 张志军,徐成海,张世伟,何祥.活性碳负载醋酸锌催化剂真空干燥特性的研究[J],化学工程,2008,36(5):1-4
    41. Wu, Long; Orikasa, Takahiro, Ogawa, Yukiharu, Tagawa, Akio. Vacuum drying characteristics of eggplants [J], Journal of Food Engineering,2007,83(3):422-429
    42. Zhangjing Chen, Lamb, Fred M,. Analysis of the Vacuum Drying Rate for Red Oak in a Hot Water Vacuum Drying System [J], Drying Technology,2007,25(3): 497-500
    43. Kohout Martin, Collier Alan P., Stepanek Frantisek. Vacuum Contact Drying Kinetics:An Experimental Parametric Study[J], Drying Technology,2005,23 (9-11):1825-1839
    44. Tein M. Lin, Timothy D. Durance, Christine H. Scaman. Characterization of vacuum microwave, air and freeze dried carrot slices[J], Food Research International,1998,31(2):111-117
    45. S. Mongpraneet, T. Abe, T. Tsurusaki. Accelerated drying of welsh onion by far infrared under vacuum conditions [J], Journal of Food Engineering, 2002,55:147-156
    46. S. Litvin, C. H. Mannheim, J. Miltz. Dehydration of Carrots by a Combination of Freeze Drying, Microwave Heating and Air or Vacuum Drying[J], Journal of Food Engineering,1998,36:103-111
    47. Siporn Methakhup, Naphaporn Chiewchan, Sakamon Devahastin. Effects of drying methods and conditions on drying kinetics and quality of Indian gooseberry flake[J], Food Science & Technology,2005,38:579-587
    48. Leonid A. Bazyma, Vladimir P. Guskov, Andrew V. Basteev, Alexander M. Lyashenko, Valeriy Lyakhno, Vladimir A. Kutovoy. The investigation of low temperature vacuum drying processes of agricultural materials [J], Journal of Food 'Engineering,2006,74:410-415
    49. A. Erriguible, P. Bernada, F. Couture, M.-A. Roques. Simulation of vacuum drying by coupling models [J], Chemical Engineering and Processing, 2007,46:1274-1285
    50. Zhang jing Chen. Primary drying forces in wood vacuum drying[D],Virginia University,1997
    51.伊松林.木材浮压干燥过程的传热传质[D],北京林业大学,2002
    52. Schlunder E U, Mollekopf N. Mathmatical modeling of contact rotary dryers[J], Chemical Engineering Journal,1984,18:93-99
    53. E. Tsotsas, E.U. Schlunder. Vacuum contact drying of mechanically agitated beds: the influence of hygroscopic behavior on the drying rate curve [J]. Chemical Engineering and Processing,1987,21:199-208
    54. Kohout Martin, Stepanek Frantisek. Multi-Scale Analysis of Vacuum Contact Drying, Drying Technology,2007,25(7-8):1265-1273
    55.蒋代君,陈次昌,张以忱,伍超.纸浆模塑饭盒真空状态下传热传质的数值模拟[J],水动力学研究与进展A辑,2004,19(4):446-451
    56.姜涛,陈长琦,干蜀毅,王先路,朱武.固体绝缘材料真空干燥的瞬态湿分迁移[J],真空,2000,(5):24-26
    57.刘相东,于才渊,周德仁.常用工业干燥设备与应用[M],北京:化学工业出版社,2005,1
    58.衣淑娟,冯泽泉,张凤霞.5GSH系列谷物烘干机的研制与开发[J],农机化研究,2002,(2),93-94
    59.赵妍,麻德香,孙爱红,张伟,戈永杰.5GSH-8型谷物干燥机的研制[J],现代化农业,2001,(3):38-39
    60. 张伟,汪春,李玉清,谈先平.5GSH-45型谷物烘干机的研制[J],黑龙江八一农垦大 学学报,2000,12(2):65-68
    61. 朱恩龙,汪春,郭红莲.5GSH-32型玉米干燥机的研制[J],粮油食品科技,2005,13(3):12-13
    62.王成芝,张凤东,夏吉庆,程革,田恩多,万吉福.5HGS系列高效、节能谷物烘干机研究[J],粮油加工与食品机械,1995,(3):10-11
    63. 葛勇,高树林,田军.5HSH-10型谷物干燥机技术性能简介[J],现代化农业,2000(1):37-38
    64.谢奇珍.CTHL-0.5型移动式多用途粮食干燥机[J],农产品加工,2003,(3):39
    65.刘虹.5HX系列循环式谷物干燥机[J],南方农机,2002,(3):34
    66.曹崇文,朱文学.农产品干燥工艺过程的计算机模拟[J],北京:中国农业出版社,2001.1
    67. Brooker D B, Bakker-Arkema F W, Hall C W. Drying and storage of grains and oil seeds[J], NewYork:An AVI book published by Van Nostrand Reinhold,1992
    68. 王剑平,王成芝.谷物内部水分扩散系数的确定[J],东北农业大学学报,1996(3):63-67
    69. Fortes M, et al. Non-equilibrium thermodynamics approach to heat and mass transfer in corn kernels [J], Transaction of the AS AE,1981,24(3):761-769
    70. Fortes M, et al. Heat and Mass transfer analysis of intro-kernel wheat drying and rewetting[J], Transaction of the ASAE,1981,26(1):109-112
    71. 杨历,陶斌斌.多孔介质干燥过程传热传质研究[J],农业工程学报,2005,21(1):27-31
    72.贾灿纯.谷物内部传热传质及筒仓内谷物温度场的研究[D],北京:北京农业工程大学,1993
    73.张强.轴对称黏弹性体热—湿应力的有限元发研究[D],北京:北京农业工程大学,1998
    74. Gustafson R J, Mohsennim N N. Tensile relaxation modulus of corn horny endosperm as a function of time, temperature and moisture content [J], Transaction of the ASAE,1970,13(2):372-375
    75. Haghighi K,et al. Modeling simultaneous heat and mass transfer in an isotropic sphere-A finite element approach[J], Transaction of the ASAE,1988, 31(2):629-637
    76. 吴文福.玉米干燥品质控制机理和方法的研究[D],吉林大学,2002,12
    77. Thompson T L. Mathematical simulation of corn drying-A new model [J]. Transaction of the AS AE,1968,11(14):582-586.
    78. Bakker-Arkema F W. Grain dryer simulation [M]. Research report of MSU,1974
    79. Callaghan J R O. Digital simulation of agriculture dryer performance[J], Journal of Agricultural Engineering Research,1971,16:223-44
    80. Bern C J. Grain drying simulation[M], ISU Teaching Materials,1982
    81. Morey R V, Bakker-Arkema F W. The present status of grain drying simulation [M]. AS AE Paper,1978
    82. Liu Q, Montross M D, Bakker-Arkema F W. Stochastic modeling of grain drying: Part 1. Experimental investigation [J], Journal of Agricultural Engineering Research,1997,66:267-273
    83. Liu Q, Bakker-Arkema F W. Stochastic modeling of grain drying:Part 2.Model development[J], Journal of Agricultural, Engineering Research 1997,66:275-280
    84. Bakker-Arkema F W, Liu Q. Stochastic Modeling of Grain Drying:Part 3. Analysis of Crossflow Drying [J], Journal of Agricultural Engineering Research 1997,66:281-286
    85.曹崇文.谷物干燥模拟软件[J],干燥技术与设备,2006,4(4):189-193
    86. 戴天红,曹崇文.混流式谷物干燥的数学模拟[J],华中理工大学学报,1996,24(6):1-3
    87.杨凌,曹崇文.多级顺流干燥中谷物缓苏过程的计算机模拟[J],北京农业工程大学学报,1992,12(4):47-51
    88.徐成海,张志军,张世伟.节能环保的玉米真空干燥设备[A],第十一届全国干燥会议[C],2007,8,北京
    89. 国家粮食储备局郑州粮食科学研究院玉米低温真空技术研究开发课题组.玉米低温真空干燥新技术研究与开发初探[J],干燥技术与设备,2005(3):24-26
    90.何翔,王军.低温真空连续干燥技术及其塔形设备研制初步探讨[J],干燥技术与设备,2006,,4(3):158-161
    91. 丁贤玉.玉米低温真空干燥分析[C],中国粮油学会第三届学术年会论文选编,2005,230-202
    92.赵祥涛.高水分玉米真空低温干燥工艺生产性试验研究[J],干燥技术与设备,2007,5(4):202-205
    93.尹丽妍,于辅超,吴文福,马中苏.谷物低温真空干燥机理的探讨[J],中国粮油学 报,2006,21(5):129-132
    94. 于辅超.玉米真空薄层干燥工艺的研究[D],吉林大学硕士学位论文,2006
    95. 曹崇文.玉米热力干燥中应力裂纹的产生及预防[J],现代化农业,2003(1):41-45
    96.朱文学.干燥过程中谷物应力裂纹的模拟和试验研究[D],北京:中国农业大学,1997
    97. 周玉新.实验设计与数据处理[M],武汉:湖北科学出版社,2005
    98.潘柏松,龚惠玲,刘红.基于正交试验法的注塑工艺多目标优化设计[J],浙江工业大学学报,2007,35(3):309-312
    99. 李贤军.木材微波-真空干燥特性的研究[D],北京林业大学,2005
    100.林瑞泰.多孔介质传热传质引论[M],1995,北京:科学出版社
    101.刘相东,杨彬彬.多孔介质干燥理论的回顾与展望[J],中国农业大学学报,2005,10(4):81-92
    102.张浙,杨世铭.多孔介质对流干燥机理及其模型[J],化工学报,1997,48(2):52-59
    103.贾灿纯,曹崇文.玉米颗粒内部的二维传热传质过程[J],北京农业工程大学学报,1995,15(1):45-51
    104.卢涛,沈胜强,刘晓华.多孔介质对流干燥过程数值模拟[J],大连理工大学学报,2005,45(4):542-546
    105. Guerman I Efremov. Drying kinetics derived from diffusion equation with flux type boundary conditions[J],Drying tehnology,2002,20(1):55-66
    106.工程常用物质和热物理性质手册[M],北京:科学出版社,1990
    107.姚玉英主编.化工原理(上、下)[M],天津:天津科学技术出版社,1992
    108.蒋汉文主编.热工学(第二版),北京:高等教育出版社,1994
    109.陈瑜,梅晓红,张京生.玉米热导率的测定[J],中国农业大学学报,1998,3(4):29-32
    110.孔祥谦.有限单元法在传热学中的应用[M],北京:科学出版社,1998
    111.杨世铭,陶文铨.传热学[M],北京:高等教育出版社,2003
    112. William B.J. Zimmerman. COMSOL Multiphysics有限单元法多物理场建模与分析[M],北京:人民交通出版社,2007
    113.张宝强,李强主编.基于COMSOL Multiphysics的MEMS建模与应用[M],北京:冶金工业出版社,2007
    114. S. S. SINGH, M. F. FINNER, P. K. ROHATGI, F. H. BUELOW, M. SCHALLER. Structure and mechanical properties of kernels:a hybrid composite material corn kernels:a hybrid composite material[J], Journal of Materials Science,1991,26: 274-284
    115. Hasatani M, Yoshinori I. Drying induced strain and stress:a review[J], Drying Technology,1996,14(5):1011-1040
    116. Muthukumarappan K, etc. Vapor diffusivity and hygroscopic expansion of corn kernels during drying[J], Trans of the ASAE,1990,33(5):1637-1641
    117. Sokhansanj S, etc. Prediction of kernel and bulk volume of wheat and canola during adsorption and desorption[J], Journal of Agricultural Engineering Research, 1996,63:129-136
    118. Muthukumarappan K etc. Volumetric changes in rice kernels during desorption and adsorption[J],Trans of the ASAE,1993,35 (1):235-241
    119. Fortes M, etc. Change in physical properties of corn during drying. Transaction of the ASAE,1980,23(4):1004-1008
    120. Irudayaraj J, Haghighi K. Stress analysis of viscoelastic materials during drying (1):Theory and finite element formulation[J], Drying Technology,1993,11 (5):901-927
    121. Irudayaraj J, Haghighi K. Stress analysis of viscoelastic materials during drying. (2):Application to grain kernels. Drying Technology,1993,11(5),929-959
    122. Litchfield J B, Martin R O. Prediction of corn kernel stress and breakage induced by drying, tempering and cooling. Transaction of the ASAE,1988,31(2),585-594
    123.贾灿纯,曹崇文.干燥过程中玉米颗粒内部应力的有限元分析[J],农业机械学报,1996,27(1):58-62
    124.刘雪强,陈晓光,吴文福等.玉米干燥过程颗粒内部应力分析与预测[J],吉林大学学报(工学版),2006,36(supply):42-45
    125. Gustofson R J, Thompson D R, Sokhansanj S. Temperature and stress analysis of corn kernel-finite element analysis analysis[J], Transaction of the ASAE, 1979,22(3):955-960
    126.华云龙,傅志一,秦太验,曹崇文.关于谷物湿膨胀系数的讨论[J],农业工程学报,1998,14(3):204-207
    127.史美锋,刘国锋,邹骊飞.真空连续干燥设备概述[J],通用机械,2004,(2):25-27
    128.鄂霞,江汉忠,马永先.关风器的结构特点及选用[J].中国油脂,2006,(5):24-27
    129.张志军,徐成海,张世伟,何翔.新型真空关风器的研制[J],化工机械,2007,34(4):215-217
    130. M. Kwapinska, G. Saage, E. Tsotsas. Continuous versus discrete modelling of heat transfer to agitated beds[J], Powder Technology,2007,179:140-151
    131. Tibor J Goda, Fritz Ebert. Three dimensional discrete element simulations in hoppers and silos[J]. Powder Technology,2005,158(1-3):58-68
    132.武锦涛,陈纪忠,阳永荣.模拟颗粒流动的离散元方法及其应用[J],现代化工,23(4):56-58
    133. Charles S, Campbell. Granular material flows-An overview[J], Powder Technology,2006 162:208-229
    134.傅巍,蔡九菊,董辉等.颗粒流数值模拟的现状[J].材料与冶金学报,2004,3(3):172-175.
    135.杜明芳,刘起霞,蒋志娥等.储料的密度对立筒仓压力影响的颗粒流数值模拟[J],郑州工程学院学报,2004,25(3):40-43.
    136.徐泳, Kafui K D, Thornton C用颗粒离散元法模拟料仓卸料过程[J],农业工程学报,1999,15(3):65-69
    137. Yasunobu Kaneko, Takeo Shiojima, Masayuki Horio. Numerical analysis of particle mixing characteristics in a single helical ribbon agitator using DEM simulation[J].Powder Technology,2000,108(1):55-64.
    138. M. Kwapinska, G. Saage, E. Tsotsas. Mixing of particles in rotary drums:A comparison of discrete element simulations with experimental results and penetration models or thermal processes [J], Powder Technology,2006,161:69-78
    139. Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique,1979,29 (1):47-65
    140. Cundall P A, Strack O D L. Particle flow code in 2 Dimensions [A].Itasca Consulting Group, Inc.,1999
    141.粮食钢板筒仓设计规范,中华人民共和国国家标准GB50322—2001
    142.李心平,高连兴,马福丽.玉米种子力学特性的有限元分析[J],农业机械学报,2007,38(4):64-68
    143.鲍德松,张训生.颗粒物质与颗粒流[J],浙江大学学报(理学版),2003,30(5):514-517
    144. Kiwing To, Pik-Yin Lai, H. K. Pak. Jamming of Granular Flow in a Two-Dimensional Hopper [J], Physical Review Letters,2001,86 (1):71-74
    145.吴中华,刘相东.脉动气流喷雾干燥的数值模拟[J],农业工程学 报,2002,18(4):18-21
    146.吴中华,刘相东.喷雾干燥过程的CFD模型[J],中国农业大学学报,2002,7(2):41-46.
    147. Quarini J. Application of computational fluid dynamics in food and beverage production [J], Food Science and Technology Today,1995,9 (4):234-237.
    148. Xia Bin, Sun Da Wen. Applications of computational fluid dynamics (CFD) in the food industry:a review [J], Computers and Electronics in Agriculture,2002 (34):5-24
    149.窦国仁.紊流力学[M],上册,北京:人民教育出版社,1982,161-166
    150. Markatos N.C.. The Mathematical modeling or turbulence Flows[J], Appl. Math. Modeling,1986,10:190-220
    151. Ferziger J.H.. High-Level simulation of Turbulent flows[J], Computational Methods for Turbulent, Transonic and Viscous Flows,1983,93-182
    152. Orszag S.A.. Numerical simulation of turbulence Flows, Handbook of Turbulence[M], New York,1977,281-313
    153. Yang R.J., Aung W,. Equation and coefficient for turbulence Modeling[M], New York,1985,259-300
    154. C.J. Chen, S.Y. Jaw. Fundamentals of Turbulence Modeling[M], Taylor & Francis, Washington,1998.4
    155. Fluent Inc., FLUENT User's Guide[A]. Fluent Inc.,2003.1
    156.陶文铨.数值传热学(第二版)[M],西安:西安交通大学出版社,2000.2
    157.陶文铨.计算传热学的近代进展[M],西安:西安交通大学出版社,2001.7
    158.帕坦卡,张正译.传热与流体流动的数值计算[M],北京:科学出版社,1989.7
    159. Fluent Inc.. FLUENT Gambit2.0 Documentation[A],2003.9
    160. Mark Filipiak. Mesh Generation[M], The University of Edinburgh,1996.5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700