用户名: 密码: 验证码:
高堆尾矿坝稳定性分析及加固关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尾矿坝是堆存金属及非金属等矿山选矿废弃物的构筑物,其数量及坝体高度随国家对矿产资源的巨大需求随之快速增加。而尾矿坝溃坝造成人员伤亡和有害污染物下泄的事故屡屡发生,给人民生命财产造成巨大损失,对环境安全构成严重威胁。因此尾矿坝稳定及加固技术等已成为各国政府、矿山企业和学术界所关注的重大课题。本研究结合工程实践,在高堆尾矿坝物理学指标变化规律、高堆尾矿坝三维渗流控制优化、高堆尾矿坝三维静动力稳定性、尾矿坝排渗体淤堵对坝体稳定性影响、尾矿坝加高扩容关键技术研究及应用等方面进行了认真探索。并将其研究结果应用于尾矿坝加高、加固实践,得到如下主要结论:
     (1)通过深钻孔勘探揭露及多种原位测试结果分析,高堆尾矿坝深部的干容重指标要显著高于浅部,堆积坝体同一空间位置,同样埋深下干容重指标随时间明显增加(16年增长约10%),浅层渗透系数降低约6倍,深层降低约12倍;提出了高堆尾矿坝稳定性分析中可按前期、后期分区统计选取力学指标的观点并用于实践。
     (2)依据实测坝体勘探面,首次分区采用渗透系数,拟合实际排渗设施反演分析,建立三维非均质各向异性渗流数学模型,并预测分析坝体加高后渗透安全需要的排渗设施形式和数量。根据当前坝高及规划加高坝体在已建立的排渗系统作用下的渗控结果,对规划坝高增设排渗设施等多种渗流控制布置,经计算与分析,提出规划坝高时渗流控制的优化布置。
     (3)开展了三维静动力的稳定分析、地震参数复核及人工合成地震动加速度时程曲线,为动力分析提供了符合现场的地震参数。采用基于有效应力法的EFES-3D计算程序,对加高后的坝体应力应变场进行了数值模拟和坝坡稳定性分析,得出应力应变场分布和液化评价,提出了三维静动力稳定安全系数计算方法。
     (4)开展了尾矿坝排渗体淤堵机理的现场和室内试验,分析了排渗体淤堵程度对渗透稳定性的影响。排渗效率不小于70%,坝体浸润线可满足安全要求。提出并应用了防治淤堵的工程技术措施。
     (5)提出并实施了大口辐射井-水平孔-插板立体排渗降低浸润线及综合法加高加固坝体等关键技术且得到推广应用,提高尾矿坝体安全性,提高了尾矿库充填系数。
Tailings dam is a kind of depository structure where mineral wastes from metallic and nonmetallic mines are piled. With'the great demand of our country for mineral resources, its number and height increased rapidly. However, tailings dam failures which frequently caused incidents including the death of the people and containment of the environment brought about huge loss to people's life and property, as well as serious threat to environment safety. The stability and consolidation of tailings dam has become an important subject that attracts attentions of the governments, mining enterprises and academic world. Here, in combination with the eningeering practice, the variation law of physical index, the three-dimensional seepage control and optimization, the three-dimensional static and dynamic stability, the effect of drainage body clogging on seepage stability as well as the key techniques of heightening and storage increase of high tailings dam were explored and studied. The results have been applied to practice of the heightening and consolidation thereof. The main conclusions are as following:
     (1)The indexes statistics of deep borehole prospecting and the various in-situ tests results showed:The dry bulk density of deep part significantly was significantly higher than that of shallow part of high tailings part. At the same spatial depth, the dry bulk density index increased significantly with time (theγd increase was about 10%). Therefor, the theory that the mechanic index can be selected statistically according to time zone (early-middle-later) during the stability analysis of tailings dam was proposed and was put into practice.
     (2)The mathematical models were obtained by actual measuremeng of the dam exploration profile, zoning by permeability coefficient at the first time and inverse analysis through fitting the real drainage and seepage facilities. The drainage system complied with the safety demand of heightened dam was predicted including the forms and quantity. According to the seepage control results of the established drainage system at the present and planning height of the dam, the various seepage control facilities were added and the optimized seepage control layout of planning height was put forward through the calculation and analysis.
     (3)The three-dimension static and dynamic stability analysis was carried out, and the time-history curve of the dynamic seismic acceleration of the dam site was composed with the inspection of seismic parameters based on the three-dimension seepage control study, therefore the seismic parameters reflected the onsite situation was provided for the dynamic analysis. EFES-3D calculation program based on the effective stress method was applied to the numerical simulation of the stress-strain field and stability analysis of dam slope after the dam height was increased. Then, the stress and strain field distribution diagram and liquification evaluation were obtained and the calculation method of three-dimension static and dynamic stability safety coefficient was presented.
     (4)The laboratory as well as onsite tests were carried out on the mechanism of clogging during drainage and the effects of the clogging degree on the seepage stability was studied. The results showed the efficiency was more than 70% and the saturation line met the safety requirements. Further more, the technical and engineering measures on reducing and preventing clogging were proposed.
     (5)The stereo drainage system which including wide diameter radiation well, horizontal holes and flashboard was used to lower soakage lines with the comprehensive technology which was used to raise the dam were developed and applied in practice. It was turned out by the engineering verification that these key technologies were practical.
     This dissertation is supported by National Natural Science Foundation(10572090)-The coupling model research on the deformation-seepage-chemical process of variable saturated medium and Jinduicheng Molybdenum Group-scientific research project "Research on the Lixi tailings dam serve period prolonging and the environment protection in Jinduicheng".
引文
[1]祝玉学.关于尾矿库工程中几个问题的讨论[J].金属矿山,1998(10):7~10
    [2]田文旗等.《尾矿库安全技术与管理》[M].北京:煤炭工业出版社,2006
    [3]田文旗等.尾矿库安全技术规程(AQ2006-2005)[S].北京:中国标准出版社,2006
    [4]徐宏达.我国尾矿库病害事故统计分析[J].工业建筑,2001(1):69~71
    [5]C.斯特拉牵.尾矿坝的运行特征[J].矿物加工,2002(4):36~42
    [6]ICOLD Bibiography mine and industrial tailings dams and dumps [J]. Committee on Mine and Industrial Tailings dams Bulletin 44a,ICOLD,1989
    [7]ICOLD, Committee on Mine and Industrial Tailings Dams.Tailings dam safety guidelines[J]. Bulletin 74,ICOD,1989
    [8]ICOLD,Committee on Mine and Industrial Tailings Dams,1982,"Manual on tailings dams and dumps[J],"Bulletin45,ICOLD,1982
    [9]Martin T E, Davies M P. Trends in the stewardship of tailings dams [J]. Tailings and Mine Waste'00,Fort Colins,CO,Ballema,2000:393~407
    [10]USCOLD. Committee on Tailings Dams.Tailings Dam Incidents,USCOLD,1994
    [11]UNEP. Environmental and safety incidents concerning tailings dams at mines [J]. Based on survey conducted by Mining Journal Research Services for UNEP,1996
    [12]Vick S G. Planning,Design and Analysis of Tailings Dams, John Wiley and Sons,New York, reprinted 1990,BiTech Publishers, Vancouver,1983
    [13]Vick S G. Tailings dams safety—Implications for the safety community.Proceedings, Tailings dams, 2000,Association of State Dam Safety Officials,Las Vegas,NV,2000,March28-30:1~2
    [14]Davies, Martin T, Lighthall P. Mine tailings dams:When things go wrong[J]. Proceedings, Tailings dams 2000, Association of State Dam Safety Officials, Las Vegas, NV,2000 March 28-30:261~273
    [15]郭振世,仵彦卿.尾矿坝水土流失预测及控制研究[J].水土保持学报,2009(4):59~63
    [16]韩利民等.中国有色金属尾矿库概论[M].中国有色金属工业总公司1992
    [17]肖耀华,黄传胜.大型尾矿库稳定性勘察施工——江西德兴铜矿Ⅱ号尾矿库勘察实录[J].岩土工程界,1997
    (4):63~65
    [18]刘哲君等.中国尾矿坝地震安全度(4)——大石河尾矿坝的现场工程勘察[J].工业建筑,1994(9):51-53
    [19]辛鸿博,王余庆.中国尾矿坝地震安全度(9)—大石河尾矿粘性土的动力变形和强度特征[J].工业建筑,1995(2):38~42
    [20]辛鸿博,Finnw.D.Liam.1976年大石河尾矿坝地震反应分析[J].岩土工程学报,1996(4):51~59
    [21]C.C.卡梅什尼克等.伦维矿冲积体密度随时间的变化[J].国外金属矿山,1989(1):80~82
    [22]曹净等.攀钢马家田尾矿库化学固结机理初探[J].桂林理工学院学报,2000,20(2):147~150
    [23]曹净.尾矿砂土渗透系数与其埋深之间的关系分析[J].广西大学学报,2001,26(3):219~221
    [24]于孔志.新近堆积砂土的工程性质与岩土工程勘察应注意的问题[J].岩土工程界,1997(2):117-120
    [25]胡高社等,栗西尾矿坝坝体材料物理力学性质及其渗透性额能测试报告[R].长安大学1998
    [26]Terzaghi K.Principles of soil mechanics:Ⅳ; settlement and consolidation of clay[J]. Erdbaummechanic,1925,95(3):874-878.
    [27]Biot MA,General theory of three-dimensional consolidation[J] Journal of Applied Physics,1941,12:155-165.
    [28]Zienkiewicz OC,Shiomi T. the generalized Biot formulation and its numerical solution, Int. J. for Numerical and Analytical in Geomechanics[J], Dynamic behaviour of saturated porous media,1984,8:71-96.
    [29]李锡夔.考虑固结效应的结构-土壤相互作用分析及其有限元银[J],计算结构力学及其应用,1990,7(3):1-11
    [30]Fredlund R, Soil mechanics for unsaturated soil[J], New York:Wiley and Sons Inc.1993,234-245
    [31]Alonso EE et al. A constitutive model for partially saturated soils[J], Geotechnique,1990,40(3):405-430
    [32]陈正汉.非饱和固结的混合理论(1)[J].应用数学和力学,1993(2):127-137
    [33]陈正汉.非饱和固结的混合理论(2)[J].应用数学和力学,1993(8):687-698
    [34]杨代泉.非饱和土二维广义固结数值模型[J].岩土工程学报,1992,14(9):23-28
    [35]柳厚祥等.尾矿坝二维固结稳定渗流分析[J].矿冶工程,2002,22(4):8-14
    [36]尹光志等.龙都尾矿库地下渗流场的数值模拟分析[J].岩土力学,2003,24(增刊):25-28
    [37]赵坚等.尾矿库地质剖面概化及其对渗流场计算的影响[J].金属矿山,2003(12):24-27
    [38]陈章友等.尾矿坝固结渗流的分析模型和计算方法研究[J].工程设计与建设,2004,36(2):8-11
    [39]柳厚祥,李宁等.考虑应力场与渗流场耦合的尾矿坝非稳定渗流分析[J].岩石力学与工程学报,2004,23(17):2870-2875
    [40]HM,Idriss,I.M, Beikae,M. User'sManualfor QUAD4M A Computer Program To Evaluate The Seismic Response of Soil Structures Using Finite Element Procedures and Incorporating a Compliant Base[J].Department of Civil & Environmental Engineering,University of California Davis,1994:2341-2352
    [41]Idriss,I.M,Sun J.User's Manual for SHAKE91A Computer Program For Conducting Equivalent Linear Seismic Response Analyses of Horizontally Layered Soil Deposits [J]. Department of Civil & Environmental Engineering,University of California Davis.1992
    [42]Huang W X. Investigation on stability of saturated sand foundations and slopes against Liquefaction. [J].Proceedings of the fifth International Conference of Soil Mechanics and Foundation Engineering:Vol.2. Paris,1961,629~631
    [43]汪闻韶.饱和砂土振动孔隙水压力试验研究[J].水利学报,1962(2):8~11
    [44]汪闻韶.饱和砂土振动孔隙水压力的产生、扩散和消散[C].第一届土力学及基础工程学术会议论文选集.北京建筑工业出版社,1964
    [45]徐志英,沈珠江.地震液化的有效应力二维动力分析方法[J].华东水利学院学报,1981(3):1~14
    [46]魏汝龙.往复荷载下饱和砂土的抗液化强度和孔隙压力[R].南京水科院研究报告,1978
    [47]Finn W D L, Lee K W, Martin G R.An Effective Stress Model for Liquefaction[J]. JGED,1977,103(6): 517~534
    [48]Chang C S. Residual pore pressure and deformation Behavior of Soil samples under Variable CyclicLoading[J].Proceedings of International Conference on Recent Advances in Geotechnical Earthquake Engineering and soil Dynamics,1981
    [49]石桥等.孔隙水压力上升机理与土的液化[C].北京:中国建筑工业出版社,1979
    [50]王志良,王余庆,韩靖宇.不规则循环荷载作用下土的粘弹塑性模型[J].岩土工程学报,1980(3):10~20
    [51]何广讷.砂土振动孔隙水压力的研究[J].水利学报,1983(3):49~54
    [52]沈珠江.一个计算砂土液化变形的等价粘弹性模式[R].南京水科院研究报告,1998
    [53]Ishihara et al. Undrained Deformation and Liquefaction of Sand under cyclic Stress [J]. Soil and Foundation.15(1),1975
    [54]谢定义,张建民.往返荷载下饱和砂土强度变形瞬态变化的机理[J].土木工程学报,1987,20(3):57~70
    [55]谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型[J].土木工程学报,1990,23(2):51~60,18
    [56]谢定义,张建民.饱和砂土瞬态动力学特性与机理分析[M].西安:陕西科学技术出版社,1995
    [57]李鸿儒,胡再强,陈存礼,党发宁等.金堆城尾矿坝加高方案数值模拟及稳定性分析[J].岩土力学.2008.29(4):1138-1142
    [58]Seed H B,Idriss I M.Simplified Procedure for Evaluatings Soil Liquefaction Potential[J] Journal of the Soil Mechanics and Foundations Division,ASCE,1971,97(SM9)
    [59]Seki K, Miyazaki T, Nakano M. Effects of microorganisms on hydraulic conductivitu decrease in infiltration[J]. European journal of soil science,1998,49:231~236
    [60]Mansur CI, Postol G, Sally JR. Performance of Relief Well Systems along Mississippi River Levees [J]. Journal of Geotechnical and Geoenvironmental Engineering,2000,126 (8):727~738
    [61]孔丽丽,陈守义.武山尾矿坝无纺土工织物滤层化学淤堵问题初探[J].岩土工程学报,1999,21(4):444~449
    [62]VanGulck JF, Rowe RK. Evolution of clog formation with time in columns permeated with synthetic landfill leachate[J]. Journal of Contaminant Hydrology,2004,75:115~139
    [63]徐约忠等,栗西尾矿坝工程地质勘察报告[R].马鞍山地质工程勘察院,2006
    [64]速宝玉,詹美礼,郭振世等.金堆城栗西尾矿坝三维渗流控制研究[R].河海大学、金堆城钼业集团有限公司,2006
    [65]仵彦卿,郭振世,武君等.金堆城栗西尾矿坝渗流与动力稳定耦合分析研究报告[R],上海:上海交通大学,2006年
    [66]速宝玉等.龙滩RCC渗流特性试验研究(96—220—01—02—01(3))[R].河海大学,1999
    [67]速宝玉,朱岳明.不变网格确定渗流自由面的节点虚流量法[J].河海大学学报,1991,19(5):113-117
    [68]吴梦喜等.有自由面渗流分析的虚单元法[J].水利学报,1994(8):67-71
    [69]速宝玉,沈振中等.用变分不等式理论求解渗流问题的截止负压法[J].水利学报,1996(3):22-29
    [70]李祖贻等.堤坝渗流以沟代井列的计算方法[J].水利学报,1989(7):49-55
    [71]关锦荷等.用排水沟代替排水井列的有限单元法分析[J].水利学报,1984(3)
    [72]毛昶熙主编.渗流计算分析与控制[M].北京:水利电力出版社,1990
    [73]速宝玉,詹美礼.官地电站坝体、坝基地下厂房洞室群三维渗流控制优化分析研究[M].河海大学,1997
    [74]速宝玉,詹美礼等.小湾电站坝基地下厂房洞室群三维渗流控制优化分析研究[M].河海大学,1999
    [75]速宝玉,詹美礼等.水工渗流分析.河海大学研究报告,1998(10)
    [76]速宝玉,詹美礼等.糯扎渡混凝土重力坝坝体坝基三维渗流分析[R].河海大学水电学院,1998(10)
    [77]詹美礼,速宝玉.灌浆参数优化设计分析及理论探索水力发电[J].河海大学学报,1998(2):34-36
    [78]Zhan mei-li Su bao-yu Model experiment research on cross fracture flow[J]. Jouranl of Hydrodynamics. 1998 (2):44-53
    [79]詹美礼,速宝玉.碾压砼层面渗流分析的界面元方法[J].水电站设计,1999,15(2):33-37
    [80]Zhan mei-li,Su bao-yu.New method of simulating concentrated drain holes in seepoge control analysis[J] Journal of Hydrodynamics.1999(3),27-35
    [81]詹美礼,速宝玉.渗流控制分析中密集排水孔模拟的新方法[J].水力发电.2000(4):36-39
    [82]胡再强,仵彦卿,陈存礼,郭振世等.金堆城栗西尾矿坝静、动力稳定性研究[R].西安理工大学,2006
    [83]胡再强,仵彦卿,陈存礼,郭振世等.金堆城栗西尾矿坝尾砂静动力特性试验研究报告[R].西安理工大学,2006
    [84]种瑾等,栗西尾矿坝加高扩容工程场地地震安全性评价工作报告[R].陕西大地地震工程勘察中心,2006
    [85]仵彦卿,武君,郭振世等.尾矿坝化学淤堵机理与过程模拟研究报告[R].上海交通大学,2008
    [86]张爱军,董为民,骆亚生.尾矿坝排水管的反滤、淤堵试验研究[J].防渗技术,2001,7(1):1-3
    [87]Fuchs S, Hahn HH, Roddewig J, et al. Biodegaradation and bioclogging in tlie unsaturated porous soil beneath sewer leaks[J]. Acta hydrochimica et hydrobiologica,2004,32(4-5):277-286
    [88]Rinck-Pfeiffer S, Ragusa S, Sztajnbok P, et al. Interrelationships between biological, chemical, and physical processes as an analog to clogging in aquifer storage and recovery (ASR) wells [J]. Water Research,2000,34(7):2110-2118
    [89]武君.尾矿坝化学淤堵机理与过程模拟研究[D].上海交通大学,2008
    [90]Bear J,李竞生,陈崇希译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983
    [91]薛禹群.地下水动力学原理[M].北京:地质出版社,1986
    [92]仵彦卿.多孔介质污染物迁移动力学[M].上海:上海交通大学出版社,2007
    [93]王维萃.兰亭尾矿库的综合治理与扩容改造[J].中国矿业,1994,13(4):36-38
    [94]贺金刚,郭振世.延长尾矿库服务年限的途径[J].中国钼业,2008(6):12-14.
    [95]徐政等.黄家沟尾矿库增容可行性研究[J].西安有色冶金设计研究院,2002
    [96]于耀国等.本钢南芬选矿厂小庙沟尾矿库后期增容及闭库初步设计说明书[R].鞍山冶金设计研究院,1998
    [97]裘家骙等.铁坑铁矿尾矿库筑坝稳定性分析及加高扩容可行性研究[J].金属矿山,1990(4):41-46
    [98]于俊华等.南钢集团冶山铁矿尾矿库增容方案设计书[R].北京有色冶金设计研究总院,2000
    [99]王树.加筋土坝在孟家冲尾矿库加高工程中的应用[J].冶金矿山设计与建设,2001,33(4):24-28
    [100]黄经原.尾矿筑坝工艺和理论发展探讨[J].湖南科技大学学报,1986,2(2)
    [101]陈守义.浅议上游法细粒尾矿堆坝问题[J].岩土力学,1995,16(3):70-75
    [102]战勋友.御驾泉尾矿库使用现状与发展方向[J].金属矿山,1992(11):34-39
    [103]王柏纯等.中线法筑坝加高改造技术[J].中国矿业,1994,13(4):39-42
    [104]王柏纯等.采用中线法筑坝工艺实现尾矿库大幅扩容[J].矿业快报,2002(17):18-20
    [105]尹光志,魏作安,许江.细粒尾矿及其堆坝稳定性分析[M].重庆大学学报,2004
    [106]裘家骙等.齐大山铁矿尾矿筑坝技术试验研究[J].矿业工程,1991(4):11-15
    [107]Cooke H G, and Mitchell J K. Evaluation and selection of liquefaction mitigation measures for existing bridges. Proc. Seismic risks and solutions for highways and bridges in the central and eastern United StatesfJ], Mid-America highway seismic conference, Feb.28-Mar.3,1999
    [108]JGS. Soils and foundations-special issue on geotechnical aspects of the January 17,1995 Hyogoken-Nam bu earthquake. Japanese society geotechnique engineering,1996
    [109]Shenthan T. Liquefaction mitigation in silty soils using stone columns supplemented with wick drains: [dissertation].New York: State university of New York at Buffalo,2005
    [110]Nashed R. Liquefaction mitigation of silty soils using dynamic compaction:[dissertation].State university of New York at Buffalo,2005
    [111]王余庆.尾矿坝抗震鉴定与加固[M].北京:地震出版社,1989,225-228
    [112]黄春霞,张鸿儒,隋志龙.碎石桩复合地基的抗液化特性探讨[J].工程地质学报,2004,12(2):148-154
    [113]Ishihara S,Kawase Y, Nakajima M. Liquefaction characteristics of sand deposits at an oil tank site during the 1978 Miyagiken-oil earthquake[J]. Soil and foundations,1980,20(2):97-111.
    [114]Mitchell J K, Baxter C D P, Munson T C. Performance of improved ground during earthquakes. Soil improvement for earthquake hazard mitigation[J], ASCE geotedhnixal special publication No.49,1995,1-36
    [115]Seed H B, Booker J R. Stabilization of potentially liquefiable sand deposits using gravel drains[J]. Journal of the Geotechnical Engineering Division, ASCE,1997,103(7):757-768
    [116]Baez J I, Martin G R. Advances in the design of vibro systems for the improvement of liquefaction resistance. P roceeding of the Symposium on GROUND Improvement[J]. Vancouver Geotechnical Society, Vancouver, B. C, Canada,1993
    [117]Luehring R, Stevens M, Snorteland N, et al. Liquefaction mitigation of silty dam foundation using vibro-stone columns and drainage wicks:a case history at salmon lake dam[J]. The Future of Dams and Their Reservoirs,21stUSSD Annual Meeting and Lecture Proceedings, USSD,2001
    [118]巧徐志英.砂井内设置砾石排水桩抗地震液化的分析与计算[J]勘.察科学技术,1985(1):1-7
    [119]Adailer K, Elgamal A, Meneses J, et al. Stone columns as liquefaction countermeasure in non-plastic silty soils[J]. Soil Dynamics and Earthquake Engineering,2003(23):571~584
    [120]Baez J I, Martin G R. Quantitative evaluation of stone column technique for earthquake liquefaction mitigation[J].10th word conference on earthquake engineering, Roteerdam.1992,1477~1483
    [121]邓建国.碎石桩复合地基液化判别方法的探讨[J].工程勘探,1999,(2):5~7
    [122]邱钰,黄卫,刘松玉.干振碎石桩处理高速公路液化地基效果分析[J].公路交通科技,2000,17(4):19~21
    [123]林本海,谢定义.复合基地的液化检验理论及其应用[M].北京:中国水利水电出版社,1999
    [124]徐日庆等.土工合成材料应用技术[M].北京:化学工业出版社,2005:1-20
    [125]陈忠达.公路档土墙设计(第一版)[M].北京:人民交通出版社,1999
    [126]杜运兴.预应力CFRP加筋土技术的应用与研究[D]. 湖南大学:湖南大学,2003:1-9
    [127]王凤江.加筋尾矿砂的三轴试验研究[J].辽宁工程技术大学学报,2003,22(5):618-620
    [128]孔宪京,邹德高,邓学晶等.高土石坝综合抗震措施及其效果的验算[J].水利学报,2006,37(12):1489~1495
    [129]刘浩吾,王雪松.论土石坝新型结构—加筋堆石坝[J].水利水电技术,2000,31(4):19~21
    [130]Rico M, Benito G, D'iez2Herrero A. Floods from tailings dam failures [J]. Journal of Hazardous Materials,2008,154:79-87.
    [131]郭振世,贺金刚,等.金堆城栗西沟尾矿库延长服务年限及环境保护研究报告[R].西安:金堆城钼业集团公司,2006.
    [132]郭振世,仵彦卿,詹美礼,丁卫华.高堆尾矿坝堆积特性及三维渗流数值分析研究[J].水土保持通报,2009,29(3):188~192.
    [133]谢永生,吕惠明,张汉雄,等.栗西沟尾矿库延长服务年限项目水土保持方案报告书[R].陕西杨凌:中国科学院水利部水土保持研究所,2006.
    [134]王涛,郭振世,等.层次分析法(A HP)在尾矿库安全运行分析中的应用[J].岩土力学,2008,29(11):680~586.
    [135]仵彦卿,郭振世,贺金刚.栗西尾矿库永久排洪隧洞渗流稳定性评价及预测分析[R].上海:上海交通大学,金堆城钼业股份有限公司,2007.
    [136]郭振世,贺金刚.栗西尾矿坝漏砂治理技术研究与实践[J].中国铝业,2007(2):6~10.
    [137]Wu J un,Wu Yan qing, Lu J ian,Leonora L. Field investigations and laboratory simulation of clogging in Lixi tailings dam off induicheng,China[J]. Environmental Geology,2007,53 (2):387~397.
    [138]王涛,郭振世尾矿库危险有害因素辨识及安全管理措施[J].黄金.2008,29(4)
    [139]郭振世,速宝玉,仵彦卿,等.栗西尾矿坝三维渗流控制研究[J].西安理工大学学报,2009,25(2):160-163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700