用户名: 密码: 验证码:
轴承钢热轧组织控制机理与超快速冷却研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对国内某特殊钢棒材厂连铸连轧机改造后,GCr15轴承钢棒材交货状态网状碳化物大量析出、网状级别超标问题,通过实验室热模拟实验、热轧实验和不同冷却工艺控冷实验,对热轧GCrl5轴承钢组织与性能进行研究。重点分析了不同轧制工艺和冷却工艺参数对其先共析二次碳化物的析出和珠光体转变的影响,探讨了得到抑制网状二次碳化物析出的细珠光体组织工艺方法。并在不改变特殊钢棒材厂原有连轧生产线设置的基础上,安装超快速冷却系统,高温终轧后进行超快速冷却工业实验和大批量工业化生产。论文的主要工作如下:
     1在实验室自主研发的热力模拟实验机上对GCr15轴承钢进行热模拟实验。
     高温变形促进GCr15轴承钢在连续冷却过程中二次碳化物的析出和珠光体的转变,随着变形量增加,二次碳化物和珠光体的开始析出温度升高,珠光体球团直径减小,但变形量变化对二次碳化物厚度影响甚微;低温变形促进晶界处二次碳化物的碎断,珠光体球团直径和片层间距减小。
     GCr15轴承钢在连续冷却过程中,从高温到低温的相变产物主要有二次碳化物、珠光体和马氏体,随着冷却速度减小,马氏体转变曲线右侧发生抬高现象;晶界处二次碳化物为(Fe·Cr)3C型碳化物,抑制网状二次碳化物析出的临界冷却速度为8℃/s;完全发生珠光体转变的临界冷却速度为5℃/s,在756-510℃温度范围内保温20-200s就可以完全发生珠光体转变;随着连续冷却速度增加,二次碳化物和珠光体开始析出温度降低,晶界处二次碳化物由紧密的网状分布转变为半网状、短条状最后弥散析出,二次碳化物厚度减小,晶界处二次碳化物中C、Cr含量减小,珠光体球团直径和片层间距减小,显微硬度值增大,并有退化珠光体生成。
     2在热力模拟实验机上对GCr15轴承钢进行高温变形后控冷工艺模拟。
     GCr15轴承钢高温变形后以一定冷却速度快速冷却到不同温度的等温过程中,随等温时间延长,室温组织中珠光体含量增多的同时,晶界处二次碳化物析出趋势增大。随快速冷却阶段冷却速度的增加和等温温度的降低,二次碳化物沿晶界析出减弱,珠光体球团直径减小,珠光体片层结构变细变短,并有退化珠光体生成。以一定冷却速度快速冷却到不同温度的缓慢冷却过程中,随缓慢冷却速度的增加,珠光体球团直径减小,晶界处二次碳化物析出减少,缓慢冷却速度过大,将有淬火马氏体生成,晶界处无网状二次碳化物析出,珠光体组织大部分为铁素体和渗碳体层叠生长的片层状结构,有少量退化珠光体生成。通过制定不同温度区间的冷却工艺,增大快冷阶段冷却速度并配合以合理的缓冷阶段冷却速度,就可以达到抑制网状碳化物析出并得到细片层珠光体的目的。
     3在实验室条件下对高温终轧后GCr15轴承钢板材进行新型冷却工艺实验,分析不同冷却工艺参数对轴承钢组织性能影响。
     轴承钢板材热轧后常规冷却过程中,表面冷却速度较大,得到了抑制网状碳化物析出的珠光体组织,但内部由于冷却能力不足,室温组织为沿粗大晶界析出的网状二次碳化物和珠光体组织。轴承钢板材热轧后经过表面瞬时冷却速度可达到200℃/s的超快速冷却,整个断面均为抑制了网状二次碳化物析出的细珠光体组织,说明其内外部均达到了抑制网状碳化物析出的理想冷却速度;由于其心部冷却能力相对表面减弱,因此心部珠光体片层间距较表层有一定程度增大;随着终冷温度的降低,珠光体球团直径和片层间距减小,网状碳化物级别降低,其球化退火后冲击韧性值和硬度增大。
     4对不同规格轴承钢棒材高温保温后超快速冷却过程温度场进行模拟,分析超快速冷却过程中,棒材断面不同位置温度和冷却速度变化。
     在运用ANSYS软件对超快速冷却过程中棒材断面进行温度场分析时,采用计算超快速冷却终冷温度与实测终冷温度一致时停止计算的途径来确认换热系数的较精确值,不断修改传热模型,并对其温度场进行求解;空冷换热系数的确认,按照经验公式来处理。
     针对Φ<60mm棒材,根据超快速冷却后棒材表面温度不低于马氏体转变温度、而返红后最高温度不超过700℃原则进行一次超快速冷却,棒材断面不同位置冷却速度均达到抑制网状碳化物析出、过冷奥氏体完全发生珠光体转变的冷却速度要求;针对Φ≥60mm棒材,运用分段式二次超快速冷却,在不延长超快速冷却总时间前提下,解决了大断面棒材内部不易冷却的难题,提高了棒材内部的冷却速度,棒材断面不同位置冷却速度均可以达到抑制网状碳化物析出、过冷奥氏体完全发生珠光体转变的冷却速度要求,达到了进行超快速冷却的目的;在超快速冷却总时间相同条件下,对棒材进行分段多次超快速冷却,其内部冷却强度明显高于一次超快速冷却,内部冷却速度提高。
     5在不改变钢厂原有热连轧生产工艺的基础上,在连轧机组后安装三组超快速冷却系统,通过调节水压、喷嘴孔大小以及开水箱个数,针对不同规格棒材进行高温终轧后超快速冷却,其瞬时冷却速度可达到400℃/s以上。经过超快速冷却后,不同规格棒材断面不同位置冷却速度均可以达到抑制网状碳化物析出、过冷奥氏体完全发生珠光体转变的冷却速度要求,网状碳化物级别均≤2级,达到轴承行业标准。
     GCr15轴承钢棒材超快速冷却工艺的应用解决了其高温终轧后网状碳化物级别超标问题,不仅可以得到抑制网状碳化物析出的细珠光体组织,利于下一步球化退火工艺,而且保证了连轧生产线的轧制速度和避免待温工序,提高生产效率,使企业取得较大经济效益。“GCr15轴承钢热轧组织控制机理与超快速冷却研究”这一课题,对于提高我国轴承钢棒材质量、促进我国经济和社会发展具有着重要的指导意义。
Againsting the problem of precipitation of network carbide and over-proof of network level in bearing steel delivery state after conversion of continuous casting and continuous rolling in some domestic special steel mill, structure and property of GCr15 bearing steel were researched through thermo-mechanical simulations、hot rolling test and different controlled cooling test. Influence of different rolling processes and cooling processes to the precipitation of hypereutectoid secondary carbide and transformation of pearlite were analyzed. The technique, in which fine laminar pearlite without net-work carbide would be obtained were study. Ultra-fast cooling industrialized test and multitudinous industrialized manufacture after high temperature final rolling were processed through the installation of ultra-fast cooling system in the condition of keeping to the inhere continuous rolling production line of special mill. The main works involved as follows:
     1 Thermal simulation was performed by MMS-300 thermo-mechanical simulator in GCr15 bearing steel.
     High temperature deformation advanced the precipitation of secondary carbide and transformation of pearlite in continuous cooling process. With the increase of distortion, initial precipitation temperature of secondary carbide and pearlite rised, the diameter of pearlite grain decreased, but the influence of variety of distortion to secondary carbide thickness was minute; Low temperature deformation advanced the crushing of inter-granular secondary carbide, the laminar and diameter of pearlite grain decreased.
     In the process of continuous cooling of GCr15 bearing steel, the phase transition staple were secondary carbide、pearlite and martensite. Along with reduce of cooling rate, the right side of martensite transformation curve raised. Secondary carbide in grain boundary was (Fe·Cr)3 C, the critical cooling rate of restraining the precipitation of network carbide was 8℃/s; the critical cooling rate of completely transformation of pearlite was 5℃/s, residual austentite can transformed to pearlite absolutely in the condition of thermal insulation 20-200s in 756-510℃. Along with the increased of cooling rate, initial precipitation temperature of secondary carbide and pearlite decreased, the pattern of inter-granular secondary carbide convert from compact network to dispersive scatter, thickness of secondary carbide and content of C、Cr in inter-granular secondary carbide reduced, the pearlite laminar and the diameter of pearlite grain decreased, and degenerate pearlite appeared along with the increase of micro-hardness.
     2 Controlled cooling process was simulated by thermo-mechanical simulator in GCrl5 after high-temperature final rolling.
     Content of pearlite increased and the inclination of inter-granular carbide precipitation enlarged along with extension of isothermal time in isothermal procedure after cooling to different temperature in a given cooling rate. Along with the increase of cooling rate and reduction of isothermal temperature in fast cooling period, carbide precipitation in grain boundary weakened, the diameter of pearlite grain decreased, lamellar structure of pearlite become thin and short, some degenerate pearlite appeared. In slow cooling period after cooling to different temperature in a given cooling rate, the diameter of pearlite grain reduced and precipitation of inter-granular secondary carbide weakened along with the increase of slow cooling rate. Quenching martensite appeared when slow cooling rate was oversized, the precipitation of inter-granular secondary carbide was nonexistent, majority pearlte structure was lamellar with ferrite and cementite and little degenerate pearlite appeared. The target of obtaining fine laminar pearlite without net-work carbide could accomplish through the technique, in which cooling process was formulated in different temperature province and increase the cooling rate in fast cooling period cooperating with rational slow cooling rate.
     3 New style cooling technique was proceeded on bearing steel plate after high temperature final rolling in laboratory condition.
     In the process of conventional cooling on steel plate after high temperature final rolling, pearlite structure without net-work carbide would be obtained in surface because of the major cooing rate, but room-temperature structure was coarse pearlite and network carbide precipitating in grain boundary in center due to the deficiency of cooling intensity; expected cooling rate of restraining precipitation of network carbide was reached and fine pearlite without net-work carbide was obtained in the whole cross-section of bearing steel plate through ultra-fast cooling with surfaced cooling rate being greater than 100℃/s; lamellar interval of center pearlite was greater than that of surface pearlite because of the weaker cooling intensity in center than in surface; along with the reduce of final cooling temperature, the pearlite laminar and the diameter of pearlite grain decreased, the level of network carbide reduced, impact ductility and hardnss after spheroidal annealing enlarged.
     4 The variety of temperature and cooling rate in different site of bearing steel bar was analysed, through simulating the temperature pattern in ultra-fast cooling process after high temperature insulation.
     In the process of simulating temperature pattern with ANSYS software, the accurate coefficient of ultra-fast cooling heat transfer was defined in the calculate procedure, which calculation was end while final cooling temperature being same with the measure value and the heat transfer mode was modified continuous. The coefficient of air cooling heat transfer was defined by empirical equation.
     AgainstΦ<60mm bearing bar, once ultra-fast cooling was proceeded in the principle of which, surface temperature after cooling was above martensite and redding temperature was low than 700℃, cooling rate in different site of bearing bar was reach to the cooling rate require of restraining network carbide and residual austensite transforming to pearlite absolutely; AgainstΦ≥60mm bearing bar, the puzzle of internal cooling difficulty was settled and internal cooling rate was increased through segmented secondary ultra-fast cooling, cooling rate in different site of cross section was reach to the cooling rate require of restraining network carbide and residual austensite transforming to pearlite absolutely; in the condition of invariant ultra-fast cooling total time, internal cooling intensity was higher through segmented secondary ultra-fast cooling, internal cooing rate was increased.
     5 Three-group ultra-fast cooling system was installed at the back of continuous rolling mill in the condition of keep to the inhere continuous rolling production line of special mill. Its instant cooling rate can reached to 400℃/s through adjusting water pressure、size of nozzle hole and number of opened water tank. cooling rate in different specs bar was reach to the cooling rate require of restraining network carbide and residual austensite transforming to pearlite absolutely, the level of network carbide was≤2, which was measured up to the bearing professional standard.
     Apply of ultra-fast cooling process settled the problem of network carbide level over-proof in different specs bearing steel after high temperature final rolling. Not only fine laminar pearlite without net-work carbide was obtained, which was beneficial to next spheroidal annealing process, but also the rolling rate in continuous rolling production line was assurance, which increasing the efficiency and obtaining a rather large economic benefits. Subject about "Research of Structure Controlled Mechanism and Ultra-Fast Cooling Process of Bearing Steel afer Hot Rolling" would have guiding significant for increasing quality of domestic bearing steel bar and accelerating the development of economy and society.
引文
[1]张鸿云.高碳铬轴承钢标准述评[J],冶金标准化与质量,2000(38):38-40.
    [2]Joseph J. C. Hoo, Editer. Creative Use of Bearing Steel[J], ASTM Publication Code Number 04-011950-02,1993:237-344.
    [3]钟顺思,王昌生.轴承钢[M],北京:冶金工业出版社,2000:8.
    [4]Lund T, Akesson J. Effect of Steel Manufacturing Process on the Quality of Bearing Steel[J], ASTM, STP89,1988,987:308-330.
    [5]Akesson J, Lund D. Ball Bearing Journal[M],1983, October:32-44.
    [6]Harris T A.Rolling Bearing Analysis[M], John Wiley & Sons,Inc,1991:28.
    [7]付云峰等.国内轴承钢的生产现状与发展[J],特殊钢,2002,23(6):30.
    [8]刘永长等.轴承钢产品市场概况分析[J],辽宁特殊钢,2003,(1).
    [9]E. T. Stephensvn. Metall. Trans,1983,14A (3):343.
    [10]Lund T, Akesson J. Oxygen Content、Oxidic Micro-inclusion and Fatigue Properties of Rolling Bearing Steel, Effect of steel Manufacturing Processes on the Quality of Bearing Steel[J]. ASTM STP. 1998,308-330.
    [11]冶金部特殊钢信息网编著.国外特殊钢生产技术[M],北京:冶金工业出版社,1996,1-39.
    [12]Toshikazu UESUGI. Recent development of Bearing Steel in Japan Transactions of the Iron and Steel[J], Institute of Japan,1988, (11):893-899.
    [13]Toshikazu UESUGI. Production of High-Carbon Chromium Steel in Vertical Type Continuous Caster[J], Transactions of the Iron and Steel Institute of Japan,1986, (7):614-620.
    [14]濑户浩蔵.山阳特殊裂鋼技报(日),3(1996),64.
    [15]Kenji Doi. Steelmaking Conference Proceedings, Pittsburgh,1987:70-77.
    [16]J Y Cogne. Cleaning and fatigue life of Bearing Steels, Proceedings of the third international conference on cleansteel, Hungary,1986:26-31.
    [17]Lund T. Cleaning requirements on rolling bearing steels, Proceedings of the third international conference on cleansteel, Hungary,1986:209-213.
    [18][苏]А.Г.斯别克托尔等著.轴承钢的组织性能[M],上海:上海科学技术文献出版社,1983:83.
    [19]王健英.瑞典特殊钢工艺和技术[J],特殊钢,1997,3(18):43-49.
    [20]平冈和彦,陈洪真译.最新轴承钢发展动向,特殊钢(日),1998(2):36-43.
    [21]虞明全.连铸技术在五钢轴承钢上的应用与开发[J],上海钢研,2005.3:3-11.
    [22]耿克,由梅UHP EAF-LF-VD低氧轴承钢生产工艺的改进[M],特殊钢,2001,1:18-21.
    [23]曹立国,李士琦,陈泽.石钢GCr15轴承钢实践[J],钢铁,2008.06.38-41.
    [24]王治政等.2002年全国炼钢、连铸生产技术会议论文集,中国金属学会,2002,6:148-158.
    [25]王治政等.2003年中国钢铁年会论文集,中国金属学会,冶金工业出版社,2003,10:789-795.
    [26]Liu Yue, Wu Wei. Control of Oxygen Content in Bearing Steel GCr15 Steel Making by 100t Converter LF(VD) Process[J], Special Steel,2005 (26):47.
    [27]北京钢铁研究总院.上海五钢有限公司连铸和模铸轴承钢冶金质量及接触疲劳寿命试验与综合评估,北京,2000,6.
    [28]虞明全.第二届先进钢铁结构材料国际会议论文集,中国金属学会,冶金工业出版社,上海,2004.4.
    [29]钟传珍;姚玉东;孙启斌等.连铸轴承钢质量的研究[J],理化检验.物理分册,2005.11.
    [30]殷瑞玉.钢的质量现代进展,下篇,特殊钢[M],北京:冶金工业出版社,1995:183-238.
    [31]梁皖伦等.GCr15轴承钢的热变形模拟试验研究[J],理化检验—物理分册,2002年1月(38):4-6.
    [32]拉乌金.铬钢热处理(苏),1955,51.
    [33]孙大林,刘景荣.高温变形对GCr15钢中二次碳化物析出的影响[J],钢铁,1994(9):48-51.
    [34]李明.控制轧制对高碳钢珠光体相变温度的影响[J],东北工学院学报,1991(12):41-47.
    [35]刘景荣.奥氏体形变对GCr15钢珠光体片层间距的影响[J],东北工学院学报,1991(12):282-285.
    [36]魏运亨.铬轴承钢控冷与快速球化退火工艺的最优化[J],特殊钢,1992(1):4-8.
    [37]Zhang Jingguo, Shi Haisheng, Research in spray forming technology and its applications in metallurgy[J], Materials Processing Technology,2003 (138):357-360.
    [38]F.Dulos, B.Cantou. Rapidly Quenched Metal III[M], Metals Society, London,1978:110-118.
    [39]付立元等.轧制工艺及冷却速度对GCr15轴承钢网状碳化物的影响[J],北京钢院资料,1983:25-29.
    [40]孙有社,赵长伟等.GCr15钢棒材浸水快冷模拟轧后快冷工艺研究[J],材料开发与应用,2002,17(4):24-28.
    [41]李胜利,徐建忠,王国栋等.大断面轴承钢控轧控冷工艺的模拟与分析[J],东北大学学报(自然科学版),2006,6(27):658-661.
    [42]王广山,李胜利,徐博.轴承钢水冷的实验模拟研究[J],鞍山科技大学学报,2006,2(29):65-67.
    [43]李胜利,王国栋.大断面轴承钢控轧控冷节能工艺研究[J],冶金能源,2005,24(5):59-61.
    [44]M.Pietrzyk, P.D.Hodgson. Modeling hermomechanical and Microstructural Evolution During Rolling of a Nb HSLA Steel[J], ISIJ International,1995,35(5):531-541.
    [45]王占学主编.控制轧制.控制冷却[M],北京:冶金工业出版社,1988:178-180.
    [46]胡赓祥.材料科学基础[M].上海交通大学出版社,2001:7-12.
    [47]H.Dyja, P.Korczak. The thermal-mechanical and micro-structural model for the FEM simulation of hot plate rolling. Journal of Materials Processing Technology[J],1999,93:463-467.
    [48]KATO Yoshiyuki, TsutomuMASUDA. Recent bearing improvements in steel cleanliness in high carbon chromium[J], ISIJ International,1996,36(5):589-592.
    [49]孙慎宏,李慧莉.GCr15轧后控冷碳化物网状问题浅析[J],特钢技术,2004, (3):16-18.
    [50]张务林.轴承钢棒线材生产技术的研究与应用[J],特钢技术,1997,3:2-6.
    [51]李连江.石钢GCr15轴承钢控制轧制和控制冷却生产实践[J],河北冶金,2006(155):47-49.
    [52]胡福臻.高碳铬轴承钢棒材轧后温度控制与球化关系[J],一重技术,2006(2):16-19.
    [53]曹太平,袁琳,郝晓华.太钢发展轴承钢生产有关设想[J],山西冶金,1999,3:5-8.
    [54]王东兴.GCr15轴承钢的控轧控冷工艺[J],特殊钢,2004年5月(25):48-49.
    [55]庄振东.高碳铬轴承钢棒材轧后控制冷却与快速球化工艺[J],特殊钢,2000,(1):54-56.
    [56]刘剑恒.轴承钢GCr15棒材产品低温精轧的研究[J],钢铁,2005年11月(40):49-52.
    [57]吴成军,蔡英.辊底式连续退火炉GCr15轴承钢球化工艺的改进[J],特殊钢,2004(25):53-54.
    [58]Mishra, Darmann. Texture in Deep-drawing Steels[J], International Metals Reviews,1982 (27): 6.
    [59]Zhou Deguang. Inclusions in Electro slag Remelting and Continuous Casting Bearing Steels[J], Journal of University of Science and Technology Beijing,2002 (22):26-30.
    [60]刘相华,王国栋,杜林秀,等.普碳钢产品升级换代的现状与发展前景,中国金属学会轧钢学会,中国金属学会第7届年会论文集,北京:冶金工业出版社,2002,415-420.
    [61]彭良贵,刘相华,王国栋.超快速冷却技术的发展[J],轧钢-研究玉开发,2004,(21):1-3.
    [62]彭良贵,刘相华,王国栋.超快冷却条件下温度场数值模拟[J],东北大学学报(自然科学版),2004年4月第25卷第4期:360-362.
    [63]Simon P, Fischbach J P, Riche P H. Ultra-fast cooling on the rurrout table of the hot strip mill[J], La Revue de Metallurgic, Cahiers Informations Techniques,1996,93 (3):409-415.
    [64]Simon P, Riche P H. Ultra-fast cooling in the hot strip mill[J], Verein Deutscher Eisenhuttenleute,1994 (3):179-183.
    [65]Leeuwe Y V, Onink M, Sietsm J. The grammar-alpha transformation kinetics of low carbon steel under ultra-fast Cooling conditions[J], ISIJ International,2001,41 (9):1037-1046.
    [66]Houyoux C, Herman J C, Simon P, et al. Metallurgical aspects of ultra fast cooling on a hot strip mill[J], La Revue de Metallurgic, Cahiers Informations Techniques,1997, (97):58-59.
    [67]Buzzichelli G, Anelli E. Present status and perspectives of European research in the field of advanced structural steels[J], ISIJ,2002,42 (12):1355-1356.
    [68]王国栋.以超快速冷却为核心的新一代TMCP技术[J],上海金属,2008(2):1-5.
    [69]Houyoux C, Herman J C, Simon P, et al. Metallurgical aspects of ultra fast cooling on a hot strip mill [J], Revue de Metallurgie,1997,97:58-59.
    [70]Hiroshi Kagechika. Production and Technology of Iron and Steel in Japan during 2005 [J], ISIJ International,2006,46(7):939-958.
    [71]刘彦春,刘相华,王国栋,等.一种用于热轧带钢生产线的冷却装置[P],中国:200620088933.1,2006-01-13.
    [72]刘彦春,董瑞峰,闫波,等.应用超快冷工艺开发540MPa级C-2Mn双相钢试验[J],轧钢,2007,24(2):6.
    [73]王国栋,刘相华,孙立钢等.包钢CSP“超快冷”系统及590MPa级C-Mn低成本热轧双相钢开发[J],钢铁,2008年3月:49-52.
    [74]董瑞峰.汽车结构用590MPa级热轧双相钢的开发[J],轧钢,2008,2:9-12.
    [75]李曼云.轴承钢棒材轧后的控制冷却[J],北京钢铁学院学报,1988,(7):22-25.
    [76]Sikdar S, Mukhopadhyay A. Numerical Determination of Heat Transfer Coefficient for Boiling Phenomenon at Runout Table of Hot Strip Mill[J], Ironmaking and Steelmaking:2004,31(6): 495-502.
    [77]李功样.H型钢冷却过程的数值分析[J],材料,1998,16(3):19-21.
    [78]冷浩.圆形液体射流冲击换热特性研究[D],西安:西安交通大学:2002,5:25-17.
    [79]徐旭东,吴迪.改善H型钢断面性能均匀性的研究[J],塑性工程学报,2003,10(5):82-85.
    [80]赵宪明,吴迪,王国栋等.一种线材和棒材热轧生产线用超快速冷却装置[P],专利申请号:200510046822.4,公开日:2006年1月11日.
    [81]邢静忠. ANSYS7.0分析实例与工程应用[M],北京:机械工业出版社,2004:225-227.
    [82]A.B.Cota, R.Brbosa, D.B.Santos. Simulation of the controlled rolling and cooling of a bainitic steel using torsion testing[J], Materials Processing Technology,2000 (100):156-162.
    [83]林惠国,傅代直.钢的奥氏体转变曲线[M],北京:机械工业出版社,1988,256-264.
    [84]张世中.钢的过冷奥氏体转变曲线图集[M],北京:冶金工业出版社,1993:13.
    [85]E. Orowan. Symposium on Internal Stress in Metal and Alloy. Institute of Metal, London,1948:451.
    [86]C.Shiga. Proceedings of the conference of Technology and Application of HSLA Steels, ASM, Metal Park, Philadelphia,1983:643-654.
    [87]孟庆昌.透射电子显微学[M],哈尔滨:哈尔滨工业大学出版社,1998:12-20.
    [88]R.W.K.霍尼库姆著.钢的显微组织和性能[M],北京:冶金工业出版社,1985:232-238.
    [89]濑户浩藏著,陈洪真译.轴承钢-20世纪诞生并飞速发展的轴承钢[M],北京:冶金工业出版社,2003:31-40.
    [90]李炯辉.金属材料金相图谱,上册[M],北京:机械工业出版社,2006:661-663.
    [91]P.Bufalini. Proceedings of the Accelerated Cooling of Steels, The TMS of AIME, Pittsburgh,1985: 387-400.
    [92]G.Comini. Finite Element Solution of Non-Linear Heat Conduction Problems With Special Reference to phase Change[J], J.Num.Methods Eng,1998,97(1):,613-624.
    [93]吴迪,赵宪明.棒线材连轧机低温轧制规程研究[J],钢铁,2001年12月(36):48-51.
    [94]Li Zongchang, Li chengji. Influence of RE and Nb on the CCT Diagram of lOSiMn Steels, HSLA Steels 90 October 28-November 2,1990, beijing, china,116.
    [95]Liu Zongchang, Gao Zhangyong. Mechanism of Softening Annealing of Rolled or Forged Tool Steels[J], Journal of Iron and Steelresearch,2003,10 (1):40-44.
    [96]王泾文.高温形变对奥氏体珠光体转变的影响[J],热加工工艺,1999年第5期:24-26.
    [97]Ohmori Y. The Isothermal Transformation of Plain Carbon Austenite Trans[J], ISIJ,1971 (11): 1161-1164.
    [98]Ohmori Y. Crystallography of Pearlite Trans[J], ISIJ,1972 (12) 128-136.
    [99]大森靖也.铁钢の炭窒化物の相界面析出[J],日本金属学会会报:1976(15):93-100.
    [100]Hackney S A, Shiflet GJ. Acta Metall,1987,35:1007-1019.
    [101]刘宗昌,任慧平,宋义全等.金属固态相变教程[M],北京:冶金工业出版社,2003,9:61.
    [102]K.Amano. Proceeding of the Accelerated Cooling of Rolled Steel, Pergamon Press, Winnipeg,1987: 43-56.
    [103]刘宗昌.珠光体转变与退火[M],北京:化学工业出版社,2007年:45-52.
    [104]戚正风.固态金属中的扩散与相变[M],北京:机械工业出版社,1998:133-140.
    [105]袁国,王国栋,刘相华,带钢超快速冷却条件下的换热过程[J],钢铁研究学报,2007,5(19):37-40.
    [106]刘相华,佘广夫,焦景民,等,超快速冷却装置及其在新品种开发中的应用[J],钢铁,2004,(39):71-74.
    [107]殷瑞钰.钢的质量现代进展,特殊钢[M],北京:冶金工业出版社,1995:183-189.
    [108]J.H.Ai, T.C.Zhao. Effect of controlled Rolling and Cooling On the Microstructure and Mechanical properties of 60Si2MnA spring steel rod[J], Materials Processing Technology,2005 (160):390-395.
    [109]孙艳坤,吴迪,超快冷终冷温度对轴承钢棒材组织性能影响[J],东北大学学报,2008年11月:1572-1576.
    [110]孙艳坤,吴迪,用超快速冷却新工艺生产GCr15轴承钢[J],钢铁研究学报,2009.1:22-26.
    [111]Meher R F. Progress in Metal Physics,1956,6:74.
    [112][美]G.A.罗伯茨,R.A.卡里著,徐进,姜先余等译.工具钢[M],北京:冶金工业出版社,1987:117-280.
    [113]崔约贤.金属断口分析[M],哈尔滨:哈尔滨工业大学出版社,1998:61-63.
    [114]姜锡山.特殊钢缺陷分析与对策[M],北京:化学工业出版社,2006:28-34.
    [115]刘云旭.金属热处理原理[M],北京:机械工业出版社,1981:44-47.
    [116]李长生,刘相华,王国栋等.棒线材连轧过程轧件温度场的有限元解析[J],塑性工程学报,1998,5(2):79-84.
    [117]H.Dyja, P.Korczak. The thermal-mechanical and micro-structural model for the FEM simulation of hot plate rolling[J]. Journal of Materials Processing Technology 1999,93:463-467.
    [118]Wang YW, Kang YL, Yuan DH, etal. Numerial simulation of round to oval rolling process[J], Acta Metallurgical Sicina,2000,13(2):428-433.
    [119]唐兴伦,范群波,张朝辉等,ANSYS工程应用教程-热与电磁学篇[M],北京:中国铁道出版社,2002,11:11-13.
    [120]翁容周.传热学的有限元方法[M],广州:暨南大学出版社,2000,10:119.
    [121]Zhang Jingguo, Sun Desheng, Microstructure and Continuous cooling transformation thermograms of spray formed GCr15 steel[J], Materials Science and Engineering,2002 (A326):20-25.
    [122]蔡美良.新编工模具钢金相热处理[M],北京:机械工业出版社,1998,9:14-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700