用户名: 密码: 验证码:
造波机系统运动控制及其网络化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类对海洋资源开发的深入,提高对海洋认知程度的要求也愈加迫切,作为海洋科学实验中进行波浪模拟的重要设备——造波机系统,也在研究中扮演着越来越重要的角色。造波机系统是在波浪理论、自动控制、机械工程等多学科交叉基础上发展起来的大型自动化设备,而以自动控制为基本原理的运动控制系统在造波机系统构建中起着核心的关键作用,决定着造波机系统性能的好坏。此外,网络化运动控制系统的出现,给造波机系统研发带来新机遇的同时也使之在技术上面临着新的挑战。本文正是在此背景下以研发高性能网络化造波机系统为目标,对网络化运动控制系统进行了深入研究,具体内容包括:
     首先,根据实际物理系统建立了造波机系统的运动控制模型,分析了系统负载及转动惯量特性。结合矢量控制和空间矢量脉宽调制技术提出一种基于小波神经网络的自适应PID控制算法,克服了传统PID控制在应用于具有非线性、强耦合、多变量的运动控制系统时遇到的困难,充分利用了小波神经网络良好的函数逼近能力和自适应能力,为解决复杂的非线性、不确定系统的控制问题提供了新思路。为了提高位置伺服系统的跟踪精度,提出基于小波神经网络自适应反推控制策略,该方法同时考虑位置与电流的跟踪性能,在保证系统状态变量全局渐近稳定前提下,获得了良好的动静态效果和鲁棒性。在此基础上,为进一步提高系统的抗扰能力,在设计中加入滑模控制,同时采用新的小波神经网络结构加速系统收敛,得到自适应滑模反推控制策略,仿真结果证明了该策略在跟踪性能和鲁棒性能上都具有优越的特性。
     其次,对引入网络的造波机运动控制系统进行了分析,并建立了造波机网络化运动控制系统的单轴和多轴模型。针对在模型分析中网络延时给系统带来的问题,提出用小波神经网络对工业以太网络延时进行预测,根据输入的过去时间延迟序列预测输出下一采样时刻的网络延时值。小波神经网络的参数通过训练算法实时更新,以保证预测输出的准确性。经过对实际以太网延时数据样本的预测分析表明该预测模型能够有效估计延时,具有实际的应用价值。对于运动控制系统中存在的时延效应进行了分析,考虑利用Smith预估器将系统中的纯延时环节移出闭环以保证系统稳定性,为克服Smith预估器对于模型敏感的缺点,提出一种带扰动补偿的自适应Smith预测控制策略,利用小波神经网络自适应调整参考模型使之输出特性趋于实际系统,同时利用小波神经网络对影响系统鲁棒性的扰动进行前馈补偿,使系统对扰动不敏感。仿真结果表明提出的控制策略可有效抑制扰动,具有良好的鲁棒性和动静态品质。为满足造波机运动控制系统的多轴同步控制要求,提出了相邻耦合滑模同步控制策略,将跟踪误差和同步误差同时考虑并加以消除,控制器的设计考虑了系统的不确定性,采用滑模控制方法加以抑制,使系统获得了良好的位置伺服和同步控制性能。
     再次,在EtherCAT标准工业以太网协议基础上搭建了网络化的运动控制系统,完成了从站的网络控制器及DSP控制器的软硬件设计。该系统通过主站利用实时工控软件由从站网络控制器与DSP控制器通信,DSP控制器在完成与网络控制器通信的同时还负责运动控制算法的实现。上位机发送的控制命令经由网络传输至控制器后,控制器根据其内部的模糊PID控制算法生成驱动信号,经差分转换电路传输至驱动器从而控制电机的运动,实现了的网络化运动控制。实验结果表明该网络化运动控制系统性能良好,同时证明了该方案的可行性。
     最后,通过完成网络化运动控制系统的驱动部分的硬件及运动控制软件的设计,结合之前设计的从站网络控制器及DSP控制器,构建了完整的网络化运动控制系统并将其应用于实际的造波机系统。通过一系列测试,包括电机控制性能测试,造波系统的单轴跟踪和多轴同步性能测试,以及实际造波能力的测试,证明所设计的造波机网络化运动控制系统性能优良,运行可靠。
As the marine resources are exploited in depth, people desire more knowledge about ocean. The wave maker system, which is important equipment for simulating wave, is playing more important role in marine research. Wave maker system is large-scale automation equipment which is developed from multi-disciplinary integration such as wave theory, automatic control and mechanical engineering. Base on the fundamental principle of automatic control, motion control system is very significant in system building and could determine the performance of wave maker system. Moreover, The emergence of the networked motion control system brings new opportunities and technical challenges to the developing of wave maker system. Under this background, this dissertation further studies networked motion control system as the purpose for devising a high performance networked wave maker system. The specific content includes:
     First of all, motion control model of a wave maker system is established according to the actual physical system and the characteristics of system load and moment of inertia is analyzed. Combined with vector control and space vector pulse width modulation technique, an adaptive PID control algorithm is proposed based on wavelet neural network to overcome the difficulties encountered when applying traditional PID to a nonlinear, strong coupling, and multivariable motion control system. This control method well utilizes the good function approximating ability and adaptive capacity of wavelet neural network, and provides a new idea to solve the control problems existing in complex nonlinear, uncertain system. In order to improve the tracking accuracy of the position servo system, an adaptive backstepping control strategy based on wavelet neural network is proposed considering both current and position tracking performance so as to ensure the global asymptotic stability of the system variables and obtain good dynamic and static performance and robustness. On this foundation, sliding mode control is adopted in design to further improve the disturbance rejecting capability of the system. Meanwhile, new wavelet neural network architecture is applied to accelerate the system convergence. Therefore a new adaptive sliding mode backstepping control strategy is obtained, and the simulation results prove that the strategy has superior tracking performance and robustness.
     Then, networked wave maker motion control system is analyzed and modeled including single-axis and multi-axis model. For the problems brought to the system by network delay in model analysis, wavelet neural network is proposed to predict the network delay, which is able to output the predicted next sample latency value according to past delay sequence. This neural network is updated in real-time via training algorithm so as to ensure the accuracy of the predicted output. Through the experimental analysis for the actual Ethernet delay data, it shows that this prediction model can effectively estimate network delay, so it can be used in actual application. Delay effect in the motion control system is analyzed and Smith predictor is considered to remove the delay out of closed-loop system to ensure the stability of system. In order to overcome the shortcoming that Smith predictor is sensitive to model parameters, an adaptive predictive control algorithm with disturbance compensation is proposed. This algorithm utilizes wavelet neural network to adaptively adjust the reference model output to approach the actual system and feedforward the system disturbance. Simulation results show the proposed algorithm can effectively suppress the disturbances, automatically compensate for model uncertainty and has good dynamic and static performance. To satisfy the multi-axis synchronous control requirements of wave maker motion control system, an adjacent coupling sliding mode synchronous control strategy is proposed, suppressing the uncertainty of the system by sliding mode control in controller designing, to obtain good position servo synchronization performance by eliminate the tracking error and synchronization error together.
     Further more, a networked motion control system based on the EtherCAT standard industrial Ethernet protocol is constructed and the hardware and software design of the network controller and DSP controller is accomplished. The communication between the master and the DSP controller is realized by using real-time industrial control software in the master and network controller. DSP controller communicates with network controller and realizes the motion control algorithm. When the control commands from master are transmitted via the network to the controller, the controller makes use of the fuzzy PID control algorithm programmed inside to generate the drive signal, which is converted via differential circuit and transmitted to the driver for controlling the movement of the motor. Experimental results demonstrate the performance of this networked motion control system is good and prove the feasibility of this design.
     At last, on the basis of network controller and controller designed on previous text, a networked motion control system is constructed by designing the hardware of drive part and motion control software, and it is applied in actual wave maker system. A few of experiments is carried out including motor control performance test, single-axis tracking and multi-axis synchronization performance test and actual wave making capability test in experimental flume. The results demonstrate the proposed servo motion control system has excellent performance and reliable operation.
引文
[1]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2003:221-250.
    [2]张晓丽,杨健,关海波.波流水槽模拟波浪技术的研究[J].海洋技术,2008,27(1):129-132.
    [3]刘闯.基于网络化运动控制的大功率造波机技术研究[D].大连:大连理工大学,2009.
    [4]谢香林.EtherCAT网络及其伺服运动控制系统研究[D].大连:大连理工大学,2008.
    [5]Nohara B T, Yammoto I, Matsuura M. The Organized Motion Control of Multi-directional Wave Maker [C]. Proceedings of 4th IEEE International Workshop on Advanced Motion Control, Mie, Japan,1996:470-475.
    [6]李木国,刘闯,王静,张群.大功率电机应用于造波机控制系统的可行性研究[J].中国海洋平台,2010,25(2):18-21.
    [7]张群,王静,杨洪齐,等.伺服电机驱动式无反射不规则波造波机系统[J].中国水运,2012,12(6):111-112+187.
    [8]王静,张群,李木国.基于网络控制的方向谱造波机系统[J].中国海洋平台,2007,22(3):52-54.
    [9]赵靖.基于齿轮同步功能的大功率造波机系统设计[D].大连:大连理工大学,2012.
    [10]阮毅,陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2009:1-4.
    [11]唐任远,赵清,周挺.稀土永磁电机正进入大发展的新时期[J].沈阳工业大学学报,2011,33(1):1-8+30.
    [12]夏长亮,方红伟.永磁无刷直流电机及其控制[J].电工技术学报,2013,27(3):25-34.
    [13]Sen P C. Electric motor drives and control-past, present, and future [J].IEEE Transactions on Industrial Electronics,1990,37(6):562-575.
    [14]Blaschke F. The principle of field orientation as applied to the new transvector closed-loop control system for rotating field machines[J]. Siemens Review,1972, 39(5):217-220.
    [15]李静,程小华.永磁同步电机的发展趋势[J].防爆电机,2009,44(5):1-4.
    [16]陈伯时.高动态性能交流调速系统的发展与演变(I)按转子磁链定向的矢量控制系统[J].电力电子,2004,2(1):33-36.
    [17]Himei T, Funabiki S, Agari Y, et al. Analysis of voltage source inverter-fed permanent magnet synchronous motor taking account of converter performance [J]. IEEE Transactions on Industry Applications,1985, IA-21(1):279-284.
    [18]Dhaouadi R, Mohan N. Analysis of current-regulated voltage source inverters for permanent magnet synchronous motor drives in normal and extended speed ranges [J]. IEEE Transactions on Energy Conversion,1990,5(1):137-144.
    [19]Uddin M N, Radwan T S, George G H, et al. Performance of current controllers for VSI-fed IPMSM drive [J]. IEEE Transactions on Industry Applications,2000,36(6): 1531-1538.
    [20]Gumaste A V, Slemon G R. Steady state analysis of a permanent magnet synchronous motor drive with voltage source inverter [J].IEEE Transactions on Industry Applications,1981, IA-17(2):143-151.
    [21]Slemon G R, Gumaste A V. Steady state analysis of a permanent magnet synchronous motor drive with current source inverter [J].IEEE Transactions on Industry Applications,1983, IA-19(2):190-197.
    [22]Mohanty A K, Dash P K. Steady state performance and dynamic stability of C. S. Ⅰ. fed permanent magnet motor [J]. Journal of Electric Machines and Power Systems, 1987,13(1):1-17.
    [23]Nedic V, Lipo T A. Low cost current fed PMSM drive system with sinusoidal input currents [J]. IEEE Transactions on Industry Applications,2006,42(3):753-762.
    [24]Liu T H, Young C M, Liu C H. Microprocessor based controller design and simulation for a permanent magnet synchronous motor drive [J]. IEEE Transactions on Industrial Electronics,1988,35(4):516-523.
    [25]Zhang B T, Pi Y. Robust fractional order proportion-plus-differential controller based on fuzzy inference for permanent magnet synchronous motor [J]. IET Control Theory and Applications,2012,6(6):829-837.
    [26]Panda S K, Lim J M S, Dash P K, et al. Gain scheduled PI speed controller for PMSM drive[C]. Proceedings of IEEE International Conference on Industrial Electronics, Control, and Instrumentation (IECON), New Orleans, LA,1997:925-930.
    [27]Lourde R M, Umanand L, Rao N J. Design of robust optimal PI controller for PMSM servo drives [J]. Journal of the Indian Institute of Science,1997,77(5):469-489.
    [28]Cheng M, Sun Q. Variable parameter PI control of a novel doubly salient permanent magnet motor drive [C]. Proceedings of IEEE International Conference on Power Electronics and Drive Systems (PEDS), Singapore,2003:698-703.
    [29]Tursini M, Parasiliti F, Zhang D. Real-time gain tuning of PI controllers for high performance PMSM drives [J]. IEEE Transactions on Industry Applications,2002, 38(4):1018-1026.
    [30]Hemici B, Nezli L, Tadjine M, et al. Robust PID/backstepping control design for permanent magnet synchronous motor drive [J]. Journal of Control and Intelligent Systems,2006,34(3):194-204.
    [31]Dan S, Jun M. A single neuron PID controller based PMSM DTC drive system fed by fault tolerant 4-switch 3-phase inverter [C]. Proceedings of IEEE International Conference on Industrial Electronics and Applications (ICIEA), Singapore, 2006:1-5.
    [32]Garcia D, Karimi A, Longchamp R. Robust proportional integral derivative controller tuning with specifications on the infinity-norm of sensitivity functions [J]. IET Control Theory and Applications,2007,1(1):263-272.
    [33]丁文双,胡育文,鲁文其,等.永磁同步电机模糊PID参数自整定[J].2011,(5):17-21.
    [34]Uddin M N, Abido M A, Rahman M A. Development and implementation of a hybrid intelligent controller for interior permanent magnet synchronous motor drives [J].IEEE Transactions on Industry Applications,2004,40(1):68-76.
    [35]Ming Y, Yang G, Xu D G, Yong Y. On-line self-tuning of PI controller for PMSM drives based on the iterative learning control [C]. Proceedings of IEEE Applied Power Electronics Conference and Exposition, Austin, Texas,2005,3:1889-1893.
    [36]Li S H, Gu H. Fuzzy Adaptive Internal Model Control Schemes for PMSM Speed-Regulation System [J]. IEEE Transactions on Industrial Informatics,2012,8(4): 767-779.
    [37]Tarnik M, Murgas J. Model Reference Adaptive Control of Permanent Magnet Synchronous Motor[J]. Journal of Electrical Engineering-Elektrotechnicky Casopis,2011,62(3):117-125.
    [38]谢玉春,杨贵杰,崔乃政.高性能交流伺服电机系统控制策略综述[J].伺服控制,2011,(1):19-22.
    [39]Zhang Y, Utkin V. Sliding Mode Observers for Electric Machines-An Overview [C].2002 28th Annual Conference of the IEEE Industrial Electronics Society,2002,3:1842-1847.
    [40]Ghribi M, Le-Huy H. Optimal control and variable structure combination using a permanent-magnet synchronous motor [C]. Conference Record of the 1994 IEEE Industry Applications Society Annual Meeting,1994,1:408-415.
    [41]Mohamed Y A R I. A novel direct instantaneous torque and flux control with an ADALINE based motor model for a high performance DD-PMSM[J]. IEEE Transactions on Power Electronics,2007,22 (5):2042-2049.
    [42]Shyu K K, Lai C K, Tsai Y W, et al. A newly robust controller design for the position control of permanent-magnet synchronous motor [J]. IEEE Transactions on Industrial Electronics,2002,49(3):558-565.
    [43]Leu V Q, Choi H H, Jung J W. Fuzzy Sliding Mode Speed Controller for PM Synchronous Motors With a Load Torque Observer [J]. IEEE Transactions on Power Electronics,2012, 27(3):1530-1539.
    [44]刘金琨.智能控制[M].北京:电子工业出版社,2005:1-5.
    [45]Ibrahim Z, Levi E. A comparative analysis of fuzzy logic and PI speed control in high performance AC drives using experimental approach [J]. IEEE Transactions on Industry Applications,2002,38(5):1210-1218.
    [46]Cheng M, Sun Q, Zhou E. New self-tuning fuzzy PI control of a novel doubly salient permanent magnet motor drive [J].IEEE Transactions on Industrial Electronics, 2006,53(3):814-821.
    [47]Uddin M N, Abido M A, Rahman M A. Real-time performance evaluation of a genetic-algorithm-based fuzzy logic controller for IPM motor drives[J]. IEEE Transactions on Industry Applications,2005,41 (1):246-252.
    [48]Rahman M A, Hoque M A. On-line adaptive artificial neural network based vector control of permanent magnet synchronous motors [J]. IEEE Transactions on Energy Conversion,1998,13(4):311-318.
    [49]Elbuluk M E, Tong L, Husain I. Neural network based model reference adaptive systems for high performance motor drives and motion controls [J]. IEEE Transactions on Industry Applications,2002,38(3):879-886.
    [50]Wang X. Research on PMSM Servo Control System Based on MFNN [C]. IEEE International Conference on Electronics, Communications and Control, Ningbo, China,2011:407-410.
    [51]Elmas C, Ustun 0, Sayan H H. A neuro-fuzzy controller for speed control of a permanent magnet synchronous motor drive [J].Journal of Expert Systems with Applications,2008,34(1):657-664.
    [52]蔡念,胡匡祜,李淑宇,等.小波神经网络及其应用[J].中国体视学与图像分析,2001,6(4):239-245.
    [53]Wai R J. Robust control for nonlinear motor-mechanism coupling system using wavelet neural network [J]. IEEE Transactions on Systems, Man, and Cybernetics,2003, 33(3):489-497.
    [54]Khan MASK, Rahman M A. A novel neuro-wavelet based self-tuned wavelet controller for IPM motor drives [C]. Proceedings of IEEE Industry Applications Society Annual Meeting, Edmonton, AB,2008:1-8.
    [55]Azadi M, Rahideh A, Safavi A A, et al. Wavenet based vector control of a permanent magnet synchronous motor drive [C]. Proceedings of IEEE International Electric Machines and Drives Conference (IEMDC), Antalya, Turkey,2007,2:1663-1668.
    [56]Khan M A S K, Rahman M A. An adaptive self-tuned wavelet controller for IPM motor drives [C]. Proceedings of IEEE Power and Energy Society General Meeting, Pittsburg, PA,2008:1-4.
    [57]王宝仁.网络化运动控制系统多轴协同关键技术研究[D].济南:山东大学,2008.
    [58]孙文焕,程善美,王晓翔,等.多电机协调控制的发展[J].电气传动,1999,(6):3-6.
    [59]Lorenz R D, Schmidt P B. Synchronized Motion Control for Process Automation [C]. Proceedings of the 1989 IEEE Industry Applications Society Annual Meeting, Wisconsin Univ, Madison, WI, USA,1989,2:1693-1698.
    [60]张承慧,石庆升,程金.一种基于相邻耦合误差的多电机同步控制策略[J].中国电机工程学报,2007,27(15):59-63.
    [61]刘坤.多永磁同步电机同步控制策略的研究[D].长沙:中南大学,2011.
    [62]Anderson R G, Lorenz R D, et al.Web Machine Coordinated Motion Control via Electronic Line-Shafting[C]. Conference Record of the IEEE Thirty-Fourth IAS Annual Meeting, Phoenix, AZ,1999,1:300-306.
    [63]Valenzuela M A, Lorenz R D. Electronic Line-Shafting Control for Paper Machine Drives [J].IEEE Transactions on Industry Applications,2011,37(1):158-164.
    [64]Koren Y. Cross-coupled Biaxial Computer Control for Manufacturing Systems [J]. Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, 1980,102(4):265-272.
    [65]Perez-Pinal F J, Nunez C, Alvarez R, et al. Comparison of Multi-motor Synchronization Techniques [C]. The 30th Annual Conference of the IEEE Industrial Electronics Society, Busan, Korea,2004,2:1670-1675.
    [66]Perez-Pinal F J, Calderon G, Araujo-Vargas I. Relative Coupling Strategy [C].IEEE International Electric Machines and Drives Conference, Madison, Wisconsin, USA, 2003,2:1162-1166.
    [67]Kulkarni P, Srinivasan K. Optimal Contouring Control of Multi-axial Feed Drive Servomechanisms [J]. Transactions of the ASME, Journal of Engineering for Industry, 1989,111(2):140-148.
    [68]Tomizuka M, Hu J S, Chiu T C, et al. Synchronization of Two Motion Control Axes Under Adaptive Feedforward Control [J]. Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control,1992,114(2):196-203.
    [69]Doraiswami R, Gulliver A. A control strategy for computer numerical control machine exhibiting precision and rapidity[J]. Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control,1984,106(1):56-62.
    [70]Lin S Y, Ho C Y, Tzou Y Y. Distributed motion control using real-time network communication techniques[C]. Proceedings of International Power Electronics and Motion Control Conference, Beijing, China,2000,2:843-847.
    [71]Shin D J, Ryu H S, Huh U Y. Fuzzy logic control for the contouring accuracy of XY positioning system[J]. IEEE International Symposium on Industrial Electronics, 2011 (2):1248-1252.
    [72]Niemann H. Synchronised motion using Fieldbus linked electrical drives-an architectural analysis [C]. Proceedings of PCIM 2000 conference, Nurnberg, Germany, 2000:141-146.
    [73]Samaranayake L, Alahakoon S, Walgama K. Speed controller strategies for Distributed motion control via Ethernet [C].2003 IEEE International Symposium on Intelligent Control, Houston, TX, USA,2003:322-327.
    [74]Stott P. Using Profibus DP in motion control applications [C]. Proceedings of Profibus International Conference,2004.
    [75]Harris K R, Balasubramanian S, Moldavansky A. The application of IEEE 1588 to a Distributed motion control system [J/OL]. RockwellAutcmation,2002[2012,10,31]. http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/1 756-wp005_-en-e.pdf
    [76]闫晓娟,刘景林.电机运动控制网络及其发展研究[J].电机与控制应用,2010,37(2):2529.
    [77]YORAM H, ASOK R. Integrated communication and control systems:part i-analysis [J]. Journal of Dynamic Systems, Measurement and Control,1988,110(4):367-373.
    [78]Walsh G C, Ye H, Bushnell L. Stability analysis of networked control systems [C]. Proceedings of the American Control Conference. San Diego, CA, USA:IEEE,1999: 2876-2880.
    [79]李洪波,孙增圻,孙富春.网络控制系统的发展现状及展望[J].控制理论与应用,2010,27(2):238-243.
    [80]云利军,孙鹤旭,雷兆明,等.工业网络的发展及其在运动控制中的应用[J].微型机与应用,2005,(9):4-6+33.
    [81]许万,陈幼平,陈冰,等.基于实时以太网的多轴运动控制网络的研究[J].制造业自动化,2008,30(11):71-75.
    [82]庄严,王伟,恽为民.基于网络的机器人控制技术研究现状与发展[J].机器人,2002,24(3):276-282.
    [83]廖文良.基于CAN总线的汽车电气控制系统设计[J].国外电子测量技术,2008,27(7):36-38+48.
    [84]A1-Dabbagh A W, Lu L. Design and reliability assessment of control systems for a nuclear-based hydrogen production plant with copper-chlorine thermochemical cycle [J]. International Journal of Hydrogen Energy,2010,35(03):966-977.
    [85]Gierach K, Thompson D, Banerjee P. An approach for facilitating service management in networked virtual manufacturing environments [J].Robotics and Computer-Integrated Manufacturing,2002,18(2):147-156.
    [86]Hespanha J P, Naghshtabrizi P, Xu Y G. A Survey of Recent Results in Networked Control Systems[J]. Proceedings of the IEEE,2007,95(1):138-162.
    [87]王伟,柴天佑.第六届全球智能控制与自动化大会概况[J].控制工程,2007,14(1):1-4.
    [88]王磊.造波机网络化运动控制系统建模及控制技术研究[D].大连:大连理工大学,2012.
    [89]王介生,王伟.基于现场总线的球团过程综合自动化系统[J].控制工程,2007,14(1):5-7+56.
    [90]崔逸群,李昱,颜渝坪,等.国产Profibus现场总线控制系统在火电厂的全面应用[J].中国电力,2012,45(10):56-58.
    [91]肖胜,王春利.现场总线技术在机组控制系统中的应用[J].热力发电,2011,40(2):69-71.
    [92]杜太行,孙小禄,王进立.可逆冷轧机总线网络控制技术的研究及其应用[J].低压电器,2012,(9):32-34.
    [93]云利军,孙鹤旭,雷兆明,等.运动控制网络的研究现状及发展趋势[J].控制工程,2006,13(4):289-293.
    [94]吴爱国,梁瑾,金文.工业以太网的发展现状[J].信息与控制,2003,32(5):458-461+466.
    [95]杨林.基于工业以太网的运动控制系统关键技术研究[D].济南:山东大学,2011.
    [96]师黎,陈铁军,李晓媛,等.智能控制理论及应用[M].北京:清华大学出版社,2009:160-190.
    [97]Oussar Y, Rivals I, Personnaz L, et al. Training wavelet networks for nonlinear dynamic input output modeling[J]. Neurocomputing,1998,20(1-3):173-188.
    [98]Zhang Q H, Benveniste A. Wavelet networks [J]. IEEE Transactions on Neural Networks, 1992,3(6):889-898.
    [99]Pati Y C, Krishnaprasad P S. Analysis and synthesis of feed forward neural networks using discrete affine wavelet transformations [J].IEEE Transactions on Neural Networks,1993,4(1):73-85.
    [100]Wai R J, Chang J M. Intelligent control of induction servo motor drive via wavelet neural network [J]. Journal of Electric Power Systems Research,61(1),2002:67-76.
    [101]唐丽婵,齐亮.永磁同步电机的应用现状与发展趋势[J].装备机械,2011,(1):7-12.
    [102]郑泽东,李永东.永磁同步电机伺服控制系统的研究现状及发展[J].伺服控制,2008,(12):20-22+54.
    [103]刘慧贤,丁世宏,李世华,等.永磁同步电机位置伺服系统的有限时间控制[J].电机与控制学报,2009,13(3):424-430.
    [104]张昌凡,王耀南.永磁同步电动机的变结构智能控制[J].中国电机工程学报,2002,22(7):13-17.
    [105]Zhou J, Wang Y. Adaptive backstepping speed controller design for a permanent magnet synchronous motor [J]. IEE Proc on Electric Power Applications,2002, 149(2):165-172.
    [106]王家军,赵光宙,齐冬莲.反推式控制在永磁同步电动机速度跟踪控制中的应用[J].中国电机工程学报,2004,24(8):95-98.
    [107]王宝华.逆推自适应滑模励磁控制器设计[J].电力自动化设备,2009,29(6):54-57.
    [108]KARABACAK M, ESKIKURT H I. Speed and current regulation of a permanent magnet synchronous motor via nonlinear and adaptive backstepping control[J]. Mathematical and Computer Modeling,2011,53(9-10):2015-2030.
    [109]彭继慎,王强,刘栋良,等.永磁同步电动机的速度自适应反推控制[J].煤炭学报,2006,3(4):540-544.
    [110]王家军,王建中,马国进.自适应Backstepping在永磁同步电动机速度跟踪控制中的应用.电气传动,2006,36(9):20-22.
    [111]张细政,王耀南.永磁同步电机鲁棒自适应反步控制[J].煤炭学报,2009,34(4):572-576.
    [112]刘栋良,王家军,崔丽丽.永磁同步电机参数自适应调速控制[J].电工技术学报,2011,26(08):159-165.
    [113]LIU T H, PU H T, LIN C K. Implementation of an adaptive position control system of a permanent-magnet synchronous motor and its application[J]. IET Electric Power Applications,2010,4(2):121-130.
    [114]山炳强,于海生.基于负载观测器的永磁同步电机反步法控制[J].电机与控制应用,2006,33(07):33-36.
    [115]王礼鹏,张化光,刘秀翀.基于扩张状态观测器的SPMSM调速系统的滑模变结构反步控制[J].控制与决策,2011,26(04):553-557.
    [116]方一鸣,任少冲,王志杰,等.永磁同步电动机转速自适应模糊Backstepping控制[J].电机与控制学报,2011,15(06):97-102.
    [117]YU J P, Chen B, YU H S, et al. Adaptive fuzzy tracking control for the chaotic permanent magnet synchronous motor drive system via backstepping[J]. Nonlinear Analysis-Real World Applications,2011,12(1):671-681.
    [118]WAI R J, CHANG H H. Backstepping wavelet neural network control for indirect field-oriented induction motor drive [J]. IEEE Transactions on Neural Networks, 2004,15(2):367-382.
    [119]Utkin V I. Sliding Mode Control Design Principles and Applications to Electric Drives[J]. IEEE Transactions on Industrial Electronics,1993,40(1):23-36.
    [120]Sabanovic A. Variable Structure Systems With Sliding Modes in Motion Control-A Survey [J]. IEEE Transactions on Industrial Informatics,2011,7(2):212-223.
    [121]Hung J Y, Gao W B, Hung J C. Variable Structure Control:A Survey [J]. IEEE Transactions on Industrial Electronics,1993,40(1):2-22.
    [122]Kuo C F J, Hsu C H, Tsai C C. Control of a permanent magnet synchronous motor with a fuzzy sliding-mode controller[J]. International Journal of Advanced Manufacturing Technology,2007,32(7-8):757-763.
    [123]Hsu C F, Lin C M, Lee T T. Wavelet adaptive backstepping control for a class of nonlinear systems [J]. IEEE Transactions on Neural Networks,2006,17(5):1175-1183.
    [124]El-Sousy F F M. Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive [J]. IET Electric Power Applications, 2011,5(1):113-132.
    [125]Khan M A S K, Rahman M A. A Novel Neuro-Wavelet-Based Self-Tuned Wavelet Controller for IPM Motor Drives [J]. IEEE Transactions on Industry Applications,2010,46(3): 1194-1203.
    [126]Slotine J J E, Li W. Applied Nonlinear Control [M]. Englewood Cliffs, NJ:Prentice-Hall,1991:123-126.
    [127]Ray A. Network access protocols for real-time distributed control systems [J]. IEEE Transactions on Industrial Applications,1988,24(5):897-904.
    [128]Nilsson J, Bernhardsson B, Wittenmark B. Stochastic annlysis and control of real-time system with random time delays[J]. Automatica,1998,34(1):57-64.
    [129]Ardalani N, Khoogar A, Roohi H.A Comparison of Adaline and MLP Neural Network based Predictors in SIR Estimation in Mobile DS/CDMA Systems [C]. Proceedings of the World Academy of Science, Engineering and Technology, Tokyo, Japan,2005, 9:145-150.
    [130]Becerikli Y, Oysal Y. Modeling and prediction with a class of time delay dynamic neural networks [J]. Applied Soft Computing,2007,7(4):1164-1169
    [131]Frank R J, Davey N, Hunt S P. Time Series Prediction and Neural Networks [J]. Journal of Intelligent and Robotic Systems,2001,31 (1-3):91-103
    [132]Baum E B, Haussler D. What size net gives valid generalization? [J]. Neural Computation,1988,1 (1):151-160.
    [133]刘栋良,贺益康.交流伺服系统逆变器死区效应分析与补偿新方法[J].中国电机工程学报,2008,28(21):46-50.
    [134]Caponio A, Cascella G L, Neri F, et al. A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cybernetics,2007,37(1):28-41.
    [135]Mohamed Y A R I, El-Saadany E F. A Current Control Scheme With an Adaptive Internal Model for Torque Ripple Minimization and Robust Current Regulation in PMSM Drive Systems [J]. IEEE Transactions on Energy Conversion,2008,23(1):92-100.
    [136]Abdel-Rady Y, Mohamed I. Adaptive self-tuning speed control for permanent-magnet synchronous motor drive with dead time[J]. IEEE Transactions on Energy Conversion, 21 (4):855-862.
    [137]孙育刚,嵇启春.基于神经网络的Smith预估PID控制器设计与仿真[J].控制理论与应用,2009,28(10):9-12.
    [138]赵东亚,邹涛,王治平.Smith预估控制研究进展[J].化工进展,2010,29(8):1406-1410.
    [139]黄浩.基于神经网络的Smith预估控制器[J].制造业自动化,2009,31(8):90-92.
    [140]黄越洋,石元博,张茜.基于神经网络Smith预估器的预测控制[J].计算机仿真,2009,26(2):187-189.
    [141]安连祥,马华民,刘永刚等.基于改进Smith预估器的二阶时滞系统[J].计算机仿真,2011,28(1):198-200.
    [142]Xia C L, Gao G M. Brushless DC Motors Control Based On Smith Predictor Modified By Fuzzy-PI Controller[C].Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Shandong,China,2008,3:289-293.
    [143]Kato A, Muis A, Ohnishi K. Robust network motion control system based on disturbance observer[J]. AUTOMATIKA,2006,47(1-2):5-10.
    [144]Lai C L, Hsu P L. Realization of networked control systems on Ethernet with varied time delay [C]. IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey,2010:73-80.
    [145]Lai C L, Hsu P L, Wang B C. Design of the Adaptive Smith Predictor for the Time-Varying Network Control System[C], Tokyo, Japan, SICE Annual Conference, 2008:2933-2938.
    [146]Giam T S,Tan K K, Huang S. Precision coordinated control of multi-axis gantry stages[J]. ISA Transactions,2007,46(3):399-409.
    [147]Sun D, Shao X Y, Feng G. A Model-Free Cross-Coupled Control for Position Synchronization of Multi-Axis Motions:Theory and Experiments. IEEE Transactions on Control Syestems Technology [J],2007,15(2):306-314.
    [148]德国倍福公司.实时以太网:I/0层超高速以太网[J].自动化博览,2004,21(4):48-50
    [149]Beckhoff Automation GmbH. Hardware Data Sheet ET1100-EtherCAT Slave Controller, Vel.1.3. [S/OL]. (2008,1,18) [20012,11,15]. http://www.beckhoff.com.
    [150]李木国,王磊,王静,等.基于EtherCAT的工业以太网数据采集系统[J].计算机工程,2010,36(3):237-239.
    [151]李木国,李响,刘达.基于DSP的电机伺服系统中的模糊PID控制[J].测控技术,2011,30(6):64-66+71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700