用户名: 密码: 验证码:
细粒尾矿坝的地震动力反应分析及液化评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊拉里农大沟尾矿坝处于高地震烈度区,是由滩面尾矿堆筑而成,高度达到约185m,坝体属于易液化材料,在实际中最突出的问题就是在地震荷载作用下的坝体稳定和抗震液化。本文叙述了羊拉里农大沟尾矿坝的基本情况,明确论文的研究任务和目的以及分析条件,即对该尾矿坝进行地震动力响应分析和液化评价。
     采用FLAC软件,应用其中的摩尔—库仑塑性模型,对该尾矿坝进行了动力有限元分析,最终得出了此中线法堆坝的尾矿坝在地震作用下坝体的稳定性情况、加速度和位移的变化规律:
     ①坝体加速度的动力反应特征:坝体最大加速度出现在强震段(4-10s之间)。而在强震阶段中不同坝体位置的加速度的变化规律为:在坡面上加速度峰值先从大到小,再逐渐增大,在坡脚处加速度峰值达到最大;在轴向方向上从下到上加速度峰值有逐渐上升趋势,但上升的幅度很小;水平节点加速度峰值具有从左到右逐渐减小趋势。
     ②坝体位移变化的动力响应特征:斜坡面上的水平位移,在振动初期尾矿坝整体表现出高度越大位移越大的趋势;在经历强振动力作用后(4-10s),坝体外坡中下部位移迅速增大;在振动作用后期(10-40s),坝体位移分布规律与前10s的变化基本一致,只是总体位移量略有增加。在坝体内部,随着高度的增加位移存在放大规律,但从位移的变化量来看,坝体轴向上的位移量都较小。
     ③利用颗分曲线法、标贯试验法、相对密度法对羊拉里农大沟尾矿坝进行了液化的初步判别,得出了整个尾矿坝的尾粉砂均为可能液化的土层。但利用水压力数值模拟看出尾矿坝在震动中并没有造成明显的液化现象。不过在尾矿坝的中下部位,水压力有明显增大的趋势。在尾矿库的管理中必须注意排渗和防洪等工作,切实保证高堆尾矿坝的安全稳定。
The Li Nong ditch tailing dam lay in seismic area of 8 degrees and is piled with the tailing's material:Its height reaches about 185 m and the dam body belongs to and exchanges the liquefaction material.The most outstanding problem is dam body stability and liquefaction under the function of loading of the earthquake in reality. The thesis mostly work is mathematical analysis, gives some basic information of the research object—the Li Nong big ditch tailing dam, determines research task and purpose and analysis condition that is the dynamic analysis and liquefaction evaluation.
     Utilizing dynamical finite element method based on Mohr-Coulomb plastic model and Using the FLAC software, had got the changed laws of stability, acceleration and displacement variation of central line damming under seismic action.
     ①The dynamic response characteristics of acceleration:The maximum acceleration of the dam appeared in a strong shock stage. And under strong vibration, the different dam location's variations of acceleration are followings:On the slope, the maximum acceleration changed from large to small, and then gradually increased, reached the maximum at the foot of the slope. It showed a gradual upward trend from bottom to top in the axial direction. However, the magnitude of increase is very small. The trend of maximum acceleration in level node gradually decreased from left to right.
     ②The dynamic response characteristics of displacement:Early in the vibration-the horizontal displacement of the slope surface showed the trend that the greater displacement with the greater height; After strong vibration force, displacement increased rapidly outside the lower slope of the dam.; Under vibration later time, the changed distributions of dam displacement are basically same as the first 10 seconds, only a slight increase in the overall displacement.
     ③Utilizing grade curve, SPT, relative density found the whole tailing dam silts were likely to soil liquefaction. But through the numerical simulation of void water pressure it didn't caused apparent liquefaction of tailings dam in the shock.
引文
[1]迈克.剑桥.尾矿坝失事的回顾[J].水利水电快报,2002,3:6-7
    [2]中国有色金属尾矿库概论编辑委员会.中国有色金属尾矿库概论[M].北京:中国有色金属工业总公司,1992
    [3]汪文韶.土的动力强度及液化特性[M].北京:中国电力出版社,1997
    [4]魏作安,尹光志,沈楼燕等.探讨尾矿库涉及领域中存在的问题[J].有色金属(矿山部分),2002,4:44-45
    [5]沈楼燕,魏作安.探讨矿山尾矿库比库中的一些问题[J].金属矿山,2002,6:47-48
    [6]《中国有色金属尾矿库概论》编辑委员会.中国有色金属尾矿库概论[R].中国有色金属工业总公司,1992:252-257
    [7]谢定义.土动力学[M].西安:西安交通大学出版社.1987
    [8]A.D.M Penman. Tailings dams-some aspects of their design and construction [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1995,32(3):131
    [9]R. J. Chandler & G. Tosati the Stava tailings dam failure, Italy, Julal 1985[J]. Geotechnical Engineering 1995,113(2):67-69
    [10]Vick S.G.Tailings dam failure at Omani in Guyana[J]. Mining Engineerring.1996,48(11): 34-37
    [11]K. Mohd. Azizli, Tan Chee Yau design of the Lohan Tailings Dam, Mamut Copper Mining San.Bhd,Malaysia [J]. Minerals Engineering,1995,8(8):705-712
    [12]T. Rosner, A. Van Schalkwyk The environmental impact of gold mine tailings footprints in the Johannesburg region, South Africa [J]. Bulletin of Engineering Geology and Environment,2000,59(2):137-148
    [13]I. Mascara Mine wastes at the polymetallic deposit of Fenice Capanne (southern Tuscany, Italy).Mineralogy, geochemistry and environmental impact [J]. Environmental Geology,2001,41(4):417-429
    [14]石兆古,丰万玲.动三轴试验资料在水平土层液化势判别中的应用问题[J].勘察 技术,1979:No4
    [15]Seed HB.Tokimatsu K Harder L F & Chung R M Influence of SPT procedures in soil liquefaction resistance evaluations[J]. Journal of the Geotechnical Engineering.ASCE.1985,111(12):1425-1445
    [16]Seed H B Idriss I M Makdisi F I and Banerjee N Representation of Irregular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analyses[R] Report No EERC 75-29, EERC, Univ of California, Berkeley, California, Oct 1975
    [17]王武林,杨春,阎金安.某铅锌尾矿坝工程勘查与稳定性分析[J].岩石力学与工程学报,1992,11(4):332-344
    [18]张超,杨春和,孔令伟.某铜矿尾砂力学特性研究和稳定性分析[J].岩土力学,2003,24(5):858-862
    [19]张建隆.尾矿砂力学特性的试验研究[J].武汉水利电力大学学报.1995,28(6):685-689
    [20]汪文韶.土的动力强度及液化特性[M].北京:中国电力出版社,1997
    [21]Casagrande A and Shannon W L Research on Stress-Deformation and Strength Characteristics of Soils and Soft Rocks Under Transient Loading A Research Project Sponsored by The Pamama Canal Publications from The Gradnate School of Engineering Harvard University No 447 Soil Mechanics Series No 31:1947-1948
    [22]Taylor D W Fundamentals of Soil Mechanics New York John Wiley and Sons,1948
    [23]谢定义.土动力学[M].西安:西安交通大学出版社,1987
    [24]马斯洛夫.土力学问题.1954[M](李仁柄译)北京:建筑工程出版社,1959:1-85
    [25]Seed H B and Idriss, I M (1971) Simplified Procedure for Evaluating Soil Liquefaction Potential, J Soil Mech and Found Div, ASCE, Vol 97.No SM7
    [26]Seed. H B and Idnss, I M (1997) Soil Module and Damping Factors for Dynamic Response AnaLyses, EERC, Report No 0-10, U C Berlkeley, Cailf
    [27]汪闻韶.一个饱和粉质壤土的振动试验[J].水利学报,1965(1)
    [28]Saada, A S On Cyclic Testing with Thin Long Hollow Cylinders[C]Advances in the Art of Testing Soils under Cyclic Condition,ASCE, Michigan,1985,1-28
    [29]汪闻韶.土工抗震研究进展[J].岩土工程学报,1993,15(6):80-82
    [30]黄文熙.砂基和砂土的液化研究[J].水利水电技术,1995(15)
    [31]谢定义.饱和砂土体液化的若干问题[J],岩土工程学报1992,14(3):90-98
    [32]魏迎奇,刘汉龙,余湘娟.砂土液化及液化后分析综述[J].1997,10:35-39
    [33]杨健,陈庆寿.砂土液化影响因素及其判别方法[J].西部探矿,2004,93(2):1-2
    [34]姜涛.尾矿坝砂土液化的简化判别方法.构筑物抗震,北京:测绘出版社,1990
    [35]王余庆,王治平,辛鸿博,李志林.中国尾矿坝地震安全度(1)一大石河尾矿坝1976年年唐山大地震震害及有关强震观测记录[J].工业建筑,1994(7):38-42
    [36]王余庆,高艳平,辛鸿博.中国尾矿坝地震安全度(2)—大石河尾矿坝基岩输入地震动的确定[J].工业建筑,1994(8):41-47
    [37]王治平,李志林.中国尾矿坝地震安全度(3)—经受唐山大地震的大石何尾矿坝历史和现状剖析[J].工业建筑,1994(9):47-50
    [38]辛鸿博,王余庆.中国尾矿坝地震安全度(6)—用SPT评价大石河尾矿坝的沉积特征[J].工业建筑,1994(11):50-53
    [39]李万升,刘静平,王治平.中国尾矿坝地震安全度(7)—大石河尾矿坝原位密度的同位素测试方法[J].工业建筑,1994(12):36-41
    [40]李万升,高建平,王治平.中国尾矿坝地震安全度(8)—大石河尾矿砂的力学特性试验研究[J].工业建筑,1995(1):43-48
    [41]金晓媚,张杰坤.尾矿土振动液化参数的研究[J].中国地质灾害与防治学报,1994(5):157-160
    [42]阮元成,郭新.饱和尾矿料静、动强度特性的试验研究[J].水利学报,2004(1):67-73
    [43]苑炼菊.工程流体力学及其应用.北京.中国建材工业出版社,2001
    [44]软脑软件(北京)有限公司.中文2D-FLOW for Windows Verl.1用户使用手册.北京:北京软脑公司,1996
    [45]Itasca Consulting Croup Inc FLAC-2D, Version 200, Users Manual (Volume V) [R].USA Itasca Consulting Group Inc,1997
    [46]Kunar R R.Beresford P J.Cundall PA A tested soil-structure model for surface interaction[R].India Rookee Univ,1977
    [47]KuhLemeyer R L,Lysmer J Finite element method accuracy for wave propagation problems [J].Soil Mech Foundations Div.ASCE.1973,99(SM5):421-427
    [48]Braja M Das土动力学原理[M].浙江:浙江大学出版社,1982
    [49]Martin GRWDL Finn, H B Seed Fundamentals for Lyuefaction under cycic Loading AScE.J of Geotechnical Engmeenng Division No GTS,1975。
    [50]Dobry, R, Herrera, A V, Mohammad, R and Vuectic M Liquefaction Flow Failure of Salty Sand by Torsional Cyclic conditions[C]} advances in the Art of Testing Soils under cyclic Condition, ASCE, Michigan,1985,29-50
    [51]Fakharian, K and Evgin, E Cyclic Simple-Shear Behavior of Sand-Steel Interfaces under constant Normal Stiffness Condition, J of Geotechnical and Geoenviromental engineering[J].1997,123(12):1096-1105
    [52]刘颖,谢君斐.砂土振动液化[M].地震出版社,1984。
    [53]Sasitharan S, Robertson P K and Sego, D C Preliminary Evaluation of Flow Liquefaction of Salty Sands Using Shear Wave Velocity[C], Proc 46th Annual Canadian Geotechnical Conference 505-513
    [54]黄博.粉土和粉砂的动力特性及地震液化研究[D].浙江大学,2000
    [55]Itasca Consulting Group Inc. FLAC, Version 5.00, Users Manual [R]. USA:Itasca Consulting Group Inc,2005.
    [56]刘春玲等.利用FLAC3D分析某边坡地震稳定性.岩石力学与工程学报[J],2004年16期
    [57]刘波,韩彦辉.FLAC原理、实例与应用指南fMl.人民交通出版社,2005.
    [58]张超.尾矿动力特性及坝体稳定性分析[D].中国科学院研究生院博士学位论文,2005年5月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700