用户名: 密码: 验证码:
侧方跌倒高度及髋保护器对髋部冲击影响的实验及有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     在全球范围内,髋关节骨折越来越成为困扰老年人健康的一个重要问题,其主要发病人群是老年人,尤其是患有骨质疏松的老年女性,并且具有较高发病率、高致残率、短期内显著增加继发死亡风险和需要长期占用治疗和护理资源等特点,将给全社会带来不必要的沉重医疗及经济负担。同时,此种类型骨折的发病人群中,90%老年女性髋关节骨折是由侧方跌倒所产生的对髋部巨大的冲击作用所产生。目前对于此种类型骨折,研究者多关注于利用药物治疗骨质疏松,从而在根源上解决此问题,但相关研究结果显示此种药物干预方法效果欠佳。故此,侧方跌倒所导致的髋关节骨折目前尚无有效的预防方法。
     目前,在侧方跌倒导致髋关节骨折的生物力学研究中,部分工作集中于对股骨近端骨强度相关因素的研究方面。这些因素主要包括:实验中的股骨应变速率、股骨近端各局部骨量分布情况、股骨近端拓扑学因素、股骨上段在实验加载中的不同固定角度等。这些研究可较好评价与股骨近端骨强度相关的影响因素,却无法获取侧方跌倒中不同冲击速度下髋部所受冲击力数据这一导致骨折发生的首要因素。
     当前对于侧方跌倒致股骨近端骨折的跌倒冲击力方面研究主要有三类,分别为:人体跌倒模拟实验、对髋部塑料模型进行冲击实验以及对髋部及骨盆的三维数字化模型进行FEA分析并以此对冲击力进行有效预测。人体跌倒模拟实验利用人体悬吊释放的方式模拟侧方跌倒中的冲击作用,能很好地对跌倒所产生的冲击力进行量化及评价相关影响因素,但当前的人体悬吊实验存在一些不足,其中最主要的就是实验中模拟跌倒冲击的高度设置不足,仅为5cm,这主要是为了保证人体实验中受试者的人身安全,但这样也就无法获得在其他较高高度,包括真实跌倒高度下的确切髋部冲击力数据,也因此无法知道在何种高度下跌倒将有较大的致伤风险;同时,这些跌倒模拟实验中的身体姿势与真实跌倒情况中的身体姿势差别较大。由于这些原因的存在,人体侧方跌倒模拟实验中的髋部冲击力数值将远远小于真实跌倒中的数值。对髋部塑料模型进行冲击实验可获取人体实验不可能获取的髋部冲击数据,具有较好的指导作用,但这些实验仍然有一些不足:这些实验中均对髋部模型采取静态冲击方法,可在一定程度对冲击过程进行良好的模拟,但真实的跌倒冲击过程中,股骨近端以及身体姿势随冲击过程的变化将对冲击力数值有一定影响,而这些影响在静态冲击中将无法进行衡量。在进行侧方跌倒的FEA模拟研究中,利用人体全身FEA模型可以很好地预测髋部冲击力并且能较好地与已发表文献资料中的冲击结果进行有效性验证。同时这些FEA模拟研究也提供了许多生物力学实验中所无法获取的资料,譬如局部应力应变随时间的变化情况、冲击过程的细微结构变化等。但这些FEA模拟研究中也存在着一些不足,其中最重要的就是这些FEA模型未能模拟真实跌倒中的人体姿势,从而会对髋部冲击力的预测产生一定影响。
     故此,为了更好模拟真实状态下的侧方跌倒冲击,就需要模拟更高跌倒高度下的冲击情况,同时对于超出人体承受范围的冲击情况,利用经有效性验证的人体全身FEA模型可较好地进行预测。
     当前研究较多的用于预防侧方跌倒致股骨近端骨折的外部防护装置主要是髋关节保护器(Hip Protector, HP),它是一种主要应用于老年人的非药物干预方法,可以对跌倒所产生的对股骨大转子的直接冲击能量进行吸收和/或分流,从而降低跌倒所致的髋关节骨折的发生风险。由于HP具有较强的理论性优势,并且其成本相对于药物治疗显得更为廉价,从而受到研究者的关注。目前对于HP的研究主要集中在进行生物力学冲击防护效果的实验室研究和临床应用中的有效性研究两大方面。
     Lauritzen等研究人员于1993年报道了HP的临床有效性,其结果指出:对于养老院及社区老年人群,HP可显著降低由于侧方跌倒所导致的髋关节骨折的发生风险;具有较好的临床防护效果。由此,HP开始得到研究者的广泛关注,并对其生物力学防护效果及临床应用有效性等方面都进行了进一步的深入研究。然而,对这些研究的最终结果进行归纳分析后发现,HP的有效性方面出现巨大差异:即与最初的临床研究结果不一致,并无证据显示HP具有显著的临床防护效果,尤其是最近的临床前瞻性研究及Meta分析等资料认为:并没有确切证据显示HP可降低老年人跌倒所致髋部骨折风险。相反,对HP进行的大量生物力学实验却证实,在实验室设置的相对理想状态下,HP最高可减少跌倒时股骨大转子所受冲击力的94%,并根据此实验室测试结果认为,HP可显著性降低跌倒时对髋部的直接冲击力,并可大大降低跌倒所致髋关节骨折的发生风险。
     此种矛盾的出现促使研究人员进行进一步的生物力学冲击防护实验。结果表明:相对于人体在真实的滑倒后所产生的对髋部的侧方冲击力和冲击响应时间,生物力学实验室研究中所设置的有效冲击质量以及冲击高度,即模拟侧方跌倒的有效冲击能量偏小。并且认为这可能是导致生物力学实验中可获取对冲击有足够缓冲能力的最主要原因;同时,HP的临床有效性研究结果则多数认为:HP的临床有效性得不到有效证实的最主要原因可能是研究中的受试者对HP佩戴的依从性较差;研究中同时指出,改进HP的设计从而增加其临床应用依从性是证实HP临床应用有效性的首要问题。
     综合以上问题,侧方跌倒致髋部骨折的预防要点在于进行较高能量跌倒模拟从而获得真实跌倒状态下的髋部冲击力,以对跌倒所致髋部骨折的相关动力性机制进行研究;然后利用高能量侧方跌倒模拟实验对佩戴HP前后的髋部冲击力进行预测,从而对HP的生物力学防护效能进行评价,为HP的临床应用及最终证实其临床有效性提供基础的生物力学有效性证据。高能量侧方跌倒模拟实验可利用经有效性验证的全身FEA模型进行预测,以避免实验中受试者受伤。
     综合以上诸点,本研究中拟采用如下实验步骤:
     (1)、利用压缩性能较稳定的足跟部皮肤进行皮肤及皮下软组织的压缩性能测试,然后利用FEA分析方法根据实验室测量的软组织压缩参数进行FEA模型中软组织材料参数的计算及定义,从方法学角度对软组织参数的定义进行改进,从而提高软组织在冲击压缩下的模拟精确性,为下一步的髋部有限元模型中软组织参数的精确定义提供较好的方法;
     (2)、利用健康成年男性作为受试者进行侧方跌倒模拟实验研究。该实验进一步提高了跌倒高度并约束了受试者的身体姿势,使该侧方跌倒模拟实验更接近于真实跌倒情况,以尽可能降低实验误差;
     (3)、建立人体全身FEA模型并进行有效性验证。利用所获取的受试者身体姿势以及冲击触地瞬间的身体下落速度等信息对人体FEA模型进行定义,以便进行不同跌倒高度下髋部的冲击力的预测,之后利用实验中所获取的髋部冲击力数据对FEA模型进行多层次验证,提高FEA模型的可信度及应用范围;
     (4)、利用经多层次有效性验证的全身FEA模型进行高能量侧方跌倒髋部冲击力预测;
     (5)、利用经多层次有效性验证的全身FEA模型进行高能量冲击下HP防护能力评价,以明确相关HP的防护性能并对其进行进一步的改进及测试,使其具有更好的防护性能。
     研究目的
     1、明确低能量侧方跌倒冲击中的跌倒高度与跌倒中产生的髋部峰冲击力、冲击力达峰时间之间的关系;
     2、对人体FEA模型采用多层次验证方法进行模型有效性验证,增加人体FEA模型的模拟精确性和人体FEA模型应用的扩展性;
     3、对高能量侧方跌倒产生的髋部冲击力利用FEA模拟方法进行预测;对佩戴HP前后的跌倒中产生的作用于髋部的冲击力进行预测,评估HP在高能量侧方跌倒中的缓冲防护效果。
     材料和方法
     1、主要材料
     软组织压缩性能测试:新鲜健康人体足根部软组织标本6块;ElectroForce(?)3510材料试验机。
     侧方跌倒人体实验:人体实验所需志愿者依照本研究制定的志愿者入选标准进行筛选,根据实际情况进行招募,人数不多于6名;Lunar双能X线骨密度测试仪;Motion动态运动捕捉系统、6个Eagle红外线运动捕捉摄像头及配套Cortex1.1记录及分析软件系统;AMTI三维测试力台;用于手动升降悬吊装置的手动起重器;可实现悬吊体的牢固悬吊和瞬间释放的电磁释放器;用于保护受试者髋部的中等硬度泡沫海绵缓冲材料。
     侧方跌倒FEA模拟:计算机工作站,配置:双Intel Xeon E55072.66GHz4core处理器;12G1366MHz ECC内存;显存1G专业图形显卡;3.5T SATAII7200转硬盘;22寸专业显示器。ABAQUS6-10.1大型通用有限元分析软件。MIMICS14.01三维重建软件。Geomagic11.0逆向工程软件。
     2、实验方法
     利用压缩测试对足跟部软组织进行力学测试,对输出数据进行转换,输入ABAQUS软件中进行参数估计。将计算出的参数对FEA模型进行定义并进行同工况力学测试模拟,输出与标本实验同类型数据。将标本实验与FEA模拟所获取的力学测试输出数据进行比较,判断其是否一致。
     利用人体悬吊装置进行侧方跌倒模拟实验。实验前将反光Marker球直接贴在受试者身体各个大关节及胸前等14个位置。设置受试者身体姿势以尽量与侧方跌倒中相同,并瞩受试者前臂弯曲,身体其他部位肌肉保持放松。运动捕捉系统及力台开始记录数据后即释放电磁吸引器,使受试者以初始姿势自由下落。完成跌倒模拟后停止数据记录并检查受试者髋部是否有损伤。实验中可获取受试者身体姿势随跌落变化的情况,并可根据此信息计算出各Marker点在跌倒不同时间的瞬时速度,也可获取其髋部所受冲击力情况。
     利用ABAQUS通用有限元分析软件建立人体全身FEA模型,MRI三维数据来自于一名与受试者体态相似的健康成年男性志愿者的扫描数据。将侧方跌倒模拟实验中获取的身体姿势及瞬时速度等信息对FEA模型进行定义并模拟同工况下侧方跌倒所产生的冲击,输出与实验中相同类型的结果数据,将两者进行统计学分析以判断其是否一致。
     全身FEA模型经验证后可进行其他工况下的冲击测试:将FEA模型的初始冲击速度定义为高能量冲击速度以模拟在较高冲击能量情况下髋部所受冲击力的情况;同时建立HP的FEA模型,将其与全身模型进行装配,然后模拟佩戴HP后在不同冲击能量下的髋部作用力情况。
     3、统计学处理
     对软组织抗压性能的有限元分析与实验验证中,利用各组数据点的95%可信区间衡量FEA预测数据与真实实验数据的一致性;利用双变量相关性分析对体外实验与FEA模拟所获取的软组织压缩参数进行相关性分析;利用曲线拟合方法分别获取实验及FEA预测数据的力-位移曲线的曲线方程;
     在跌倒模拟实验中,利用单因素重复测量方差分析方法对跌倒高度各组的峰冲击力(Fmax)、冲击力达峰时间(Tmax)进行统计分析,不同水平间的两两比较采取LSD法。利用双变量相关性分析方法对跌倒预设高度(H)、峰冲击力(Fmax)和冲击力达峰时间(Tmax)之间的相关性进行分析,以确定各组数据之间的相关性程度,利用曲线拟合方法确定各组数据间的最佳拟合模型,以确定各组数据之间的数学表达关系。
     侧方跌倒全身FE模型的实验室数据验证过程中,采用双变量相关性分析方法对实验室测量到的髋部冲击力和FE模型所模拟的髋部冲击力进行相关性分析,确定两者之间的相关性程度;利用曲线估计方法获取两组变量之间的线性关系表达式。
     本研究中所有数据均采用SPSS13.0统计学软件包进行数据整理及统计学分析,所有数据资料都以均数±标准差(X±S.D.)表示,以P<0.05作为差异具有显著性的判断标准。
     结果
     软组织抗压性能测试中,利用体外压缩实验获取其抗压性能数据,并利用软件中相应功能进行材料参数评估。对所获材料参数赋予FEA模型中并进行模拟运算,当材料泊松比为0.497时,由FEA模拟获取的力-位移输出数据均在体外实验所获取数据的95%可信区间之内,证明这两组数据具有一致性;双变量相关性分析可知,体外实验与FEA模拟数据间有较强的线性相关关系;体外实验及FEA模拟的抗压性能数据均呈指数增长趋势。
     人体侧方跌倒模拟实验中,对不同跌倒高度下的髋部峰冲击力之间利用单因素重复测量方差分析进行统计学分析,结果认为其影响在总体上具有显著性差异(F=22.228,P=0.016)。采用LSD方法进行两两比较结果:在有衬垫保护的各组中,f0.05组和f0.4组与其他各组之间均存在显著性差异(P<0.046,P<0.043),其余组之间都无显著性差异;在无衬垫保护的g0.05组,其峰冲击力为1738.88±215.66N,与其他组间的两两比较结果认为:g0.05组与f10.1、f10.15及f0.4组之间的差别具有显著性,P值分别为0.046、0.049和0.030。
     对不同跌倒高度下的冲击力达峰时间之间利用单因素重复测量方差分析进行统计学分析,结果认为其影响在总体上具有显著性差异(F=40.666,P=0.010)。采用LSD方法进行两两比较结果:在有衬垫保护的各组中,f"0.05组同除f10.1组之外的其他各组间均存在显著性差异(P<0.021),f0.15-f0.4组的各组之间均无显著性差异(P>0.053);在无衬垫保护的g0.05组,其达峰时间为22.78±2.64ms,且经两两比较后认为其与其他各组之间均有显著性差异(P<0.032)。
     利用双变量相关性分析对H与Fm“及Tmax之间关系进行相关性分析,结果认为:三者之间均存在较强的线性相关关系,H与Fmax、H与Tmax之间的pearson相关系数分别为0.990(P=0.000)和-0.882(P=0.020);Fmax与Tmax间存在较强的负线性相关关系,Spearman相关系数为-0.836(P=0.000);利用曲线拟合方法对H与Fmax及Tmax之间关系进行分析,结果认为:H与Fmax、H与Tmax之间,最佳曲线拟合模型均为幂模型,其检验统计量分别为F=454.919,R2=0.991,P=0.000和F=185.928,R2=0.979,P=0.000;Fmax及Tmax之间的最佳曲线拟合模型为S模型,检验统计量为F=301.407,R2=0.987,P=0.000。
     侧方跌倒全身FE模型的实验室数据验证中,对实验室获取髋部冲击力数据与FEA模拟获取的冲击力数据进行两变量相关性分析,采用Spearman非参数检验方法,认为两者之间有较强的线性相关关系(R2=1.000,P<0.01)。
     结论
     1、软组织材料参数模拟效果良好。在较低压缩率下,计算结果与体外实验结果相一致;在较高压缩率情况下,提高材料泊松比可有效增加FEA模拟的准确性。
     2、侧方跌倒模拟实验可很好反映跌倒时髋部的受冲击力状态;跌倒高度与跌倒冲击力之间呈幂函数增长趋势;跌倒高度与冲击力达峰时间之间呈幂函数减小趋势;侧方跌倒高度超过0.3m,对于骨质疏松患者即有较大的导致股骨近端骨折的风险;
     3、本研究中所建立的全身简化FE模型具有良好的模拟性能,可很好地反映侧方跌倒时髋部所受冲击力状况;但在模拟较低跌倒高度时模拟精确度欠佳,在模拟较高跌倒高度时模拟精确度较高;
     4、当在直立位站立或行走中发生侧方跌倒时,跌倒者有较大发生股骨近端骨折的风险,即使跌倒者为股骨近端无骨质疏松等疾患的健康人;当侧方跌倒发生时,触地侧的股骨近端最先发生骨折的部位可能为股骨颈位于股骨头与大转子之间且靠近大转子一侧的部位;
     5、马蹄铁形HP可以产生一定的缓冲防护效果,在较低的跌倒冲击能量下,其防护效果较好;但在较高的跌倒冲击能量下,此缓冲防护效果较为有限,髋部冲击力有可能会超出股骨近端骨折阈值而发生股骨近端骨折。
Background
     Hip fractures more and more become an big health issue of the elderly in the world, especially elderly women suffering from osteoporosis. Hip fracture has a high incidence of high disability rate in the short term; a significant increase in the characteristics of secondary risk of death and long-term occupation of treatment and care resource will bring the heavy medical and economic burden to the society. Otherwise,90%of older women hip fractures caused by sideways fall. For the hip fracture, researchers pay more attention to the use of the drug treatment of osteoporosis, which address the root causes of this problem, but the results show that such drug intervention ineffective. Therefore, the hip fracture caused by sideways fall is currently no effective methods to preventing.
     At present, in biomechanics research of hip fracture caused by sideways fall, some work has focused on bone strength of the proximal femoral bone. These factors include:the femur in the experimental strain rate, local proximal femur bone mass distribution, proximal femur topology factors, and proximal femur in the experiment in a fixed angle. These studies evaluated the related factors about proximal femur bone strength, but can not access the impact velocities in the sideways fall.
     Three type of research method of sideways fall:the human fall impact test simulation experiments, the impact experiment of femur plastic models and three-dimensional FEA model of the hip and pelvis. The human body release experiments simulate the sideways fall, to quantify and evaluate the relevant factors fall simulation. There are some shortcomings of current body release experiments: the height of simulation fall was set in experiment, only5cm, in order to ensure the personal safety of subjects in human experimentation, but it will not be able to access other higher altitudes, including the real fall height of the exact hip impact force data, and therefore can not know what the height of the fall will have a greater risk of injury. On the other side, the body posture of the fall simulation was different from the real fall situation. Due to the existence of these reasons, the human side falls simulation of hip impact force values will be far less than the value in the real fall. Impact test impact data available human trials are unlikely to get hip hip plastic model, better guiding role, but these experiments are still some deficiencies take the static impact on the hip model:in these experiments can be to some extent, a good simulation of the impact process and have a certain influence, but the real impact falls, proximal femur, and body posture with the value of the impact of process changes will impact these effects can not be measured in a static impact will. FEA simulation of the side of the falls, the use of human body FEA model can be a good predictor of the impact of hip and good results have been published in the literature the impact of validation. This FEA simulation of the data can not be obtained in many biomechanics experiments, such as local stress and strain changes over time, subtle structural changes of the impact process. This FEA simulation of a number of shortcomings, one of the most important of these FEA model can not simulate the real fall in body posture, which will have a certain impact on the hip, impact prediction.
     Therefore, in order to better simulate the real state of the side fall impact, you need to simulate the higher fall height, impact, beyond the scope of the human body to withstand the impact of the human body FEA model validation can be better to carry out the forecast.
     Studied for the prevention side of the falls caused the external shield of proximal femoral fractures a hip protector (Hip Protector, HP), it is one of the main non-pharmaceutical interventions used in the elderly, can falls arising from the greater trochanter of the femur directly impact energy absorption and/or shunt, thereby reducing the risk of hip fractures caused by falls. HP has a strong theoretical advantage, and its cost relative to the drug treatment is even more inexpensive, and thus subject to the attention of the researchers. The researches of HP focus during the two major aspects of the validity of research in the laboratory research and clinical application of the protective effect of the impact of biomechanics.
     Lauritzen has been reported the clinical efficacy of HP in1993, the results pointed out:for nursing homes and elderly in the HP can significantly reduce the risk of side of the falls, hip fractures, with better clinical protection effect. A result, HP began extensive attention from researchers; biomechanics protective effect and clinical application of validity have carried out further in-depth study. However, summarized and analyzed the final results of these studies found that the effectiveness of HP's a huge difference:the results are inconsistent with the initial clinical studies, there is no evidence to show that HP has a significant clinical protective effect, especially the most recent clinical prospective research and Meta-analysis data suggest that:there is no conclusive evidence to show that HP can reduce falls in older people due to hip fracture risk. On the contrary, a large number of biomechanical experiments carried out on HP, but confirmed in laboratory settings, the relatively good condition, HP can be reduced to94%of the greater trochanter impact suffered in the fall, and in accordance with this laboratory test results that the HP can significantly reduce the direct impact of the fall on the hip, can greatly reduce the fall due to the occurrence of hip fracture risk.
     The emergence of such contradictions prompted the researchers to further biomechanical impact protection experiments. The results showed that:the impact of real slip relative to the body on the side of the hip and the impact of response time, set in the biomechanics laboratory studies the impact of quality and impact height, the analog side of the falls the effective impact energy is too small. And think that this may lead to biomechanical experiments have sufficient buffering capacity available on the impact of the most important reason; the same time, the clinical efficacy results in the HP most think the most important reason:HP's clinical efficacy is not proven effective may be worn by poor compliance of subjects in the study of HP; study also pointed out that to improve the design of HP thus increasing the compliance of its clinical application is to confirm the effectiveness of the most important issue of the clinical application of HP.
     Based on the above problem, the side of the falls caused by hip fracture prevention points to higher energy fall simulation to obtain the real fall under the state of hip impact on fall-induced hip fractures related to the dynamic mechanism; high-energy side fall simulation to predict the impact of the hip before and after wearing HP, HP biomechanical protection performance evaluation, the clinical application of the HP and ultimately confirmed the validity of its clinical efficacy based on biomechanics evidence. The high-energy side falls simulation experiments can be used the validation systemic FEA model predicted that in order to avoid the experiment, subjects were injured.
     Integrated the above point, this study intends using the following experimental steps:
     (1), Compress performance than the stable of heel skin to skin and subcutaneous soft-organization of the compression performance test, then the use of FEA analysis method based on laboratory measurements of the soft Organization compression parameters for the FEA model soft-organization of material parameters of the calculation and the definition from methodological point of view to improve the definition of parameters of the soft tissue, thereby improving the simulation accuracy of the soft tissue under shock compression, for the precise definition of the soft tissue parameters in the next finite element model of the hip to provide a better method;
     (2), the side of healthy adult males as subjects fall simulation study. Fall height of the experiment to further improve and to restrain the body posture of the subjects, so that the side of the falls simulations closer to the real fall situation, in order to minimize the experimental error;
     (3), the establishment of the human body FEA model validation. Subjects body posture and the impact of the physical whereabouts of the moment of touchdown speed of access to information on the human body FEA model is defined, for the prediction of the impact of different fall height of hip, hip obtained in the experiments impact data on the FEA model multi-level verification, and improve the credibility of the FEA model and the scope of application;
     (4), validated by the effectiveness of multi-level systemic FEA model of high-energy side impact forecast fall hip;
     (5), validated by the effectiveness of multi-level systemic FEA model HP protection capability in the high-energy impact evaluation, a clear protective performance of HP and its further improvement and testing, it has better protection performance.
     Objective
     1. A clear low-energy side of falls the hip impact in the fall height and fall in the peak impact force, the relationship between the peak time of impact:
     2, the FEA model to the human body using the authentication method of the multi-level model validation, increase the scalability of human FEA model simulation accuracy and human FEA model application;
     3, right side of the high-energy fall hip impact using FEA simulation method to predict to predict the impact of the hip; the role of wear HP before and after the fall to assess the fall of the high-energy side, HP buffering protective effects.
     Material and methods
     Instrument and apparatus
     Soft tissue compression performance tests:fresh healthy human foot roots of soft tissue6; ElectroForce (?)3510materials testing machine.
     Sideway falling experiment:human experiments required volunteers selected according to the volunteers of this study and formulate standards for screening, recruitment in accordance with the actual situation, not more than six; the Lunar dual-energy X-ray absorptiometry tester; Motion dynamic motion capture system,6Eagle infrared movement to capture the camera and supporting the Cortex1.1recording and analysis software system; AMTI force plates of three-dimensional test; manual lifting device used to manually lift suspension device; can achieve suspension of solid suspension and instantaneous release of the electromagnetic release; medium hardness foam sponge cushioning material used to protect subjects hip.
     FEA simulation:computer workstations, Configuration:CPU:Dual Intel Xeon E55072.66GHz4-core processor;12G1366MHz ECC memory; Memory the1G professional graphics card;3.5T SATAII7200RPM hard drive;22-inch professional display. ABAQUS6-10.1:large-scale general purpose finite element analysis software. MIMICS14.01. Geomagic11.0reverse.
     Specimen and treatment
     Experimental methods
     The use of compression test of the soft tissue of the heel mechanical testing, the output data conversion, input parameters in the ABAQUS software estimates. The calculated parameters of the FEA model is defined and the mechanical test simulation of the same conditions, the output and specimen experiment with the types of data. The specimens of experimental and FEA simulation of the mechanical test output data to determine whether consistent.
     Body suspension device side of the fall simulation. Reflective Marker ball before the experiment is directly attached to the14position of the large joints of the subjects'body and chest. Set the receiver body posture to fall to the side as far as possible, and visions subjects forearm bent, and the rest of the body muscles stay relaxed. Motions capture system and force Taiwan to start recording data after the release of electromagnetic suction, so that the subjects to free fall to the initial position. Complete stop after the fall simulation data logging and check the subjects with hip injury. Available subjects posture with the drop changes, according to this information to calculate the Marker point in the fall at different times of the instantaneous velocity, is also available hip suffered the impact of the experiment.
     ABAQUS finite element analysis software to establish the human body FEA model of MRI3D data from a subjects body scan data of healthy adult male volunteers. Side of the falling body posture and the instantaneous velocity information on the FEA model to define and simulate the same conditions the side of the falls the same types of results arising from the impact of output and experimental data obtained in the simulation, the two statistics analysis to determine whether consistent.
     Can be systemic FEA model proven impact testing of other conditions:the definition of the initial impact velocity of the FEA model to simulate the impact velocity of the high-energy hip suffered from the impact force in case of a higher impact energy; established HP FEA model and systemic model for assembly, and then simulate the hip forces in different impact energy wear HP.
     Statistical analysis
     Finite element analysis and experimental verification of soft tissue compression performance, the95%confidence interval of each set of data points to measure the FEA prediction data and real experimental data consistency; bivariate correlation analysis of the in vitro experiments and FEA simulation soft tissue compression parameters obtained correlation analysis; curve fitting method to obtain the data of experimental and FEA prediction curve equation of the force-displacement curve;
     In the fall simulation experiments, using single factor repeated measures analysis of variance on the fall height of each peak impact force (Fmax), the impact of peak time (Tmax) for statistical analysis, pairwise comparisons of the different levels to take LSD method. The correlation between bivariate correlation analysis of the fall of the default height (H), the peak impact force (Fmax) and the impact of peak time (Tmax) were analyzed to determine the degree of correlation between each set of data using curve fitting method to determine the best fitting model in each set of data to determine the mathematical expression of the relationship between each set of data.
     Side of the falling body FE model laboratory data validation process using bivariate correlation analysis to the laboratory measurements of hip impact force and FE model to simulate the impact of hip correlation analysis, to determine boththe correlation between the degree; curve estimation method to obtain a linear relationship between the two sets of variable expression.
     All data in this study using SPSS13.0statistical package for data processing and statistical analysis, all data are presented as mean+standard deviation (X±SD) said that the difference was significant (P<0.05) as of criteria.
     Results
     Soft tissue compression performance testing, in vitro compression tests to obtain their compression performance data, and use the software function of the material parameters assessment. Obtained material parameters given in the FEA model and the simulation operation, when the material Poisson's ratio is0.497, obtained by the FEA simulation force-displacement output data are in vitro experiments to obtain the95%confidence interval of the data to prove that these two sets of data consistency; bivariate correlation analysis shows that there is a strong linear correlation between the in vitro experiments and FEA simulation data; compression performance of the in vitro experiments and FEA simulation data showed exponential growth trend.
     Human side falls in the simulation, the fall height of the peak hip impact force between a single-factor repeated measures analysis of variance for statistical analysis, concluded that its impact in the overall significant difference (F=22.228, P=0.016). LSD method for pairwise comparison results:In the liner protection groups, between f0.05and f0.4group and other groups there were significant differences (P<0.046, P <0.043), and the remaining between groups without significant differences; no liner protection g0.05-peak impact force is1738.88±215.66N, and any two of the other groups concluded that:g0.05group and f0.1between f0.15and f0.4group difference was significant, P values were0.046,0.049and0.030.
     Fall height of the peak time of impact between a single-factor repeated measures ANOVA for statistical analysis, concluded that its impact in the overall significant difference (F=40.666, P=0.010). LSD method for pairwise comparison results:in the liner to protect each group, the f0.05group than fO.1group outside the other groups there are significant differences (P<0.021), f0.15f0.4group had no significant difference (P>0.053); no liner protection g0.05-peak time was22.78±2.64ms, and by the pairwise comparisons that and among the other groups were significant differences (P<0.032).
     Bivariate correlation analysis, correlation analysis on the relationship between H and Fmax and Tmax concluded that:there is a strong linear relationship among the pearson correlation coefficient between H and Fmax, H and Tmax were0.990(P=0.000) and-0.882(P=0.020); there is a strong negative linear correlation between Fmax and Tmax, the Spearman correlation coefficient was-0.836(P=0.000); curve fitting method of H with the relationship between Fmax and Tmax:H and Fmax. H and Tmax between the best curve fitting model are the power model, the test statistic F=454.919, R2=0.991, P=0.000and F=185.928, R2=0.979, P=0.000; between Fmax and Tmax is the best curve fitting model for the S model, test statistic is F=301.407, R2=0.987, P=0.000.
     Side of the falling body FE model laboratory data validation, and impact data obtained by the hip impact force data and FEA simulation laboratory to obtain the two-variable correlation analysis, using non-parametric method of Spearman test methods, and concluded that the two strong strong linear correlation (Spearman's Rz=1.000, P<0.01) between
     Conclusions
     1. A soft tissue material parameter simulation to good effect. Lower compression ratio, calculated results and the in vitro results; the case of higher compression ratio to improve the material Poisson than can effectively increase the accuracy of the FEA simulation.
     2, the side of the falls simulation experiments may well reflect the fall by the impact of state of the hip; the power function between the growth trend in the fall height and fall impact; fall height and impact of peak time between the power function decreases trends; side fall to a height exceeding0.3m, that is, have a greater risk of proximal femoral fractures in patients with osteoporosis;
     3, this study established body to simplify the FE model has a good analog performance may well reflect the hip side of the falls suffered by the impact of conditions; simulation accuracy of the poor but in the simulation of a lower fall height, simulation of higher fall height of analog high accuracy;
     4, when the side of the falls occurred in the upright position to stand or walk, falls the larger the risk of proximal femur fractures occur even if the fall of the proximal femur osteoporosis and other disorders of healthy people:the side of the fallsoccurs. the touchdown side of the proximal femur is the first occurrence of the fracture site may be located in the femoral neck between the femoral head and greater trochanter, and close to the large rotor side of the site:
     5, horseshoe-shaped HP buffer protective effect in the low impact energy falls under the protection is better:but in the high impact energy falls, this buffer is more limited protective effect, the impact of the hip proximal femoral fracture threshold may exceed the occurrence of proximal femoral fractures.
引文
[1]Greenspan S.L., Maitland L.A., Myers E.R., et al. Femoral bone loss progresses with age:a longitudinal study in women over age 65[J]. J Bone Miner Res,1994,9(12):1959-65.
    [2]Kauppi M., Heliovaara M., Impivaara O., et al. Parity and risk of hip fracture in postmenopausal women[J]. Osteoporos Int,2011,22(6):1765-71.
    [3]Grisso J.A., Kelsey J.L., Strom B.L., et al. Risk-Factors for Falls as a Cause of Hip Fracture in Women[J]. New Engl J Med,1991,324(19):1326-31.
    [4]Lundebjerg N., Rubenstein L.Z., Kenny R.A., et al Guideline for the prevention of falls in older persons[J]. J Am Geriatr Soc,2001,49(5): 664-72.
    [5]Frost S.A., Nguyen N.D., Black D.A., et al. Risk factors for in-hospital post-hip fracture mortality[J]. Bone,2011,49(3):553-8.
    [6]Marks R., Allegrante J.P., Ronald MacKenzie C., et al. Hip fractures among the elderly:causes, consequences and control[J]. Ageing Res Rev,2003,2(1): 57-93.
    [7]Huang S.Y., Grimsrud C.D., Provus J., et al. The impact of subtrochanteric fracture criteria on hip fracture classification[J]. Osteoporos Int,2012,23(2): 743-50.
    [8]Xia W.B., He S.L., Xu L., et al. Rapidly increasing rates of hip fracture in Beijing, China[J]. J Bone Miner Res,2011.
    [9]Majumder S., Roychowdhury A., Pal S. Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex[J].J Biomech,2009,42(10):1475-82.
    [10]Van Toen C., Sran M.M., Robinovitch S.N., et al. Transmission of Force in the Lumbosacral Spine During Backward Falls[J]. Spine (Phila Pa 1976), 2011.
    [11]Buchanan D., Ural A. Finite Element Modeling of the Influence of Hand Position and Bone Properties on the Colles'Fracture Load During a Fall[J]. J Biomech Eng-T Asme,2010,132(8).
    [12]Raul J.S., Baumgartner D., Willinger R., et al. Finite element modelling of human head injuries caused by a fall[J]. Int J Legal Med,2006,120(4): 212-8.
    [13]Stewart N.A., Chantrey J., Blankley S.J., et al. Predictors of 5 year survival following hip fracture [J]. Injury,2011,42(11):1253-6.
    [14]Maravic M., Taupin P., Landais P., et al. Change in hip fracture incidence over the last 6 years in France [J]. Osteoporos Int,2011,22(3):797-801.
    [15]Lin W.P., Wen C.J., Jiang C.C., et al. Risk factors for hip fracture sites and mortality in older adults[J]. J Trauma,2011,71(1):191-7.
    [16]Keene G.S., Parker M.J., Pryor G.A. Mortality and morbidity after hip fractures[J]. BMJ,1993,307(6914):1248-50.
    [17]Cooper C., Campion G., Melton L.J.Ⅲ. Hip fractures in the elderly:a world-wide projection[J]. Osteoporos Int,1992,2(6):285-9.
    [18]Rubenstein L. Hip protectors--a breakthrough in fracture prevention[J]. N Engl J Med,2000,343(21):1562-3.
    [19]Hubacher M., Wettstein A. Acceptance of hip protectors for hip fracture prevention in nursing homes[J]. Osteoporosis Int,2001,12(9):794-9.
    [20]Harada A., Mizuno M., Takemura M., et al. Hip fracture prevention trial using hip protectors in Japanese nursing homes [J]. Osteoporos Int,2001, 12(3):215-21.
    [21]Meyer G., Warnke A., Bender R., et al. Effect on hip fractures of increased use of hip protectors in nursing homes:cluster randomised controlled trial[J]. Brit Med J,2003,326(7380):76-8A.
    [22]Becker C., Kron M., Lindemann U., et al. Effectiveness of a multifaceted intervention on falls in nursing home residents[J]. J Am Geriatr Soc,2003, 51(3):306-13.
    [23]Cameron I.D., Kurrle S., Quine S., et al. Increasing adherence with the use of hip protectors for older people living in the community[J]. Osteoporos Int, 2011,22(2):617-26.
    [24]Gillespie W.J., Gillespie L.D., Parker M.J. Hip protectors for preventing hip fractures in older people[J]. Cochrane Database Syst Rev,2010,10: CD001255.
    [25]Madrecka A., Lyons D., O'Connor C., et al. Hip protectors in fracture prevention for aging adults at risk of falling:a study of user compliance[J]. J Geriatr Phys Ther,2009,32(4):153-8.
    [26]Sze P.C., Cheung W.H., Qin L., et al. Biomechanical study of an anthropometrically designed hip protector for older chinese women[J]. Geriatr Nurs,2008,29(1):64-9.
    [27]Sawka A.M., Gafni A., Boulos P., et al. Could a policy of provision of hip protectors to elderly nursing home residents result in cost savings in acute hip fracture care? The case of Ontario, Canada[J]. Osteoporosis Int,2007,18(6): 819-27.
    [28]Parker M.J.,Gillespie W.J., Gillespie L.D. Effectiveness of hip protectors for preventing hip fractures in elderly people:systematic review[J]. BMJ,2006, 332(7541):571-4.
    [29]Parker M.J., Gillespie W.J., Gillespie L.D. Hip protectors for preventing hip fractures in older people[J]. Cochrane Database Syst Rev.2005(3): CD001255.
    [30]Doherty D., Glover J., Davies S., et al. Preventing hip fracture in care homes 1:views of residents and staff[J]. Br J Nurs,2004,13(21):1242-8.
    [31]Empana J.P.. Dargent-Molina P., Breart G. Effect of hip fracture on mortality in elderly women:The EPIDOS prospective study[J]. J Am Geriatr Soc,2004, 52(5):685-90.
    [32]Norton R., Butler M., Robinson E., et al. Declines in physical functioning attributable to hip fracture among older people:a follow-up study of case-control participants[J]. Disabil Rehabil,2000,22(8):345-51.
    [33]Siris E.S., Chen Y.T., Abbott T.A., et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures[J]. Arch Intern Med,2004, 164(10):1108-12.
    [34]Dragomir-Daescu D., Op Den Buijs J., McEligot S., et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip[J], Ann Biomed Eng,2011,39(2):742-55.
    [35]Cong A.. Buijs J.O., Dragomir-Daescu D. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur[J]. Med Eng Phys,2011,33:163-73.
    [36]Manske S.L., Liu-Ambrose T.. Cooper D.M.L., et al. Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction[J]. Osteoporosis Int,2009,20(3):445-53.
    [37]Keyak J.H., Skinner H.B., Fleming J.A. Effect of force direction on femoral fracture load for two types of loading conditions[J]. J Orthop Res,2001, 19(4):539-44.
    [38]Cheng X.G., Lowet G., Boonen S., et al Assessment of the strength of proximal femur in vitro:relationship to femoral bone mineral density and femoral geometry[J]. Bone,1997,20(3):213-8.
    [39]Ford C.M.,Keaveny T.M., Hayes W.C. The effect of impact direction on the structural capacity of the proximal femur during falls[J]. J Bone Miner Res, 1996,11(3):377-83.
    [40]Courtney A.C., Wachtel E.F., Myers E.R., et al. Age-related reductions in the strength of the femur tested in a fall-loading configuration[J]. J Bone Joint Surg Am,1995,77(3):387-95.
    [41]Courtney A.C.,Wachtel E.F., Myers E.R., et al. Effects of loading rate on strength of the proximal femur[J]. Calcif Tissue Int,1994,55(1):53-8.
    [42]Greenspan S.L., Myers E.R., Maitland L.A., et al. Fall severity and bone mineral density as risk factors for hip fracture in ambulatory elderly [J]. JAMA,1994,271(2):128-33.
    [43]Helgason B., Perilli E., Schileo E., et al Mathematical relationships between bone density and mechanical properties:A literature review[J]. Clin Biomech, 2008,23(2):135-46.
    [44]Morgan E.F., Yeh O.C., Chang W.C., et al. Nonlinear behavior of trabecular bone at small strains[J]. J Biomech Eng,2001,123(1):1-9.
    [45]Morgan E.F., Keaveny T.M. Dependence of yield strain of human trabecular bone on anatomic site[J]. J Biomech,2001,34(5):569-77.
    [46]Keaveny T.M., Morgan E.F., Niebur G.L., et al. Biomechanics of trabecular bone[J]. Annual review of biomedical engineering,2001,3:307-33.
    [47]Greenspan S.L., Myers E.R., Maitland L.A., et al Trochanteric bone mineral density is associated with type of hip fracture in the elderly[J]. J Bone Miner Res,1994,9(12):1889-94.
    [48]Wang Q., Teo J.W., Ghasem-Zadeh A., et al Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall[J]. Osteoporos Int,2009,20(7):1151-6.
    [49]Diamantopoulos A.P., Rohde G., Johnsrud I., et al. Incidence rates of fragility hip fracture in middle-aged and elderly men and women in southern Norway [J]. Age Ageing,2012,41(1):86-92.
    [50]Zhang H., Hu Y.Q., Zhang Z.L. Age trends for hip geometry in Chinese men and women and the association with femoral neck fracture[J]. Osteoporos Int, 2011,22(9):2513-22.
    [51]Choi W.J., Hoffer J.A., Robinovitch S.N. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls[J]. Clin Biomech,2010,25(1):63-9.
    [52]Laing A.C., Robinovitch S.N. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls[J]. Osteoporos Int.2008,19(7): 1067-75.
    [53]Parkkari J., Kannus P., Heikkila J., et al. Impact experiments of an external hip protector in young volunteers[J]. Calcif Tissue Int,1997,60(4):354-7.
    [54]Choi W.J., Hoffer J.A., Robinovitch S.N. The effect of positioning on the biomechanical performance of soft shell hip protectors[J]. J Biomech,2010, 43(5):818-25.
    [55]Laing A.C., Robinovitch S.N. The Force Attenuation Provided by Hip Protectors Depends on Impact Velocity, Pelvic Size, and Soft Tissue Stiffness[J]. J Biomech Eng-T Asme,2008,130(6):1005(1-9).
    [56]Nabhani F., Bamford J. Mechanical testing of hip protectors[J]. J Mater Process Tech,2002,124(3):311-8.
    [57]Kannus P., Parkkari J., Poutala J. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly:an in vitro biomechanical study[J]. Bone,1999,25(2):229-35.
    [58]Robinovitch S.N., Hayes W.C., McMahon T.A. Energy-shunting hip padding system attenuates femoral impact force in a simulated fall[J]. J Biomech Eng, 1995,117(4):409-13.
    [59]Parkkari J., Kannus P., Heikkila J., et al. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold:an in vitro biomechanical study under falling conditions of the elderly[J]. J Bone Miner Res,1995,10(10):1437-42.
    [60]Parkkari J., Kannus P., Poutala J., et al. Force attenuation properties of various trochanteric padding materials under typical falling conditions of the elderly [J]. J Bone Miner Res,1994,9(9):1391-6.
    [61]Robinovitch S.N., McMahon T.A., Hayes W.C. Force attenuation in trochanteric soft tissues during impact from a fall[J]. J Orthop Res,1995, 13(6):956-62.
    [62]Derler S., Spierings A.B., Schmitt K.U. Anatomical hip model for the mechanical testing of hip protectors[J]. Med. Eng. Phys.,2005,27(6): 475-85.
    [63]Robinovitch S.N., Evans S.L., Minns J., et al. Hip protectors: recommendations for biomechanical testing-an international consensus statement (part Ⅰ)[J]. Osteoporos Int,2009,20(12):1977-88.
    [64]Majumder S., Roychowdhury A., Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body[J]. Med Eng Phys, 2007,29(10):1167-78.
    [65]Majumder S., Roychowdhury A., Pal S. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations[J]. J Biomech,2008,41(13):2834-42.
    [66]Casalena J.A., Badre-Alam A., Ovaert T.C., et al. The Penn State Safety Floor:Part Ⅱ--Reduction of fall-related peak impact forces on the femur[J]. J Biomech Eng,1998,120(4):527-32.
    [67]Nakano T., Tsugawa N., Kuwabara A., et al. High prevalence of hypovitaminosis D and K in patients with hip fracture [J]. Asia Pac J Clin Nutr,2011,20(1):56-61.
    [68]Shahnazari M., Yao W., Dai W., et al. Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats[J]. Bone,2010,46(5):1267-74.
    [69]Minns R.J., Marsh A.M., Chuck A., et al. Are hip protectors correctly positioned in use?[J]. Age Ageing,2007,36(2):140-4.
    [70]Koike T., Orito Y., Toyoda H., et al. External hip protectors are effective for the elderly with higher-than-average risk factors for hip fractures[J]. Osteoporosis Int,2009,20(9):1613-20.
    [71]Kannus P., Parkkari J., Niemi S., et al. Prevention of hip fracture in elderly people with use of a hip protector[J]. N Engl J Med,2000,343(21):1506-13.
    [72]Sawka A.M., Nixon M., Giangregorio L.,et al. The Use of Hip Protectors in Long-Term Care Facilities:A Survey of Nursing Home Staff[J]. J. Am. Med. Dir. Assoc.,2007,8(4):229-32.
    [73]Kiel D.P., Magaziner J., Zimmerman S., et al. Efficacy of a hip protector to prevent hip fracture in nursing home residents-The HIPPRO randomized controlled trial[J]. JAMA,2007,298(4):413-22.
    [74]van Schoor N.M., Smit J.H., Twisk J.W.R., et al. Prevention of hip fractures by external hip protectors-A randomized controlled trial [J]. JAMA,2003, 289(15):1957-62.
    [75]Sawka A.M., Boulos P., Beattie K., et al. Do hip protectors decrease the risk of hip fracture in institutional and community-dwelling elderly? A systematic review and meta-analysis of randomized controlled trials[J]. Osteoporosis Int. 2005,16(12):1461-74.
    [76]Kannus P., Parkkari J. Prevention of hip fracture with hip protectors[J]. Age Ageing,2006,35:51-4.
    [77]Parker M.J., Gillespie L.D., Gillespie W.J. Hip protectors for preventing hip fractures in the elderly[J]. Cochrane Database Syst Rev,2004(3):CD001255.
    [78]Milisen K., Coussement J., Boonen S., et al. Nursing staff attitudes of hip protector use in long-term care, and differences in characteristics between adherent and non-adherent residents:a survey and observational study[J]. Int J Nurs Stud,2011,48(2):193-203.
    [79]Yasumura S., Suzuki T, Yoshida H., et al. Compliance concerning external protectors for hip fractures among the institutionalized elderly in Japan[J]. Nippon Ronen Igakkai Zasshi,1999,36(4):268-73. [In Japanese.].
    [80]Woo J., Sum C, Yiu H.H., et al. Efficacy of a specially designed hip protector for hip fracture prevention and compliance with use in elderly Hong Kong Chinese[J]. Clin Rehabil,2003,17(2):203-5.
    [81]王书军,王丽霞,李桂兰.老年人髋部骨折的机制及其防护垫的设计[J].中医正骨,2008,20(9):22.
    [82]王凤英,杜春萍,何成奇.髋保护器的临床应用.[J].中国组织工程研究与临床康复,2007,11(18):3637-9.
    [1]姚杰,牛文鑫,王旸,et al.跳伞着陆过程中膝关节损伤的有限元研究[J].医用生物力学,2010,25:244-248.
    [2]王肠,牛文鑫,何艳,et al.面向逆向动力学仿真驱动和验证的半蹲式跳伞着陆实验研究[J].医用生物力学,2010,25:257-261.
    [3]王沫楠,张猛.基于有限元法人体腿部生物力学仿真研究[J].系统仿真学报,2008,20:5638-5641.
    [4]Lee WC, Zhang M, Jia X, et al. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket[J]. Med Eng Phys,2004,26:655-662.
    [5]韩勇,杨济匡,李凡,er al.汽车-行人碰撞中人体下肢骨折的有限元分析[J].吉林大学学报(工学版),2011,41:6-11.
    [6]苏佳灿,管华鹏,张春才,et al.冲击载荷作用下骨盆三维有限元分析及其生物力学意义[J].中国骨伤,2007,,20:455-457.
    [7]Majumder S, Roychowdhury A, Pal S. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations[J]. J Biomech,2008,41:2834-2842.
    [8]Majumder S, Roychowdhury A, Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body[J]. Med Eng Phys,2007,29: 1167-1178.
    [9]Cheung JT, Zhang M, An KN. Effect of Achilles tendon loading on plantar fascia tension in the standing foot[J]. Clin Biomech (Bristol, Avon),2006,21: 194-203.
    [10]刘阳,李鉴轶,赵卫东,et al.下颌骨撞击试验与有限元分析[J].南方医科大学学报,2008,28:70-72.
    [11]薛强,张建国.人体头颈部冲击的生物力学研究及有限元模拟[J].中国组织工程研究与临床康复,2008,18:9557-9560.
    [12]张建国,何培,阮世捷,et al.颅脑正面碰撞的有限元模拟分析[J].应用力学学报,2007,24:674-676.
    [13]何黎民,吴建国,卢亦成.人颅脑损伤有限元模型研究进展[J].中华创伤杂志,2004,20:381-384.
    [1]Majumder S., Roychowdhury A., Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with, simplified representation of whole body[J]. Med Eng Phys, 2007,29(10):1167-78.
    [2]Groen B.E., Weerdesteyn V.. Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling[J]. J Biomech,2007, 40(2):458-62.
    [3]Groen B.E., Weerdesteyn V., Duysens J. The relation between hip impact velocity and hip impact force differs between sideways fall techniques[J]. J Electromyogr Kinesiol,2008.18(2):228-34.
    [4]Buchanan D., Ural A. Finite Element Modeling of the Influence of Hand Position and Bone Properties on the Colles'Fracture Load During a Fall[J]. J Biomech Eng-T Asme,2010.132(8).
    [5]Feldman F., Robinovitch S.N. Reducing hip fracture risk during sideways falls:evidence in young adults of the protective effects of impact to the hands and stepping[J]. J Biomech,2007,40(12):2612-8.
    [6]Laing A.C., Robinovitch S.N. Characterizing the effective stiffness of the pelvis during sideways falls on the hip[J]. J Biomech,2010,43(10): 1898-904.
    [7]Choi W.J., Hoffer J.A., Robinovitch S.N. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls [J]. Clin Biomech,2010,25(1):63-9.
    [8]Choi W.J., Hoffer J.A., Robinovitch S.N. The effect of positioning on the biomechanical performance of soft shell hip protectors[J]. J Biomech,2010, 43(5):818-25.
    [9]Wang Q., Teo J.W., Ghasem-Zadeh A., et al. Women and men with hip fractures have a longer femoral neck moment arm and greater impact load in a sideways fall[J]. Osteoporos Int,2009,20(7):1151-6.
    [10]Popp A.W., Windolf M., Senn C., et al. Prediction of bone strength at the distal tibia by HR-pQCT and DXA[J]. Bone,2012,50(1):296-300.
    [11]Mulder L., van Rietbergen B., Noordhoek N.J., et al Determination of vertebral and femoral trabecular morphology and stiffness using a flat-panel C-arm-based CT approach[J]. Bone,2012,50(1):200-8.
    [12]Dragomir-Daescu D., Op Den Buijs J., McEligot S., et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip[J]. Ann Biomed Eng,2011,39(2):742-55.
    [13]Cong A.,Buijs J.O., Dragomir-Daescu D. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur[J]. Med Eng Phys,2011,33:163-73.
    [14]Roberts B.J., Kopperdahl D., Thrall E., et al. Prediction of femoral strength in a sideways fall configuration using QCT-based finite element analysis[J]. Bone,2009,44:242.
    [15]Majumder S., Roychowdhury A., Pal S. Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex[J]. J Biomech,2009,42(10):1475-82.
    [16]Milovanovic P., Djonic D., Marshall R.P., et al. Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures[J]. Bone,2012,50(1):63-8.
    [17]Roshan-Ghias A., Lambers F.M., Gholam-Rezaee M., et al. In vivo loading increases mechanical properties of scaffold by affecting bone formation and bone resorption rates[J]. Bone,2011,49(6):1357-64.
    [18]Laing A.C., Robinovitch S.N. Low stiffness floors can attenuate fall-related femoral impact forces by up to 50% without substantially impairing balance in older women[J]. Accid. Anal. Prev.,2009,41(3):642-50.
    [19]Sran M.M., Robinovitch S.N. Preventing fall-related vertebral fractures: effect of floor stiffness on peak impact forces during backward falls[J]. Spine (Phila Pa 1976),2008,33(17):1856-62.
    [20]Nabhani F., Bamford J. Mechanical testing of hip protectors[J]. J Mater Process Tech,2002,124(3):311-8.
    [21]Kannus P., Parkkari J., Poutala J. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly:an in vitro biomechanical study[J]. Bone,1999,25(2):229-35.
    [22]Parkkari J., Kannus P., Heikkila J., et al. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold:an in vitro biomechanical study under falling conditions of the elderlyf[J]. J Bone Miner Res,1995,10(10):1437-42.
    [23]Robinovitch S.N., Hayes W.C., McMahon T.A. Energy-shunting hip padding system attenuates femoral impact force in a simulated fall[J]. J Biomech Eng. 1995,117(4):409-13.
    [24]Milisen K., Coussement J., Boonen S., et al. Nursing staff attitudes of hip protector use in long-term care, and differences in characteristics between adherent and non-adherent residents:a survey and observational study[J]. Int J Nurs Stud,2011,48(2):193-203.
    [25]Handoll H. Hip protectors for preventing hip fractures in older people[J]. Inj Prev,2010.
    [26]Madrecka A., Lyons D., O'Connor C., et al. Hip protectors in fracture prevention for aging adults at risk of falling:a study of user compliance [J]. J Geriatr Phys Ther,2009,32(4):153-8.
    [27]Sawka A.M., Nixon M., Giangregorio L., et al. The Use of Hip Protectors in Long-Term Care Facilities:A Survey of Nursing Home Staff[J]. J. Am. Med. Dir. Assoc.,2007,8(4):229-32.
    [28]Lu W.W., Luk K.D., Cheung K.C., et al Microfracture and changes in energy absorption to fracture of young vertebral cancellous bone following physiological fatigue loading[J]. Spine (Phila Pa 1976),2004,29(11): 1196-201:discussion 202.
    [29]Robinovitch S.N., Evans S.L., Minns J., et al.Hip protectors: recommendations for biomechanical testing-an international consensus statement (part I)[J]. Osteoporos Int,2009,20(12):1977-88.
    [1]Laing A.C., Robinovitch S.N. Characterizing the effective stiffness of the pelvis during sideways falls on the hip[J]. J Biomech,2010,43(10): 1898-904.
    [2]Choi W.J., Hoffer J.A., Robinovitch S.N. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls[J]. Clin Biomech,2010,25(1):63-9.
    [3]Laing A.C., Robinovitch S.N. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls[J]. Osteoporos Int,2008,19(7): 1067-75.
    [4]Groen B.E., Weerdesteyn V., Duysens J. The relation between hip impact velocity and hip impact force differs between sideways fall techniques[J]. J Electromyogr Kinesiol,2008,18(2):228-34.
    [5]Smeesters C., Hayes W.C., McMahon T.A. Determining fall direction and impact location for various disturbances and gait speeds using the articulated total body model[J]. J Biomech Eng,2007,129(3):393-9.
    [6]Groen B.E., Weerdesteyn V, Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling[J]. J Biomech,2007, 40(2):458-62.
    [7]Feldman F., Robinovitch S.N. Reducing hip fracture risk during sideways falls:evidence in young adults of the protective effects of impact to the hands and stepping[J]. J Biomech,2007,40(12):2612-8.
    [8]Nyan M.N., Tay F.E.H., Tan A.W.Y., et al. Distinguishing fall activities from normal activities by angular rate characteristics and high-speed camera characterization [J]. Med. Eng. Phys.,2006,28(8):842-9.
    [9]Laing A.C., Tootoonchi I., Hulme P. A., et al. Effect of compliant flooring on impact force during falls on the hip[J]. J Orthopaed Res,2006,24(7): 1405-11.
    [10]Smeesters C., Hayes W.C., McMahon T.A. Disturbance type and gait speed affect fall direction and impact location[J].J Biomech.2001,34(3):309-17.
    [11]Majumder S., Roychowdhury A.. Pal S. Effects of trochanteric soft tissue thickness and hip impact velocity on hip fracture in sideways fall through 3D finite element simulations[J]. J Biomech,2008,41(13):2834-42.
    [12]Majumder S., Roychowdhury A.,Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body[J]. Med Eng Phys. 2007,29(10):1167-78.
    [13]Derler S.,Spierings A.B., Schmitt K.U. Anatomical hip model for the mechanical testing of hip protectors [J]. Med. Eng. Phys.,2005,27(6): 475-85.
    [14]Schmitt K.U., Spierings A.B., Derler S. A finite element approach and experiments to assess the effectiveness of hip protectors[J]. Technol Health Care,2004,12(1):43-9.
    [15]Majumder S., Roychowdhury A., Pal S. Effects of body configuration on pelvic injury in backward fall simulation using 3D finite element models of pelvis-femur-soft tissue complex[J]. J Biomech,2009,42(10):1475-82.
    [16]Buchanan D., Ural A. Finite Element Modeling of the Influence of Hand Position and Bone Properties on the Colles'Fracture Load During a Fall[J], J Biomech Eng-T Asme,2010,132(8).
    [17]Raul J.S., Baumgartner D., Willinger R., et al. Finite element modelling of human head injuries caused by a fall[J]. Int J Legal Med,2006,120(4): 212-8.
    [18]Cheung J.T., Zhang M., Leung A.K., et al. Three-dimensional finite element analysis of the foot during standing-a material sensitivity study [J]. J Biomech, 2005.38(5):1045-54.
    [19]Cheung J.T., Zhang M. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method[J]. Med Eng Phys,2008,30(3): 269-77.
    [20]Cheung J.T., Zhang M., An K.N. Effect of Achilles tendon loading on plantar fascia tension in the standing foot[J]. Clin Biomech (Bristol, Avon),2006, 21(2):194-203.
    [21]Ruess M., Tal D., Trabelsi N., et al. The finite cell method for bone simulations:verification and validation[J]. Biomech Model Mechanobiol, 2011.
    [22]Czyz M., Scigala K., Jarmundowicz W., et al. Numerical model of the human cervical spinal cord.[J]. Acta Bioeng Biomech,2011,13(4).
    [23]Jones A.C., Wilcox R.K. Finite element analysis of the spine:towards a framework of verification, validation and sensitivity analysis[J]. Med Eng Phys,2008,30(10):1287-304.
    [24]Schwer L.E. An overview of the PTC 60/V&V 10:guide for verification and validation in computational solid mechanics[J]. Engineering with Computers, 2007,23(4):245-52.
    [25]Anderson A.E., Ellis B.J., Weiss J.A. Verification, validation and sensitivity studies in computational biomechanics[J]. Comput Methods Biomech Biomed Engin,2007,10(3):171-84.
    [26]Al-Sukhun J., Kelleway J., Helenius M. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. I. Mathematical validation and experimental verification[J]. J Biomed Mater Res A,2007,80(1):234-46.
    [27]Anthony T.R., Flynn M.R. CFD model for a 3-D inhaling mannequin: verification and validation[J]. The Annals of occupational hygiene,2006, 50(2):157-73.
    [28]Pace D.K. Modeling and simulation verification and validation challenges.[J]. J Hopkins Apl Tech D.,2004,25(2):163-72.
    [29]Morozoff P.E. Specifying software validation and verification for a biomedical application[J]. Biomed Instrum Technol,1994,28(3):196-204.
    [30]Casalena J.A., Badre-Alam A., Ovaert T.C., et al.The Penn State Safety Floor:Part Ⅱ--Reduction of fall-related peak impact forces on the femur[J]. J Biomech Eng,1998,120(4):527-32.
    [31]Majumder S., Roychowdhury A.. Pal S. Experimental validation of three-dimensional finite element model of pelvis-femur-soft tissue complex under side impact loading[J]. Int J Vehicle Safety,2008,13(2):117-34.
    [32]Majumdera S., Roychowdhurya A., Palb S. Three-dimensional finite element simulation of pelvic fracture during side impact with pelvis-femur-soft tissue complex[J]. Int J Crashworthines.2008,13(3):313-29.
    [33]Morgan E.F., Keaveny T.M. Dependence of yield strain of human trabecular bone on anatomic site[J]. J Biomech,2001,34(5):569-77.
    [34]Helgason B., Perilli E., Schileo E., et al.Mathematical relationships between bone density and mechanical properties:A literature review[J]. Clin Biomech, 2008.23(2):135-46.
    [35]Morgan E.F., Yeh O.C., Chang W.C., et al.Nonlinear behavior of trabecular bone at small strains[J]. J Biomech Eng,2001,123(1):1-9.
    [36]Schneider R., Faust G., Hindenlang U., et al.Inhomogeneous, orthotropic material model for the cortical structure of long bones modelled on the basis of clinical CT or density data[J]. Comput Method Appl Mechan Eng,2009, 198(27-29):2167-74.
    [1]Lundebjerg N., Rubenstein L.Z., Kenny R.A., et al. Guideline for the prevention of falls in older persons[J]. J Am Geriatr Soc,2001,49(5): 664-72.
    [2]Cameron I.D., Cumming R.G.. Kurrle S.E. Prevention of hip fracture with use of a hip protector[J]. New Engl J Med,2001,344(11):855-6.
    [3]Parker M.J., Gillespie L.D., Gillespie W.J. Hip protectors for preventing hip fractures in the elderly [J]. Cochrane Database Syst Rev,2004(3):CD001255.
    [4]Parker M.J., Gillespie W.J., Gillespie L.D. Effectiveness of hip protectors for preventing hip fractures in elderly people:systematic review[J]. BMJ,2006, 332(7541):571-4.
    [5]Milisen K., Coussement J., Boonen S., et al. Nursing staff attitudes of hip protector use in long-term care, and differences in characteristics between adherent and non-adherent residents:A survey and observational study [J]. Int. J. Nurs. Stud.,2011,48(2):193-203.
    [6]Roberts B.J., Kopperdahl D., Thrall E., et al. Prediction of femoral strength in a sideways fall configuration using QCT-based finite element analysis[J]. Bone,2009,44:242.
    [7]Robinovitch S.N., Hayes W.C., McMahon T.A. Energy-shunting hip padding system attenuates femoral impact force in a simulated fall[J]. J Biomech Eng, 1995,117(4):409-13.
    [8]Casalena J.A., Badre-Alam A., Ovaert T.C., et al. The Penn State Safety Floor:Part Ⅱ--Reduction of fall-related peak impact forces on the femur[J]. J Biomech Eng,1998,120(4):527-32.
    [9]Yu J., Cheung J.T., Fan Y., et al. Development of a finite element model of female foot for high-heeled shoe design[J]. Clin Biomech (Bristol, Avon), 2008,23 Suppl 1:S31-8.
    [10]Majumder S., Roychowdhury A., Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body[J]. Med Eng Phys, 2007.29(10):1167-78.
    [11]Ruess M., Tal D., Trabelsi N., et al. The finite cell method for bone simulations:verification and validation[J]. Biomech Model Mechanobiol, 2011.
    [12]Czyz M., Scigala K., Jarmundowicz W., et al. Numerical model of the human cervical spinal cord.[J]. Acta Bioeng Biomech,2011,13(4).
    [13]Jones A.C.,Wilcox R.K. Finite element analysis of the spine:towards a framework of verification, validation and sensitivity analysis[J]. Med Eng Phys,2008,30(10):1287-304.
    [14]Schwer L.E. An overview of the PTC 60/V&V 10:guide for verification and validation in computational solid mechanics[J]. Engineering with Computers, 2007,23(4):245-52.
    [15]Anderson A.E., Ellis B.J., Weiss J.A. Verification, validation and sensitivity studies in computational biomechanics[J]. Comput Methods Biomech Biomed Engin,2007,10(3):171-84.
    [16]Al-Sukhun J., Kelleway J., Helenius M. Development of a three-dimensional finite element model of a human mandible containing endosseous dental implants. I. Mathematical validation and experimental verification[J]. J Biomed Mater Res A,2007,80(1):234-46.
    [17]Anthony T.R., Flynn M.R. CFD model for a 3-D inhaling mannequin: verification and validation[J]. The Annals of occupational hygiene,2006, 50(2):157-73.
    [18]Pace D.K. Modeling and simulation verification and validation challenges. [J]. J Hopkins Apl Tech D.,2004,25(2):163-72.
    [19]Morozoff P.E. Specifying software validation and verification for a biomedical application[J]. Biomed Instrum Technol,1994,28(3):196-204.
    [20]Bryan R.. Nair P.B., Taylor M. Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk[J]. J Biomech,2009,42(13):2171-6.
    [21]Bessho M.,Ohnishi I.,Matsumoto T., et al.Prediction of proximal femur strength using a CT-based nonlinear finite element method:differences in predicted fracture load and site with changing load and boundary conditions[J]. Bone.2009,45(2):226-31.
    [22]Keyak J.H., Rossi S.A., Jones K.A., et al. Prediction of fracture location in the proximal femur using finite element models[J]. Med Eng Phys,2001. 23(9):657-64.
    [23]Keyak J.H., Rossi S.A.. Jones K.A., et al. Prediction of femoral fracture load using automated finite element modeling[J]. J Biomech,1998,31(2):125-33.
    [1]Cooper C., Campion G., Melton L.J.Ⅲ. Hip fractures in the elderly:a world-wide projection[J]. Osteoporos Int,1992,2(6):285-9.
    [2]Keene G.S., Parker M.J., Pryor G.A. Mortality and morbidity after hip fractures[J]. BMJ,1993,307(6914):1248-50.
    [3]Yasumura S., Suzuki T., Yoshida H., et al. Compliance concerning external protectors for hip fractures among the institutionalized elderly in Japan[J]. Nippon Ronen Igakkai Zasshi,1999,36(4):268-73. [In Japanese.].
    [4]Kannus P., Parkkari J., Niemi S., et al. Prevention of hip fracture in elderly people with use of a hip protector[J]. N Engl J Med,2000,343(21):1506-13.
    [5]Lundebjerg N., Rubenstein L.Z., Kenny R.A., et al. Guideline for the prevention of falls in older persons[J]. J Am Geriatr Soc,2001,49(5): 664-72.
    [6]Becker C., Kron M., Lindemann U., et al. Effectiveness of a multifaceted intervention on falls in nursing home residents [J]. J Am Geriatr Soc,2003, 51(3):306-13.
    [7]Meyer G., Warnke A., Bender R., et al. Effect on hip fractures of increased use of hip protectors in nursing homes:cluster randomised controlled trial[J]. Brit Med J,2003,326(7380):76-8A.
    [8]Minns J., Dodd C., Gardner R., et al. Assessing the safety and effectiveness of hip protectors[J]. Nurs Stand,2004,18(39):33-8.
    [9]Sawka A.M., Boulos P., Beattie K.,et al. Do hip protectors decrease the risk of hip fracture in institutional and community-dwelling elderly? A systematic review and meta-analysis of randomized controlled trials[J]. Osteoporosis Int, 2005.16(12):1461-74.
    [10]Parker M.J., Gillespie W.J., Gillespie L.D. Effectiveness of hip protectors for preventing hip fractures in elderly people:systematic review[J]. BMJ,2006, 332(7541):571-4.
    [11]Kiel D.P., Magaziner J., Zimmerman S., et al. Efficacy of a hip protector to prevent hip fracture in nursing home residents-The HIPPRO randomized controlled trial[J]. JAMA,2007,298(4):413-22.
    [12]Sze P.C., Cheung W.H., Qin L., et al. Biomechanical study of an anthropometrically designed hip protector for older Chinese women[J]. Geriatr Nurs,2008,29(1):64-9.
    [13]Madrecka A., Lyons D., O'Connor C., et al. Hip protectors in fracture prevention for aging adults at risk of falling:a study of user compliance[J]. J Geriatr Phys Ther,2009,32(4):153-8.
    [14]Cameron I.D., Robinovitch S., Birge S., et al. Hip protectors: recommendations for conducting clinical trials-an international consensus statement (part Ⅱ)[J]. Osteoporosis Int,2010,21(1):1-10.
    [15]Cameron I.D.,Kurrle S., Quine S., et al. Increasing adherence with the use of hip protectors for older people living in the community[J]. Osteoporos Int, 2011,22(2):617-26.
    [16]陆杰华,肖周燕.2006年中国人口学研究的回顾与评述.[J].人口与经济,2006,166(1):7-14.
    [17]陆杰华,肖周燕,薛伟玲.2008年:中国人口学研究的回顾与评述[.J].人口研究,2009(1):104-12.
    [18]万美君.我国人口老龄化对社会经济的影响[J].辽宁省社会主义学院学报,2010(4):61-4.
    [19]陶立群.我国人口老龄化的趋势和特点[J].科学决策,2006(4):8-10.
    [20]Xia W.B., He S.L., Xu L., et al. Rapidly increasing rates of hip fracture in Beijing, China[J]. J Bone Miner Res,2011.
    [21]Laing A.C., Robinovitch S.N. Characterizing the effective stiffness of the pelvis during sideways falls on the hip[J]. J Biomech,2010,43(10): 1898-904.
    [22]Choi W.J., Hoffer J.A., Robinovitch S.N. The effect of positioning on the biomechanical performance of soft shell hip protectors[J]. J Biomech,2010, 43(5):818-25.
    [23]Choi W.J., Hoffer J.A., Robinovitch S.N. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls[J]. Clin Biomech,2010,25(1):63-9.
    [24]Laing A.C., Robinovitch S.N. The Force Attenuation Provided by Hip Protectors Depends on Impact Velocity, Pelvic Size, and Soft Tissue Stiffness[J]. J Biomech Eng-T Asme,2008,130(6):1005(1-9).
    [25]Laing A.C., Robinovitch S.N. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls[J]. Osteoporos Int,2008,19(7): 1067-75.
    [26]Groen B.E., Weerdesteyn V.,Duysens J. The relation between hip impact velocity and hip impact force differs between sideways fall techniques [J]. J Electromyogr Kinesiol,2008.18(2):228-34.
    [27]Groen B.E., Weerdesteyn V., Duysens J. Martial arts fall techniques decrease the impact forces at the hip during sideways falling[J]. J Biomech,2007, 40(2):458-62.
    [28]Wiener S.L., Andersson G.B.J., Nyhus L.M., et al. Force reduction by an external hip protector on the human hip after falls[J]. Clin Orthop Relat R, 2002(398):157-68.
    [29]Majumder S., Roychowdhury A., Pal S. Simulation of hip fracture in sideways fall using a 3D finite element model of pelvis-femur-soft tissue complex with simplified representation of whole body[J]. Med Eng Phys. 2007,29(10):1167-78.
    [30]Lotz J.C., Cheal E.J., Hayes W.C. Fracture Prediction for the Proximal Femur Using Finite-Element Models.2. Nonlinear-Analysis[J]. J Biomech Eng-T Asme.1991,113(4):361-5.
    [31]Dragomir-Daescu D., Op Den Buijs J., McEligot S., et al. Robust QCT/FEA models of proximal femur stiffness and fracture load during a sideways fall on the hip[J]. Ann Biomed Eng,2011,39(2):742-55.
    [32]Kato C., Ida K., Hoshiyama M., et al. Does fall-related self-efficacy in hip-protector users affect quality of life and physical activity in nursing homes in Japan?[J]. J Am Geriatr Soc,2010,58(9):1810-2.
    [33]Gandjour A., Weyler E.J. Cost-effectiveness of preventing hip fractures by hip protectors in elderly institutionalized residents in Germany[J]. Value Health,2008.11(7):1088-95.
    [34]Minns R.J., Marsh A.M., Chuck A., et al. Are hip protectors correctly positioned in use?[J]. Age Ageing,2007,36(2):140-4.
    [35]王书军,王丽霞,李桂兰.老年人髋部骨折的机制及其防护垫的设计[J].中医正骨.2008,20(9):22.
    [36]王凤英,杜春萍,何成奇.髋保护器的临床应用.[J].中国组织工程研究 与临床康复,2007,11(18):3637-9.
    [37]Woo J., Sum C., Yiu H.H., et al. Efficacy of a specially designed hip protector for hip fracture prevention and compliance with use in elderly Hong Kong Chinese[J]. Clin Rehabil,2003,17(2):203-5.
    [38]孙培栋,欧阳钧.髋关节保护器的研究现况及展望[J].中国修复重建外科杂志,2012,26(1):41-5.
    [39]Robinovitch S.N., Evans S.L., Minns J., et al. Hip protectors: recommendations for biomechanical testing-an international consensus statement (part I)[J].Osteoporos Int,2009,20(12):1977-88.
    [40]Feldman F., Robinovitch S.N. Reducing hip fracture risk during sideways falls:evidence in young adults of the protective effects of impact to the hands and stepping[J]. J Biomech,2007,40(12):2612-8.
    [41]Kannus P., Parkkari J.,Poutala J. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly:an in vitro biomechanical study[J]. Bone,1999.25(2):229-35.
    [42]Parker M.J., Gillespie L.D., Gillespie W.J. Hip protectors for preventing hip fractures in the elderly[J]. Cochrane Database Syst Rev,2003(3):CD001255.
    [43]Gillespie W.J., Gillespie L.D., Parker M.J. Hip protectors for preventing hip fractures in older people[J]. Cochrane Database Syst Rev,2010,10: CD001255.
    [1]Keene GS, Parker MJ, Pryor GA. Mortality and morbidity after hip fractures. BMJ.1993,307(6914):1248-1250.
    [2]Empana JP, Dargent-Molina P, Breart G. Effect of hip fracture on mortality in elderly women:The EPIDOS prospective study. J Am Geriatr Soc,2004, 52(5):685-690.
    [3]Cooper C, Campion G, Melton LJⅢ. Hip fractures in the elderly:a world-wide projection. Osteoporos Int,1992,2(6):285-289.
    [4]Norton R, Butler M, Robinson E, et al. Declines in physical functioning attributable to hip fracture among older people:a follow-up study of case-control participants. Disabil Rehabil,2000,22(8):345-351.
    [5]Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med,2004, 164(10):1108-1112.
    [6]Grisso JA, Kelsey JL, Strom BL, et al. Risk-Factors for Falls as a Cause of Hip Fracture in Women. New Engl J Med,1991,324(19):1326-1331.
    [7]Lauritzen JB, Petersen MM, Lund B. Effect of external hip protectors on hip fractures. The Lancet,1993,341(8836):11-13.
    [8]Minns J, Dodd C, Gardner R, et al. Assessing the safety and effectiveness of hip protectors. Nurs Stand,2004,18(39):33-38.
    [9]Laing AC, Robinovitch SN. Effect of soft shell hip protectors on pressure distribution to the hip during sideways falls. Osteoporos Int,2008,19(7): 1067-1075.
    [10]Robinovitch SN, Evans SL, Minns J, et al. Hip protectors:recommendations for biomechanical testing-an international consensus statement (part I). Osteoporos Int,2009,20(12):1977-1988.
    [11]Choi WJ, Hoffer JA, Robinovitch SN. The effect of positioning on the biomechanical performance of soft shell hip protectors. J Biomech,2010, 43(5):818-825.
    [12]Kannus P, Parkkari J, Poutala J. Comparison of force attenuation properties of four different hip protectors under simulated falling conditions in the elderly:an in vitro biomechanical study. Bone,1999,25(2):229-235.
    [13]Robinovitch SN, Hayes WC, McMahon TA. Energy-shunting hip padding system attenuates femoral impact force in a simulated fall. J Biomech Eng, 1995,117(4):409-413.
    [14]Parkkari J, Kannus P, Heikkila J, et al. Energy-shunting external hip protector attenuates the peak femoral impact force below the theoretical fracture threshold:an in vitro biomechanical study under falling conditions of the elderly. J Bone Miner Res,1995,10(10):1437-1442.
    [15]Sze PC, Cheung WH, Qin L, et al. Biomechanical study of an anthropometrically designed hip protector for older chinese women. Geriatr Nurs,2008,29(1):64-69.
    [16]Parkkari J, Kannus P, Heikkila J, et al. Impact experiments of an external hip protector in young volunteers. Calcif Tissue Int,1997,60(4):354-357.
    [17]Choi WJ, Hoffer JA, Robinovitch SN. Effect of hip protectors, falling angle and body mass index on pressure distribution over the hip during simulated falls. Clin Biomech,2010,25(1):63-69.
    [18]Nabhani F. Bamford J. Mechanical testing of hip protectors. J Mater Process Tech,2002,124(3):311-318.
    [19]Parkkari J, Kannus P, Poutala J, et al. Force attenuation properties of various trochanteric padding materials under typical falling conditions of the elderly. J Bone Miner Res,1994,9(9):1391-1396.
    [20]Laing AC, Robinovitch SN. The Force Attenuation Provided by Hip Protectors Depends on Impact Velocity, Pelvic Size, and Soft Tissue Stiffness. J Biomech Eng-T Asme,2008,130(6).
    [21]Koike T. Orito Y, Toyoda H, et al. External hip protectors are effective for the elderly with higher-than-average risk factors for hip fractures. Osteoporosis Int,2009,20(9):1613-1620.
    [22]Kannus P, Parkkari J, Niemi S, et al. Prevention of hip fracture in elderly people with use of a hip protector. N Engl J Med,2000,343(21):1506-1513.
    [23]Cameron ID, Cumming RG, Kurrle SE. Prevention of hip fracture with use of a hip protector. New Engl J Med,2001,344(11):855-856.
    [24]van Schoor NM, Smit JH, Twisk JWR, et al. Prevention of hip fractures by external hip protectors-A randomized controlled trial. JAMA,2003,289(15): 1957-1962.
    [25]Birks YF, Hildreth R, Campbell P, et al. Randomised controlled trial of hip protectors for the prevention of second hip fractures. Age Ageing,2003, 32(4):442-444.
    [26]Birks YF, Porthouse J, Addie C, et al. Randomized controlled trial of hip protectors among women living in the community. Osteoporosis Int,2004, 15(9):701-706.
    [27]O'Halloran PD, Cran GW, Beringer TRO, et al. A cluster randomised controlled trial to evaluate a policy of making hip protectors available to residents of nursing homes. Age Ageing,2004,33(6):582-588.
    [28]Kiel DP, Magaziner J, Zimmerman S, et al. Efficacy of a hip protector to prevent hip fracture in nursing home residents-The HIPPRO randomized controlled trial. JAMA,2007,298(4):413-422.
    [29]Sawka AM, Nixon M, Giangregorio L, et al. The Use of Hip Protectors in Long-Term Care Facilities:A Survey of Nursing Home Staff. J. Am. Med. Dir. Assoc.,2007,8(4):229-232.
    [30]Chan DK, Hillier G, Coore M, et al. Effectiveness and acceptability of a newly designed hip protector:a pilot study. Arch Gerontol Geriatr,2000, 30(1):25-34.
    [31]Harada A, Mizuno M, Takemura M, et al. Hip fracture prevention trial using hip protectors in Japanese nursing homes. Osteoporos Int,2001,12(3): 215-221.
    [32]Meyer G, Warnke A, Bender R, et al. Effect on hip fractures of increased use of hip protectors in nursing homes:cluster randomised controlled trial. Brit Med J,2003,326(7380):76-78A.
    [33]Gillespie WJ. Gillespie LD, Parker MJ. Hip protectors for preventing hip fractures in older people. Cochrane Database Syst Rev,2010,10CD001255.
    [34]Sawka AM, Boulos P, Beattie K, et al.Do hip protectors decrease the risk of hip fracture in institutional and community-dwelling elderly? A systematic review and meta-analysis of randomized controlled trials. Osteoporosis Int, 2005,16(12):1461-1474.
    [35]Parker MJ, Gillespie WJ, Gillespie LD. Hip protectors for preventing hip fractures in older people. Cochrane Database Syst Rev,2005, (3):CD001255.
    [36]Parker MJ, Gillespie LD, Gillespie WJ. Hip protectors for preventing hip fractures in the elderly. Cochrane Database Syst Rev,2003, (3):CD001255.
    [37]Milisen K, Coussement J, Boonen S, et al.Nursing staff attitudes of hip protector use in long-term care, and differences in characteristics between adherent and non-adherent residents:a survey and observational study. Int J Nurs Stud,2011,48(2):193-203.
    [38]Cameron ID, Kurrle S, Quine S, et al.Increasing adherence with the use of hip protectors for older people living in the community. Osteoporos Int.2011, 22(2):617-626.
    [39]Parker MJ, Gillespie LD, Gillespie WJ. Hip protectors for preventing hip fractures in the elderly. Cochrane Database Syst Rev,2001, (2):CD001255.
    [40]王凤英,杜春萍,何成奇.髋保护器的临床应用.中国组织工程研究与临床康复,2007,11(18):3637-3639.
    [41]王书军,王丽霞,李桂兰.老年人髋部骨折的机制及其防护垫的设计.中医正骨,2008,20(9):22.
    [42]Woo J, Sum C, Yiu HH, et al.Efficacy of a specially designed hip protector for hip fracture prevention and compliance with use in elderly Hong Kong Chinese. Clin Rehabil,2003,17(2):203-205.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700