用户名: 密码: 验证码:
尾矿坝安全监测不确定性信息的处理及风险评估技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿坝作为整个矿山企业最大的人造危险源,其安全性对矿区人民的生命、财产以及社会的安全稳定造成了严重影响,引起了社会各界的高度重视。但由于外界环境的干扰性、传感器的局限性、监测手段的不完善性以及坝体结构的动态变化性等因素的影响,使得监测信息和风险模态信息常常是不完备的,且具有随机、模糊、不完整等不确定性,进而造成了两者间映射关系的复杂多变性,严重制约了监测系统的评估功效。因此,如何对坝体的监测信息和风险模态信息进行不确定性分析,建立两者间的复杂多变性映射关系是解决评估效果差、评估难问题的关键。
     可能性理论作为一种新的不确定性处理方法,其描述的是事物未来发生的一种可能性,不需要先验知识,且具有不确定性表征的多样性、不确定性处理的并存性、映射关系的多变性及适合小样本信息的处理等优点,这与尾矿坝安全监测信息处理的需求一致。因此,本文以上游式细粒尾矿坝为研究对象,以可能性理论为手段,并结合其他不确定性处理方法来解决坝体的风险评估问题。
     本文的主要研究内容包括以下几个方面:
     (1)论述了尾矿坝安全监测信息的不确定性及其处理方法。现有的不确定性信息处理方法一般由不确定性的种类所决定,对于不同的不确定性来说,处理方法各有差异。找到一种适合处理各类不确定性的方法是多源信息处理领域中的一大突破。本文在阐述不确定性信息来源及分类的基础上,深入分析影响尾矿坝监测信息不确定性的因素及不确定性的分类;研究各类不确定性的表征方法,解决现有不确定性信息处理方法在处理多种不确定性时存在的局限,并以此为研究基础,展开后面的工作。
     (2)构造了监测指标与风险模态信息的可能性分布。根据库水位、浸润线、干滩长度及坝体位移等监测指标的特点,利用小样本、可能性中值等研究各指标信息的可能性分布构造方法;对坝体的风险模态进行界定,利用流变-突变理论研究尾矿坝的失效机理,并结合坝体本身的固有频率,对风险模态进行表征;研究相邻模态边界的模糊性,为并存风险模态的表征提供解决方法。
     (3)建立了监测指标与风险模态间的复杂多变性映射关系。利用截集将监测指标和风险模态信息的分布转化为落影集合,通过研究落影集合间的模糊推理揭示两者间存在的一对多、多对一、多对多的复杂映射规律,建立两者间的复杂多变性映射关系;对不同截集下指标与风险模态间的可能性集值映射进行仿真。结果表明,分布间截集的相互变化可为监测指标与风险模态信息间复杂多变性映射关系的建立提供理论依据。
     (4)提出了基于分布匹配度集中模态的多属性风险评估模型。以指标与风险模态信息间的映射为评估指标,将坝体的风险评估作为模态等级的选取问题,以解决现有评估方法难以对模态等级较集中的情况进行有效判断的问题。对评估指标与各模态等级间的关系进行研究,确定评估指标与模态等级间的匹配程度,建立匹配矩阵;利用综合赋权法确定各评估指标的权值,对匹配矩阵进行加权融合,获得各模态等级的匹配度,并进行排序选出最优匹配等级;通过仿真验证所提方法的有效性。
     (5)提出了基于柔性相似测度并存模态的信息融合风险评估模型。将分布间相似测度和证据理论相结合对坝体进行融合评估,以解决模态等级并存的问题。在广义模糊数的基础上,定义了广义非线性模糊数,给出了柔性相似测度的计算方法,并对其基本性质进行了证明,与其它相似测度进行比较验证其有效性和合理性;利用诱导函数生成基本信任分配函数进行融合评估;通过仿真验证所提方法的有效性。
     (6)以火谷都尾矿坝和黄梅山尾矿坝为例验证所提模型的有效性。分析两个尾矿坝的基本概况以及溃坝事故发生时的征兆、损失等,深入分析溃坝发生前1个月内的监测信息和坝体的风险模态信息,对其进行表征;建立两者间可能存在的复杂多变性映射关系,利用提出的风险评估模型对坝体的模态等级进行反演。结果证明两种风险评估模型都可以对坝体的模态等级做出准确判断。
The safety of tailings dam, as a largest artificial hazard in entire mining enterprises, has agrave impact on people's life and property as well as social security and stability, which drawsgreat attention of the society from all walks of life. But owing to strong interference ofenvironment influence, limitations of monitoring sensor itself, imperfection of monitoringmethod and dynamic of dam structure, monitoring information and risk modal information areoften imperfect, and these information have random, fuzzy and incomplete uncertainty,leading to complex and changeable mapping relation of monitoring information and riskstates information, which severely restricts assessment effect of monitoring systems.Therefore, the ways of uncertainty analysis for monitoring information and risk statesinformation, and establishment of the mapping relationship are the key role to solve lesseffective and difficult risk assessment.
     Possibility theory is a new mathematical tool to deal with uncertainty and can be used todescribe the possibility of future events without any prior knowledge. It has the advantagesthat diversity of uncertainty characterization, coexistence of uncertainty processing, variety ofmapping relationship and processing for small sample information, which have common withinformation processing needs of tailings dam. So taken upstream fine grained tailings dam asobjects and possibility theory combined with other uncertainty processing methods as themeans, risk assessment problem of tailings dam is solved.
     The main works are introduced as follows:
     (i)The uncertainty of information and its processing method are discussed in safetymonitoring of tailings dam. Existing uncertainty information processing method are generallydetermined by uncertainty types, and the processing method is different as the change ofuncertainty types. So finding appropriate method to deal with all kinds of uncertainty is abreakthrough in multiple source information processing field. Based on expounding sourcesand classification of uncertainty information, this paper analyzes influential factors and typesof uncertainty for tailings dam monitoring information deeply, and researches characterization of all kinds of uncertainty to solve the limitations of existing methods in processing variousuncertainties. Based upon the above research, other works are developed as follows.
     (ii)Possibility distributions of monitoring indexes and risk modal information areconstructed. According to the characteristics of monitoring indexes such as reservoir waterlevel, phreatic line, length of dry, beach dam displacement and video image, small samplesconstruction and possibility median are employed to construct possibility distribution of eachindex. Risk modal of tailings dam is defined. Failure mechanism of tailings dam are studiedbased on rheology and mutation theory. Combined with inherent frequency of dam, riskmodal is characterized and the boundary fuzziness of adjacent modal is researched, whichprovides a new method to solve coexist risk modal.
     (iii)The complex and changeable mapping relationship between information ofmonitoring indexes and risk modal are set up. Possibility distributions are transformed intoshadow sets by cut-set, then the complex mapping law is reveal by studying fuzzy inferencebetween shadow sets and the complex and changeable mapping relationship is established.Possibility set-valued mappings are simulated under different cut-sets. The results show thatthe mutual changes of cut-sets between distributions can provide theoretical basis to establishthe complex and changeable mapping relationship between information of monitoring indexesand risk modal.
     (iv)A multi-attribute risk evaluation model with concentrated modal is proposed based onmatching degree of distributions. Taken the mapping between index and risk modalinformation as evaluation index, risk assessment problem is regarded as risk modal selectionin order to solve the problem that existing methods can not judge risk modal effectively whenthe modals are concentrate.The matching degrees of evaluation index and risk modal aredetermined and matching matrix is builded by researching the relationship between evaluationindex and risk modal class.The weights of each evaluation index are obtained bycomprehensive weight method then matching matrix is fused to obtain matching degrees ofeach modal. The optimal matching modal is selected. The effectiveness of the proposedmethod is validated by simulation.
     (v)Information fusion risk assessment model with coexistence risk modal is proposed byflexible similarity measure. Flexible similarity measure between the distributions andevidence theory are used in risk assessment to solve evaluation problem of coexist risk modaland improve the effect of evaluation precision. On the basis of generalized fuzzy numbers, the generalized nonlinear fuzzy number is defined, and the calculation method of flexiblesimilarity measure is given. Its basic properties are proved, and its effectiveness andrationality is verified compared with other similar measures. The basic belief distributionfunction of evaluation index is generated by inducing function,and then the assessment resultis obtained by D-S combination rules. The effectiveness of the proposed method is validatedby simulation.
     (vi)The effectiveness of the proposed methods have been validated by Huo Gudu andHuang Meishan tailings dam as two examples. The basic situation of the tailings dams areanalyzed, and the symptoms and loss in dam collapse are introduced. The information ischaracterized by analyzing the monitoring information and dam risk modal information within amonth before dam collapse.The complex mapping relationship between the both is established,and the risk modal of the dams are inverted by using the proposed risk assessment methods.The results show that two kinds of risk assessment methods can both make accurate judgmenton dam risk modal.
引文
[1]李慧谦.尾矿库堆坝试验研究及稳定性分析[D].硕士学位论文:重庆大学,2008.
    [2]冯仲云.论尾矿库的安全技术管理[J].矿业快报.2007,26(3):30-32.
    [3] Ruili Lu, Dongpo Sun,Wei Wei, et al. Numerical simulation of seepage field in the tailingdam with draining seepage system[J].2013Fourth International Conference on DigitalManufacturing&Automation.858-861.
    [4]张岳安,周科平.浸润线埋深对尾矿坝稳定性的指标满意度敏感性分析[J].中国安全科学学报.2013,23(010):93-99.
    [5] Kanungo D.P, Arora M.K, et al. Landslide risk assessment using concepts of danger pixelsand fuzzy set theory in darjeeling himalayas[J]. Landslides.2008,5(4):407-416.
    [6]王凤江,王来贵.尾矿库灾害及其工程整治[J].中国地质灾害与防治学报.2003,14(3):76-80.
    [7] Xin Zheng, Xiaohu Xu, Kaili Xu. Study on the risk assessment of the tailings dam break[J]. Procedia Engineering.2011,26:2261-2269.
    [8]樊庆英.基于可能性理论的尾矿坝风险评估研究[D].硕士学位论文:中北大学,2013.
    [9] Xin Zheng, Kaili Xu, Xiaohu Xu. Research on life risk standards of the tailings dam[J].Journal of Northeastern University.2013,34:59-62.
    [10] Corinne Curt, Aurélie Talona, Gilles Mauris. A dam assessment support system based onphysical measurements, sensory evaluations and expert judgements[J]. Measurement.2011,44(1):192-201.
    [11]宋传旺,王彦磊,于广明,等.分形理论在尾矿坝监测预警中的应用[J].辽宁工程技术大学学报(自然科学版).2013,32(9).1191-1194.
    [12]柴建设,王姝,门永生等.尾矿库事故案例分析与事故预测[M].北京:化学工业出版社.2011.
    [13]王凤凰.某尾矿库安全评价定量分析与研究[D].硕士学位论文:武汉理工大学,2010.
    [14] ANCOLD(Australian national committee on large dams). Guidelines on assessment ofthe consequences of dams failure[R]. ANCOLD.2000.
    [15]刘佳琳.模糊统计决策理论基础上的大型工程项目风险评估方法研究[D].博士学位论文:吉林大学,2013.
    [16] Divakaran L, Terence T.O. Modeling attitude to risk in human decision processes: Anapplication of fuzzy measures[J]. Fuzzy Sets and Systems.2006,157(23):3040-3054.
    [17] Hamade Tarek, Mitri Hani. Reliability-based approach to the geotechnical design oftailings dams[J]. International Journal of Mining Reclamation and Environment.2013,27(6):377-392.
    [18] Enji Sun, Xingkai Zhang, Zhongxue Li. The internet of things (IOT) and cloudcomputing (CC) based tailings dam monitoring and pre-alarm system in mines[J]. Safetyscience.2012,50(4):811-815.
    [19]李强,张力霆.基于流固耦合理论某尾矿坝失稳特性及稳定性分析[J].岩土力学.2012,33(11):244-249.
    [20] Dubois D. Possibility theory and statistical reasoning[J]. Computational statistics&dataanalysis.2006,51(1):47-69.
    [21]王平,童颙,贾华萍等.大坝安全监测系统硬件集成的研究及应用[D].海河大学学报(自然科学版).2007,35(1):26-29.
    [22]郑微.基于光纤光栅传感器的大坝安全监测系统的研究[D].硕士学位论文:武汉理工大学,2006.
    [23]肖如林,申文明,刘彬彬等.基于“天地一体化”的尾矿库环境风险评估[J].安全与环境工程.2013,20(1):69-74.
    [24]贾东振,何秀凤.基于GPS一机多天线技术的尾矿坝全自动变形监测系统[J].水利发电.2007,33(12):95-98.
    [25]何友,王国宏,关欣等.信息融合理论及应用[M].北京:电子工业出版社.2010:102-557.
    [26] Cary T W, Cwanger A, Venkatesh S S, et al. Comparison of Na ve Bayes and logisticregression for computer-aided diagnosis of breast masses using ultrasound imaging[C]. SPIEMedical Imaging. International Society for Optics and Photonics.2012:83200M-83200M-7.
    [27]赵利苹,许金良,杨宏志等.经验贝叶斯法在安全设施效果评估中的应用[J].公路交通科技.2013,30(4):112-118.
    [28]徐智.基于最大熵原理的贝叶斯法在测量数据分析中的应用[J].内蒙古农业大学学报.2013,34(1):116-122.
    [29] Wu Y, Ren Z, Zeng Z. Fault diagnosis method based on D-S evidence theory[C].Prognostics and Health Management Conference.2010. PHM'10. IEEE,2010:1-4.
    [30] Yue Xi, Feng Liu, Hongli Yuan, et al. Safety Voting System Based on D-S EvidenceTheory[J].Telkomnika Indonesian Journal of Electrical Engineering.2013,11(11):6645-6650.
    [31] Paksoy A, G ktürk M. Information fusion with dempster-shafer evidence theory forsoftware defect prediction [J]. Procedia Computer Science.2011,3:600-605.
    [32] Xianbao Wang, Shihai Zhao, Guo Wei. Based on D-S evidence theory of solutionconcentration detection method research [J]. Applied Mechanics and Materials.2014,494-495:869-872.
    [33]赵宗贵,熊朝华,王柯等.信息融合概念、方法及应用[M].北京:国防工业出版社,2012.
    [34] Lefevre E, Colot O, Vannoorenberghe P. Belief function combination and conflictmanagement[J]. Information fusion.2002,3(2):149-162.
    [35]杨风暴,王肖霞. D-S证据理论的冲突证据合成方法[M].北京:国防工业出版社,2010.
    [36]Garg H, Rani M, Sharma S P, et al. Intuitionistic fuzzy optimization technique for solvingmulti-objective reliability optimization problems in interval environment[J]. Expert Systemswith Applications.2014,41(7):3157-3167.
    [37]苏永华,何满潮,孙晓明.岩体模糊分类中隶属函数的等效性[J].北京科技大学学报.2007,29(7):670-675.
    [38]李登峰.直觉模糊集决策与对策分析方法[M].北京:国防工业出版社,2012.
    [39] Wang C, Chen D, Wu C, et al. Data compression with homomorphism in coveringinformation systems[J]. International Journal of Approximate Reasoning.2011,52(4):519-525.
    [40] Edward Samuel A, Balamurugan M. Intuitionistic Fuzzy Sets with Logical Operators andits applications in Medical Diagnosis[J]. Australian Journal of Basic&Applied Sciences.2012,6(8):16-17.
    [41] Ye J. Using an improved measure function of vague sets for multicriteria fuzzydecision-making[J]. Expert Systems with Applications.2010,37(6):4706-4709.
    [42]梁保松,曹殿立.模糊数学及其应用[M].北京:科学出版社,2007.
    [43] Attaviroj N, Noomhorm A. Discriminant analysis of multiple physicochemical propertiesfor thai rough rice varietal authentication[J]. International Journal of Food Properties.2014,17(5):1136-1149.
    [44]营利荣,白全礼.粗糙集理论与其他理论的杂合研究[J].郑州航空工业管理学院学报.2006,23(3):27-32.
    [45] Sakai H, Wu M, Nakata M. Apriori-Based Rule Generation in Incomplete InformationDatabases and Non-Deterministic Information Systems[J]. Fundamenta Informaticae.2014,130(3):343-376.
    [46]倪龙强,周振堂,高社生.粗糙集和证据理论相结合的数据挖掘方法[J].西北工业大学学报.2010,28(6):927-930.
    [47] Arciniegas L M, Babadagli T. Asphaltene precipitation, flocculation and depositionduring solvent injection at elevated temperatures for heavy oil recovery[J]. Fuel.2014,124:202-211.
    [48] Sakai H, Wu M, Nakata M. Apriori-Based Rule Generation in Incomplete InformationDatabases and Non-Deterministic Information Systems[J]. Fundamenta Informaticae.2014,130(3):343-376.
    [49] Anguelov R, Van Der Walt J H. Algebraic and topological structure of some spaces ofset-valued maps[J]. Computers&Mathematics with Applications.2013,66(9):1643-1654.
    [50] trboja M, Grbi T, tajner-Papuga I, et al. Jensen and Chebyshev inequalities forpseudo-integrals of set-valued functions[J]. Fuzzy Sets and Systems.2013,222:18-32.
    [51] Stoyan D, Kendall W S, Meehe J. Stochastic geometry and its applications[M]. NY: JohnWiley&Sons,1995.
    [52] Molchanov I. Theory of random sets[M]. Springer,2006.
    [53]张文修.集值测度与随机集[M].西安:西安交通大学出版社,1989.
    [54]徐晓斌.不确定性信息处理的随机集方法及在系统可靠性评估与故障诊断中的应用[D].博士学位论文:上海海事大学,2009.
    [55] Dubois D, Prade H, Schockaert S. Rules and meta-rules in the framework of possibilitytheory and possibilistic logic[J]. Scientia iranica.2011,18(3):566-573.
    [56] Dubois,D. Prade,H. Possiblity Theory, Probability Theory and Multiple-valued Logics:aClarification[J]. Annals of mathematics and artificial intelligence.2001,32:35-66.
    [57] Mauris,G. Lasserre,V. Foulloy,L. A Fuzzy Approach for the Expression of Uncertaintyin Measurement[J]. Measurement.2001,29(3):165-177.
    [58] Xuehai Yuan, Hongxing Li, et.al. The set-valued mapping based on ample fields[J].Computers and Mathematics with Applications.2008,56:19541965.
    [59] Oussalah M. Maaref H. Barret C. From adaptive to progressive combination ofpossibility distributions[J]. Fuzzy Sets and Systems.2002,139(3):559-582.
    [60] Oussalah,M. Maaref,H. Barret,C. New Fusion Methodology Approach and Applicationto Mobile Robotics: Investigation in the Framework of Possibility Theory[J]. InformatinFusion.2001,2(1):31-48.
    [61] Cai K Y, Wen C Y, Zhang M L. Fuzzy variables as a basis for a theory of fuzzyreliability in the possibility context s[J]. Fuzzy sets and systems.1991,42(2):145-172.
    [62] Corinne Curt, Aurélie Talon, Gilles Mauris. A dam assessment support system based onphysical measurements[J]. sensory evaluations and expert judgements.2011,44(1):192-201.
    [63]王国宏,何友.基于模糊集理论的雷达识别方法[J].模式识别与人工智能.1994,7(2):150-156.
    [64]王国宏,何友.基于模糊贴近度和不精确推理的雷达识别方法[J].系统工程和电子技术.1995,32(1):25-30.
    [65] Luis Altarejos-garcía, Ignacio Escuder-bueno, Armando Serrano-lombillo, et al.Methodology for estimating the probability of failure by sliding in concrete gravity dams inthe context of risk analysis[J]. Structural Safety.2012,36:1-13.
    [66]何俐萍,黄洪钟,刘志杰.基于可能性分布和信息熵的舞台方案模糊决策[J].华中科技大学学报(自然科学版).2006,34(9):107-110.
    [67]何莎,周树民.摩擦市场下基于可能性理论的一种投资组合模型[J].江汉大学学报(自然科学版).2009,37(4):129-134.
    [68]康正发,黄培清.基于可能性分布的模糊事故树分析[J].系统工程理论方法应用.1999,8(2):66-70.
    [69] Junfeng Zhang, Hua Ding. Generalized3D limit-equilibrium method for slope stabilityanalysis and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2005,24(3):365-370.
    [70] Nouri H, Fakher A, Jones C. Evaluating the effects of the magnitude and amplification ofpseudo-static acceleration on reinforced soil slopes and walls using the limit equilibriumhorizontal slices method[J]. Geotextiles and Geomembranes.2008,26(3):263-278.
    [71] Sauter S A, Schwab C. Boundary element methods[M]. Springer Berlin Heidelberg.2011.
    [72] He L, Ma G. Development of3D numerical manifold method[J]. International Journal ofComputational Methods,2010,7(01):107-129.
    [73] Hughes T J R. The finite element method: linear static and dynamic finite elementanalysis[M]. Courier Dover Publications.2012.
    [74] Chakraborty D, Choudhury D. Seismic Behavior of Tailings Dam Using FLAC\U3D\N[C]. Advances in Geotechnical Engineering.2011:3138-3147.
    [75] Bussiere B. Colloquium2004: Hydrogeotechnical properties of hard rock tailings frommetal mines and emerging geoenvironmental disposal approaches[J]. Canadian GeotechnicalJournal.2007,44(9):1019-1052.
    [76] Rykaart M, Fredlund M, Stianson J. Solving tailings impoundment water balanceproblems with3-D seepage software[J]. Geotech. News.2001,19(4):50-54.
    [77]杨丽红,李全明,程五一,等.国内外尾矿坝事故主要危险因素的分析研究[J].中国安全生产科学技术.2008,4(5):28-31.
    [78]梅国栋,吴宗之.尾矿库溃坝风险定量评价方法探讨[J].中国安全生产科学技术.2012,8(2):78-82.
    [79]岳虎.尾矿坝(边坡)稳定性分析方法的综述与展望[J].科技信息.2011(20):10362-10363.
    [80]何勇军.模糊测度理论在大坝安全智能决策支持系统中的应用[J].河海大学学报:自然科学版.2008,36(5):605-609.
    [81] Corinne Curt, Aurélie Talona, Gilles Mauris. A dam assessment support system based onphysical measurements, sensory evaluations and expert judgements[J]. Measurement.2011,44(1):192-201.
    [82]谢洪.模糊风险分析应用于大坝安全的研究[D].硕士学位论文:石河子大学,2008.
    [83]王飞跃.基于不确定性理论的尾矿库稳定性分析及综合评价研究[D].博士学位论文:中南大学,2009.
    [84] Divakaran L, Terence T. Modeling attitude to risk in human decision processes: anapplication of fuzzy measures[J]. Fuzzy Sets and Systems.2006,157:3040-3054.
    [85] Lombardi G. On the limits of structural analysis of dams. International Journal onHydropower&Dams.1996,3(5):50-56.
    [86] Krinitzsky E L. Earthquake probability in engineering[J]. Engineering Geology.2010,36(12):1-52.
    [87]董龙洋,周宇,徐文强,等.基于证据理论的尾矿库安全评价[J].安全与环境工程.2012,19(4):74-77.
    [88] F. Mihai, J. Anne-Laure, G. Dominie. Unified approach to the fusion of imperfect data?[J]. Proc. SPIE.2005,4731:75-85.
    [89] Miholca M. On set-valued optimization problems and vector variational-like inequalities[J]. Optimization Letters.2012:1-14.
    [90] Haddad W M, Sadikhov T. On the Equivalence Between Dissipativity and Optimality ofDiscontinuous Nonlinear Regulators for Filippov Dynamical Systems[J].2013:1-8.
    [91] Hao Lu, Lizhe Yang, Jingmin Gao. The application of information diffusion technique inprobabilistic analysis to grassland biological disasters risk[J]. Ecological Modelling.2014,272:264-270.
    [92] Chryss A, Fourie A B, Monch A, et al. Towards an integrated approach to tailingsmanagement [J]. Journal of the Southern African Institute of Mining and Metallurgy.2012,112(11):965-969.
    [93]肖圣博.尾矿库在线安全监测技术及其预警方法研究[D].硕士学位论文:吉林大学,2013.
    [94]杨国顺.井峪沟尾矿坝稳定性分析[D].硕士学位论文:沈阳建筑大学,2011.
    [95]高振兴.基于强度折减法的尾矿坝稳定性数值分析[D].硕士学位论文:西安建筑科技大学,2011.
    [96]郭振世.高堆尾矿坝稳定性分析及加固关键技术研究[D].博士学位论文:西安理工大学,2010.
    [97]王焯.基于模糊理论的尾矿坝安全现状综合评价[D].博士学位论文:山东科技大学,2010.
    [98]黄维新.尾矿坝稳定性分析及尾矿库管理的对策措施研究[D].博士学位论文:中南大学,2008.
    [99]李广治.基于上游式快速高堆坝工艺及关键力学问题研究[D].博士学位论文:重庆大学,2012.
    [100]李明,胡乃联,于芳,等. ANSYS软件在尾矿坝稳定性分析中的应用[J].有色金属:矿山部分.2006,57(5):45-48.
    [101]王秀锐.水电工程安全监测数据采集系统的设计与实现[D].硕士学位论文:华北电力大学,2012.
    [102]任剑.模糊环境下信息不完全的随机多属性决策方法研究[D].博士学位论文:中南大学,2010.
    [103]王清印,刘志勇.不确定性信息的概念,类别及其数学表述[J].运筹与管理.2001,10(4):9-15.
    [104]姚卿达,肖永桥.非精确信息在数据库中的表示和处理33一个扩充的关系数据库模型(IRDM)[C].第十二届全国数据库学术会议论文集.1994.
    [105]王建新,彭革刚,陈松乔等.非精确网络状态信息下基于Bellman3Ford的QoS路由算法[J].电路与系统学报.2003,8(2):22-27.
    [106]杨昌昊.基于不确定性理论的机械故障智能诊断方法研究[D].博士学位论文:中国科学技术大学,2009.
    [107]梅晓峰.不确定性信息的度量及其应用[D].硕士学位论文:西北大学,2006.
    [108]周新宇.基于多源信息不确定性的可能性融合方法研究[D].硕士学位论文:中北大学,2012.
    [109]孙兆刚.模糊数学的产生及其哲学意蕴[D].硕士学位论文:武汉理工大学,2003.
    [110]杨杰.大坝安全监测不确定性问题的分析方法与应用研究[M].北京:中国水利水电出版社.2011.
    [111] Fan S H, Xiao T Y, Guo C, et al. A model of the expanded grey theory[C]. Networking,Sensing and Control,2004IEEE International Conference on.2004,1:339-342.
    [112]谢平,黎红秋,叶爱中.基于经验频率曲线的湖泊富营养化随机评价方法及其验证[J].湖泊科学.2005,16(4):371-376.
    [113]胡雷刚,肖明清,方甲永.不协调信息的协调近似表示空间故障诊断方法[J].系统工程与电子技术.2011,33(8):1810-1815.
    [114]宋春艳.基于混沌理论的信息加密技术研究[D].博士学位论文:哈尔滨工业大学.2013.
    [115]胡德秀,杨杰,周孝德.病险水库运行风险的复合不确定性分析[J].西北农林科技大学学报(自然科学版).2009,37(3):230-234.
    [116]杨杰.大坝安全监控中若干不确定性问题的分析方法与应用研究[D].博士学位论文:河海大学,2006.
    [117]张乾飞、王锦国、李雪红.大坝安全监控中的不确定性信息初探[J].河海大学学报(自然科学版).2002,30(5):113-117.
    [118]李建伟.基于偏最小二乘回归的混凝土坝变形监控模型研究[D].硕士学位论文:西安理工大学,2009.
    [119]杨杰,胡德秀,吴中如.大坝安全监控模型因子相关性及不确定性研究[J].水利学报.2004,12:99-105.
    [120] Katagiri, H., Sakawa, M.. Interactive multi-objective fuzzy random programmingthrough the level set-based probability model[J]. Information Sciences.2011,181:1641-1650.
    [121] Baoding Liu. Random fuzzy dependent-chance programming and its hybrid intelligentalgorithm[J]. Information Sciences.2002,141:259-271.
    [122] Hideki Katagiri, Kosuke Kato, et.al. A random fuzzy minimum spanning tree problemthrough a possibility-based value at risk model[J]. Expert Systems with Applications.2012,39:10639-10646.
    [123]徐晓滨,文成林,刘荣利.基于随机集理论的多源信息统一表示与建模方法[J].电子学报.2008,36(6):1174-1181.
    [124] Babu ka I, Silva R S. Dealing with uncertainties in engineering problems using onlyavailable data[J]. Computer Methods in Applied Mechanics and Engineering.2014,270:57-75.
    [125] Xue Deng, Rongjun Li. Gradually tolerant constraint method for fuzzy portfolio basedon possibility theory[J]. Information Sciences.2014,259:16-24.
    [126] Ouazraoui N, Nait-Said R, Bourareche M, et al. Layers of protection analysis in theframework of possibility theory[J]. Journal of hazardous materials.2013,262:168-178.
    [127]汪培庄.模糊集与随机集落影[M].北京:北京师范大学出版社,1985.
    [128] Benferhat S, Dubois D, Kaci S, et al. Bipolar possibility theory in preference modeling:Representation, fusion and optimal solutions[J]. Information Fusion.2006,7(1):135-150.
    [129]Mandal S, Maiti J. Risk analysis using FMEA: Fuzzy similarity value and possibilitytheory based approach[J]. Expert Systems with Applications.2014,41(7):3527-3537.
    [130]守煜.可变模糊集理论与模型及其应用[M].大连理工大学出版社,2009.
    [131]何俐萍.基于可能性度量的机械系统可靠性分析和评价[D].博士学位论文:大连理工大学,2010.
    [132] Nikolaidis E, Chen S, Cudney H, et al. Comparison of probability and possibility fordesign against catastrophic failure under uncertainty[J]. Journal of Mechanical Design.2004,126(3):386-394.
    [133] Gilles Mauris, Virginie Lasserre, Laurent Foulloy. Fuzzy modeling of measurementdata acquired from physical sensors[J]. IEEE transactions on instrumentation and easurement.2000,49(6):1201-1205.
    [134]宝清.模糊理论基础[M].武汉大学出版社.2004.
    [135]付云鹏,马树才,宋琪.基于截集的加权可能性均值-方差模型的应用[J].统计与决策.2013(8):12-15.
    [136]付云鹏,马树才.一种新的基于可能性均值的证券组合投资决策模型[J].统计与决策.2011(3):164-166.
    [137] Carlsson C, Fullér R. A fuzzy approach to real option valuation[J]. Fuzzy sets andsystems.2003,139(2):297-312.
    [138] Yoshida Y, Yasuda M, Nakagami J, et al. A new evaluation of mean value for fuzzynumbers and its application to American put option under uncertainty[J]. Fuzzy Sets andSystems.2006,157(19):2614-2626.
    [139]段虎明,谢飞等.海量道路路面测量数据的若干预处理方法研究[J].振动与冲击.2011,3(8):101-106.
    [140] Duan H M, Xie F, Zhang K B, et al. Signal trend extraction of road surface profilemeasurement[J]. The2nd International Conference on Signal Processing System, Dalian,China.2010,07:694-698.
    [141] Huang N E, Zheng S H, Steven R L, et al. The empirical mode decomposition and theHilbert spectrum for nonlinear and non-stationary time series analysis[J]. Pro Royal SocietyLondon A.1998:903-995.
    [142]尹光志,李愿,魏作安,等.洪水工况下尾矿库浸润线变化规律及稳定性分析[J].重庆大学学报(自然科学版).2010,33(3):72-75.
    [143]王云海,李娟,李春民.尾矿坝浸润线数据挖掘预测模型的样本选取研究[J].中国安全生产科学技术.2009,5(5):9-12.
    [144] Chen,W. Tan, S.H. On the Possibilistic Mean Value and Variance of Multiplication ofFuzzy Numbers[J]. Journal of Computational and Applied Mathematics.2009,232(4):327-334.
    [145] Bede B, Gal S G. Generalizations of the differentiability of fuzzy-number-valuedfunctions with applications to fuzzy differential equations[J]. Fuzzy Sets and Systems.2005,151(3):581-599.
    [146] Songfeng Yin, Liangcai Cao, et.al. Image denoising with anisotropic bivariate shrinkage[J]. Signal Processing.2011,91:2078-2090.
    [147] Songfeng Yin, LiangcaiCao, et.al. Fusion of noise infrared and visible images based onanisotropic bivariate shrinkage[J]. Infared Physcis and Technology.2011,54:13-20.
    [148] Shuai Xing, Qing Xu, et.al. SAR image denoising using bivariate shrinkage functionsand dual-tree complex wavelet[J]. Journal of System Simulation.2008,20(1):40-45.
    [149] Levent S endur, Ivan W. Selesnick. Bivariate shrinkage functions for wavelet-baseddenoising exploiting interscale dependency[J]. IEEE Transacyions on signal processing.2002,50(11):2744-2756.
    [150] Vivona Doretta,Divari Maria. Fuzzy setting:Fuzziness of general information[J].Communications in Computer and Information Science.2012,298(2):1-3.
    [151] Pal N. R, Bustince H., et.al. Uncertainties with Atanassov's intuitionistic fuzzy sets:Fuzziness and lack of knowledge[J]. Information Sciences.2013,228:61-74.
    [152] Tianrui Li. Fuzziness in systems modelling[J]. International Journal of General Systems.2013,42(1):1-2.
    [153] Xiaosheng Si, Wenbin Wang, et.al. Remaining useful life estimation based on anonlinear diffusion degradation process[J]. IEEE Transactions on Reliability.2012,1(61):50-67.
    [154]王书明,何学秋,王恩元.基于“流变-突变”理论的安全投入决策[J].中国安全科学学报.2009,19(11):46-51.
    [155]何学秋,王云海,梅国栋.基于流变-突变理论的尾矿坝溃坝机理及预警准则研究[J].中国安全科学学报.2012,22(9):74-78.
    [156]何学秋.安全科学基本理论规律研究[J].中国安全科学学报.1998,8(2):5-9.
    [157]王柏生,何宗成,赵琛.混凝土大坝结构损伤检测振动法的可行性[J].建筑科学与工程学报.2005,22(2):51-56.
    [158]施洲,赵人达.桥梁结构损伤对其固有振动特性的影响[J].地震工程与工程振动.2007,27(5):117-123.
    [159]司秀勇,施洲.混凝土桥梁裂缝特性及其对结构固有振动的影响分析[J].铁道建筑.2011(10):14-18.
    [160] Mirkin Boris, Nascimento Susana. Additive spectral method for fuzzy cluster analysi ofsimilarity data including community structure and affinity matrices[J]. Information Sciences.2012,183(1):16-34.
    [161] Braglia Marcello, Carmignani Gionata, Frosolini Marco, et.al. Data classification andMTBF prediction with a multivariate analysis approach[J]. Reliability Engineering andSystem Safety.2012,97(1):27-35.
    [162]孟凡彬.基于随机集理论的多目标跟踪技术研究[D].博士学位论文:哈尔滨工程大学,2010.
    [163] Molchanov I. Theory of random sets[M]. Springer,2006.
    [164]李全明,张兴凯,王云海等.尾矿库溃坝风险指标体系及风险评价模型研究[J].水利学报.2009,40(8):989-994.
    [165] Quanming Li, Maohua Zhong, Yunha Wang i, et.al. Conditions of tailing pondsdistribution and risk management in China[J].Progress in Safety Science and Technology.2008,Ⅶ:2290-2294.
    [166] Masson M H, Den ux T. Inferring a possibility distribution from empirical data[J].Fuzzy sets and systems.2006,157(3):319-340.
    [167] Corinne Curt, Aurélie Talona, Gilles Mauris. A dam assessment support system basedon physical measurements, sensory evaluations and expert judgements[J]. Measurement.2011,44(1):192-201.
    [168] Qiaoling Tong, Xuecheng Zou, Qian Ding, et.al. Latent regression with constrainedparameters to determine the weight coefficients in summary index model[J]. Communicationsin Statistics: Simulation and Computation.2013,42(7):1628-1642.
    [169] Khan,S.H., Cho,Y.J., Abbas,Mujahid. Convergence to common fixed points by amodified iteration process[J]. Journal of Applied Mathematics and Computing.2011,35(1):607-616.
    [170] Lilja.Kari K., Laakso.Kimmo, Palomki.Jari. Using the Delphi method[J]. IEEEComputer Society.2011:86-91.
    [171] Fengwei Li, Phoon Kok Kwang, Xiuli Du, et.al. Improved AHP method and itsapplication in risk identification[J]. Journal of Construction Engineering and Management.2013,139(3):312-320.
    [172]徐家强,毕义明,梁伟等.基于离差最大的机场威胁度评估[J].系统工程与电子技术.2011,33(8):1816-1819.
    [173] Mirkin Boris, Nascimento Susana. Additive spectral method for fuzzy cluster analysisof similarity data including community structure and affinity matrices[J]. InformationSciences.2012,183(1):16-34.
    [174] Braglia Marcello, Carmignani Gionata, Frosolini Marco, et.al. Data classification andMTBF prediction with a multivariate analysis approach[J]. Reliability Engineering andSystem Safety.2012,97(1):27-35.
    [175] Xiaoxia,Wang, Fengbao Yang, et.al. A processing method of possibility entropy weightwith generalized fuzzy expert information[J].Journal of Convergence Information Technology.2013,8(5):939-947.
    [176] Taihua Yang, Qinghua Zheng, Yang Wang. Safety risk analysis of the transmission lineproject affected by dangerous slope rock[J]. Advanced Materials Research.2013,(726-731):816-819.
    [177]梁伟光.基于证据理论的在轨航天器故障诊断方法研究[D].博士学位论文:中国科学技术大学,2011.
    [178] Wu D, Mendel J M. A vector similarity measure for linguistic approximation: Intervaltype-2and type-1fuzzy sets[J]. Information Sciences.2008,178(2):381-402.
    [179] Hongying Zhang, Wenxiu Zhang, Changlin Mei. Entropy of interval-valued fuzzy setsbased on distance and its relationship with similarity measure[J]. Knowledge-Based Systems.2009,22(6):449-454.
    [180] Guha D, Chakraborty D. A new approach to fuzzy distance measure and similaritymeasure between two generalized fuzzy numbers[J]. Applied Soft Computing.2010,10(1):90-99.
    [181]Zeshui Xu. Some similarity measures of intuitionistic fuzzy sets and their applications tomultiple attribute decision making[J]. Fuzzy Optimization and Decision Making.2007,6(2):109-121.
    [182] S. H. Wei, S. M Chen. A new approach for fuzzy risk analysis based on similaritymeasures of generalized fuzzy numbers[J].Expert System with Application.2009,36(1):581-588.
    [183] S.R. Hejazi, A. Doostparast, S.M. Hosseini. An improved fuzzy risk analysis based on anew similarity measures of generalized fuzzy numbers[J]. Expert Systems with Applications.2011,38(8):9179-9185.
    [184] S. J Chen, S. M Chen. Fuzzy risk analysis based on similarity measures of generalizedfuzzy numbers[J]. IEEE Transactions on Fuzzy Systems.2003,11(1):45-56.
    [185]万树平,张小路,王凌等.基于加权可能性均值的直觉梯形模糊数矩阵博弈求解方法[J].控制与决策.2012,27(8):1121-1126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700