用户名: 密码: 验证码:
GCr15轴承钢棒线材热连轧过程微观组织演化的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国在许多年以前就已经跃居为世界第一产钢大国,然而到现在,仍然不能称之为钢铁强国。在生产一些高质量、高技术含量的钢材品种方面,我国与发达国家相比仍然存在着较大的差距,许多高质量、高技术含量的钢铁产品仍然需要从发达国家进口。想要改变这种状况,我国的钢铁企业必须着力于改进生产工艺,发展高性能、高技术含量的钢铁产品。在钢铁工业生产中,轧制是一种重要的生产方式,由于轧制过程的复杂性,长期以来,其研究主要建立在经验和反复试验基础上。在制定生产工艺时,往往需要反复的试验,这无疑造成研发周期的延长和生产成本的增加。近年来,随着计算机技术与有限元方法的发展,基于有限元理论的数值模拟方法为轧制过程的研究提供了重要手段。通过对轧制过程进行数值模拟分析,可以得到轧制过程中轧件变形、温度变化、等效应变变化、等效应变率变化、组织演化等,从而为轧制工艺的优化设计提供依据。
     本文开发了GCr15钢热连轧过程微观组织演化的模拟系统,以东北特钢集团φ8 mmGCr15钢棒线材热连轧过程为对象展开了数值模拟。根据实际情况,将φ8 mm GCr15钢棒线材热连轧过程分为1-26道次控制轧制阶段和轧后控制冷却阶段,并分别进行了研究,主要研究内容及结论如下:
     (1)在对GCr15钢热连轧过程的组织演化进行数值模拟研究前,首先需要建立GCr15钢的奥氏体晶粒演化模型。本文在Gleeble-3800热/力模拟试验机上进行了GCr15钢的晶粒长大实验、单道次压缩实验、双道次压缩实验,得到了数值模拟研究所需要的GCr15钢的奥氏体晶粒演化模型,它主要包括晶粒长大、动态再结晶、亚动态再结晶及静态再结晶模型等。
     (2)采用大型商业有限元软件MSC.Marc,建立了φ8 mm GCr15钢棒线材26道次控制轧制过程的有限元模型,模拟了φ8 mm GCr15钢从出炉到精轧结束的全过程。由于受计算机速度的限制,将整个轧制过程分为几个部分分别进行模拟,分析了整个轧制过程中轧件变形、温度变化、等效应变变化、等效应变率变化等。同时,本文在Marc平台上进行二次开发,开发了GCr15钢轧制过程中的奥氏体晶粒演化子程序系统,结合GCr15钢的晶粒演化模型,对GCr15钢轧制过程的奥氏体晶粒演化进行了模拟。温度的模拟结果与测量结果吻合较好,奥氏体晶粒尺寸的模拟结果也与实验结果吻合较好。
     (3)采用有限元软件MSC.Marc,建立了GCr15钢轧后控制冷却过程的有限元模型,在Marc平台上进行二次开发,开发了轧后冷却过程中GCr15钢奥氏体组织转变子程序系统,与GCr15钢控制冷却过程的有限元模型耦合进行计算。该子程序系统中结合了GCr15钢的TTT曲线,考虑了相变潜热的影响,模拟得到了GCr15钢在控制冷却过程中的温度变化情况和奥氏体组织转变结果。模拟得到的轧件的最终组织全部是珠光体,这与实验结果吻合。此外,本文利用GCr15钢奥氏体组织转变子程序系统探讨了同一温度和不同冷却速度下GCr15钢的组织转变情况,可为轧后冷却工艺的优化提供参考。
     本文开发的GCr15钢热连轧过程微观组织演化的模拟系统可以用来模拟GCr15钢轧制过程中轧件变形、温度变化、等效应变变化、等效应变率变化、组织演化等,对轧制生产工艺的优化具有参考价值。
China has been the biggest country for steel production capability in the world in the past several years, but till now, it isn't still able to be regarded as a stronger country for steel production. In aspects of production for steel products of high quality and high technique, our country has a big different with developed countries. Many steel products of high quality and high technique have to be imported from developed countries. To change the situation, Chinese steel companies have to improve the processing condition for production, and develop products of high properties and high technique. In the industries for steel production, rolling is an important way for steel production. Due to the complexity of steel rolling process, the research on rolling process is mainly based on empirical methods and experiments previously. For the design of processing condition, the experiments will be conducted again and again, which results in the prolongation of research period and the rise of cost. Recently with the development of computer technique and finite element method, the method of numerical simulation based on FE theory becomes an important tool for the research of rolling process. Through the simulation and analysis of rolling process, the results such as the workpiece deformation, temperatures change, equivalent strain change, equivalent strain rate change, and microstructure evolution can be obtained, and it may provide a foundation for the optimization of processing parameter of rolling.
     The simulation system for microstructure evolution during GCr15 steel continuous-hot rolling process is developed, and the continuous-hot rolling process ofφ8 mm GCr15 rod-wire steel at Dongbei Special Steel Group is selected as the research object and simulated. According to the practical situation,φ8 mm GCr15 rod-wire steel continuous-hot rolling process is divided into the phases of the 1-26 pass controlled rolling process and the controlled cooling process after rolling, and studied separately. The main research content and results are as follows:
     (1)Before the numerical simulation for microstructure evolution of GCr15 steel continuous-hot rolling process, the austenite grain evolution model of GCr15 steel must be developed at first. Therefore, the grain growth tests, single hit compression tests, and double hit compression tests are performed on Gleeble-3800 thermal-mechanical simulator, and the austenite grain evolution model of GCr15 steel is obtained, which can be applied in numerical simulation and includes grain growth model, dynamic recrystallization model, metadynamic recrystallization model, and static recrystallization model, and so on.
     (2) With the aid of the commercial FE software MSC.Marc, FE model of the 26 passes controlled rolling process ofφ8 mm GCr15 rod and wire steel is established. The process from the outlet of heat furnace to the end of finishing rolling is simulated. Due to the limit of computer speed, the whole process is divided into several sections to be modeled separately. The results such as the workpiece deformation, temperatures change, equivalent strain change, and equivalent strain rate change are analyzed. Also, based on the FE software MSC.Marc, the subroutine system of austenite grain evolution during GCr15 steel rolling process is developed. The model of austenite grain evolution for GCr15 steel is incorporated into the subroutine system to simulate the grain evolution of austenite during GCr15 steel rolling process. The simulated results of temperature agree well with measurements. The simulated results and measured results of grain size agree well with each other.
     (3) With the aid of FE software MSC.Marc, FE model of GCr15 steel controlled cooling process after finishing rolling is established. Based on the FE software MSC.Marc, the subroutine system of austenite microstructure transformation during GCr15 steel cooling process after rolling is developed, and it can be coupled with FE model of GCr15 steel controlled cooling process in calculation. The TTT curve and the transformation latent of GCr15 steel are considered in the subroutine system to obtain temperatures change and austenite microstructure transformation of GCr15 steel during cooling process. The microstructure obtained by simulation is all pearlite, which agrees with the experiment results. In addition, the subroutine system of austenite microstructure transformation for GCr15 steel is utilized to study austenite microstructure transformation of GCr15 steel under different cooling speed and the same temperature, which is valuable to the optimization of cooling process after rolling.
     The developed simulation system for microstructure evolution of GCr15 steel continuous-hot rolling process can be utilized to simulate the workpiece deformation, temperatures change, equivalent strain change, equivalent strain rate change, and microstructure evolution during GCr15 steel rolling process, which is valuable to the optimization of rolling process.
引文
[1] Turner M J, Clongh R W, Martin H C et al. Siffness and deflection analysis of complex structures. J. Aero. Sci.,1956,23:805-824.
    [2] Clough R W. The Finite Element Method in Plane-Stress Analysis. Proc. 2nd ASCE. Conference On Electronic Computation. Pittsburgh, PA., 1960:345-378.
    [3] Zienkiewicz O C, Cheung Y K. The Finite Element Method in Structural and Continuum Mechanics. Mcgraw-Hill. London. 1967.
    [4] Zienkiewicz O C. The Finite Element Method in Engineering Science. Mcgraw-Hill. London. 1971.
    
    [5] Zienkiewicz O C. The Finite Element Method. Mcgraw-Hill. London. 1977.
    [6] Oden J T, Clough R W, Yamamate Y. Advance in Computational Methods in Structural and Mechanics Design. The 20nd U. S. Japan Seminar on Matrix Methods of Structural Analysis and Design. University of Alabame press. 1972.
    
    [7] 贾乃文.粘塑性力学及工程应用. 北京:地震出版社, 2000.
    
    [8] Zienkiewicz O C,Golbole P N. Int. J. Num. Mech. in Engr., 1974, 8(3): 16.
    
    [9] Kobayashi S. Thennoviscoplastic Analysis of Metal Forming Problems by the Finite Element Method. NUMIFORM' 82 Conference, Swansea, UK, 1982:17-25.
    [10] Mori K, Osakada K. Finite-Element Simulation of Three-Dimensional Shape Rolling. International Journal for Numerical Methods in Engineering, 1990,30:1431-1440.
    [11] Mori K, and Osakada K. Simulation of Three-Dimensional Deformation in Rolling by the Finite Element Method. Int. J. Mech. Sci., 1984(26):515-525.
    [12] Mori K, Osakada K, Oda T. Simulation of Plastic Strain Rolling by the Rigid-Plastic Finite Element Method. Int. J. Mech. Sci., 1982(24): 519.
    [13] Kim N, Kobayashi S, Altan T. Three-Dimensional Analysis and Computer Simulation of Shape Rolling by the Finite and Slab Element Method. Int.J.Mach. Tools Manufact., 1991(31): 553-563.
    [14] Kim N, Lee S M. Simulation of Square-to-Oval Single Pass Rolling Using a Computationally Effective Finite and Slab Element Method. Journal of Engineering for Industry, 1992,114:329-335.
    [15] Xin P, Aizawa T, Kihara J. Roll Pass Evolution for Hot Shape Rolling Processes. Journal of Materials Processing Technology, 1991,27:163-178.
    [16] Yanagimoto J, Kiuchi M, Inoue Y. Characterization of Wire and Rod Rolling with Front and Back Tensions by Three-Dimensional Rigid-Plastic Finite Element Method. Proceedings of 4th ICTP, 1993: 754-757.
    [17]Yanagimoto J,Kiuchi M.Three-Dimensional Rigid-PlasticFESimulation System for Shape Rolling with Inter-Stand Remeshing.Poceedings of International Conference for Metal Forming Process Simulation in Industry,1994:219-237.
    [18]Kiuchi M,Yanagimoto J.Computer Aided Simulation of Universal Rolling Processes.ISU International,1990,30:142-149.
    [19]Nilsson A.FE simulation of camber in hot strip rolling Journal of materials processing technology 1998,80-81:325-329.
    [20]Baltov A I,Nedev A G.An approach to the modeling of contact friction during rolling.Journal of materials processing technology,1995,53:695-711.
    [21]Franklin F J,Widiyarta I,Kapoor A.Computer simulation of wear and rolling contact fatigue.Wear,2001,251:949-955.
    [22]Jiang Z Y,Tieu A K.A simulation of three-dimensional metal rolling processs by rigid-plastic finite element method.Journal of materials processing technology,2001,112:144-151.
    [23]Lee Y,Kim H J,Hwang S M.Analytic model for the prediction of mean effective strain in rod rolling process Journal of materials processing technology,2001,114:129-138.
    [24]Sun C G,Park H D,Hwang S M.Prediction of three dimensional strip temperatures through the entire finishing mill in hot strip rolling by finite element method.ISIJ International,2002,42:629-635.
    [25]Komori K,Katq K.Simulation of deformation and temperature in multi-pass H-shape rolling.Journal of materials processing technology,2000(105):24-31.
    [26]Galantucci L M,Tricarico L.Thermo-mechanical simulation of a rolling process with an FEM approach.Journal of materials processing technology,1999,92-93:494-501.
    [27]Gadala M S,Wang J.Elasto-plastic finite element simulation of rolling and compression between wedge-shape dies.Journal of materials processing technology 2000,97:132-147.
    [28]Park J J,Oh S I.Application of Three-Dimensional Finite Element Analysis to Shape Rolling Prcosses.Transaction of the ASME,1990,112:36-46.
    [29]Hacquin A,Montmitonnet P,Guillerault J P.A steady state thermal-elastoviscoplastic finite element model of rolling with coupled thermo-elastic roll deformation.Jounrnal of materials processing technology,1996,60:109-116.
    [30]刘相华.刚塑性有限元及其在轧制中的应用.北京:冶金工业出版社,1994.
    [31]刘相华,白光润.万能孔型带张力轧制H型钢的研究.东北工学院学报,1986(1):28-31.
    [32]沙刚,刘相华,白光润.四辊万能孔型中轨形件宽展的数值解.东北大学学报(自然科学版),1996,17(3):282-286.
    [33]Xiong S W,Rodrigues J M C,Martins P A F.Three-dimensional simulation of flat rolling through a combined finite elment-boundary element approach.Finite elements in analysis and design,1999,32:221-223.
    [34]Xiong S W,Zheng G F,Liu X H et al.Analysis of the non-steady state vertical-horizontal rolling process in roughing trains by the three-dimensional finite element method.Journal of materials processing technology,2002,120:53-61.
    [35]李世芸,张曙红,张代明.双金属复合带材轧制过程有限元模拟.中国有色金属学报2001,11(6):1078-1082.
    [36]双远华,赖明道,张中元.斜轧刚塑性有限元模拟中变形历史处理.塑性工程学报,2002,9(2):82-86.
    [37]Lin Z C.Shen C C.A coupled finite element method for a three-dimensional analysis of the flat rolling of aluminum with different reductions.Journal of materials processing technology,2001,110:10-18.
    [38]Liu C,Hartley P,Sturgess C E N.et al.Finite-element modelling of deformation and spread in slab rolling,lnternational Journal of Mechanical Sciences,1987,29(4):271-283.
    [39]Liu C,Hartley P,Sturgess C E N et al.Simulation of the cold rolling of strip using an elastic-plastic finite element technique.International Journal of Mechanical Sciences,1985,27(11/12):829-839.
    [40]Liu C,Hartley P,Sturgess C E Net al.Elastic-plastic finite-element modeling of cold rolling of strip.International Journal of Mechanical Sciences,1985,27(7/8):531-541.
    [41]刘才.弹塑性有限元方法对轧制过程的模拟.东北重型机械学院学报,1987,11(3):66-73.
    [42]刘才,杜凤山,连家创.薄板带张力轧制时金属流动的计算机模拟.钢铁,1992,27(1):35-38,47.
    [43]刘才,杜凤山,连家创.薄板连轧过程的变形和应力场.机械工程学报,1992,28(1):104-108.
    [44]刘才,崔振山.板带热轧热力耦合有限元模拟.机械工程学报,1998,34(4):35-39.
    [45]刘立文,韩静涛,梅富强等.冷轧板带变形的三维分析.轧钢,1999,16(3):24-26.
    [46]刘立文.冷轧薄板金属三维变形规律的研究:(博士学位论文).北京:北京科技大学,1998.6.
    [47]朱有利,龚永平,康永林.带材异步冷轧时大变形弹塑性有限元模拟和实验.钢铁研究学报,1996,8(5):22-25.
    [48]张灵.ANSYS平台下平板轧制过程的FEM模拟研究:(硕士学位论文).沈阳:东北大学,2000,3.
    [49]李胜祗,李连诗,孙中建.二辊斜轧实心圆坯三维有限元分析及中心孔腔形成机制.金属学报,1999,35(12):1274-1279.
    [50]李胜祗,陈大宏,孙中建等.二辊斜轧穿孔时圆管坯的变形与应力分布及其发展.钢铁研究学报,2000,12(5):26-30.
    [51]洪慧平,康永林.椭圆孔型轧制合金钢方坯三维弹塑性有限元模拟.北京科技大学学报,2003,25(2):171-173.
    [52]洪慧平,康永林,冯长桃等.椭-圆孔型连轧大圆钢三维热力耦合弹塑性有限元分析.特殊钢2002,23(5):5-8.
    [53]阎军.角钢变形有限元模拟及孔型优化设计方法研究:(博士学位论文).北京:北京科技大学,2000.
    [54]阎军,鹿守理.椭圆孔型中轧件变形的三维有限元分析.特殊钢,1999,20(4):22-24.
    [55]张鹏,鹿守理,高永生.板带轧制过程温度场有限元模拟及影响因素分析(1).北京科大学学报,1997,19(5):471-475.
    [56]张鹏,鹿守理,高永生.板带轧制过程温度场有限元模拟及影响因素分析(II).北京科大学学报,1998,20(1):99-102.
    [57]张鹏,鹿守理,高永生.简单断面型钢热轧过程的数值模拟.钢铁研究学报,1999,11(3):25-29.
    [58]何慎.二辊钢管斜轧延伸过程计算机模拟系统的研究:(博士学位论文).北京:北京科技大学,1998.
    [59]王艳文,康永林,任学平.棒材四道次连轧过程中轧件变形的三维有限元模拟.材料科学与工艺,1999,7(增刊):228-230.
    [60]Wang Y W,Kang Y L,Yuan D H et al.Numerical Simulation of Round to Oval Rolling Process.Acta Metallurgical Sinica(English Letters),2000,13(2):428-433.
    [61]尚进.60kg/m钢轨热轧过程有限元模拟及工艺分析:(硕士学位论文).北京:北京科技大学,2001.
    [62]Yuan S Y,Zhang L W,Liao S L et al.3D FEAnalysis of Thermal Behavior of Billet in Rod and Wire Hot Continuous Rolling.J.Iron & Steel Res.,Int.,2007,14(1):29-32.
    [63]康永林,宋仁伯,任学平.变形参数对半固态轧制影响规律的有限元模拟.塑性工程学报,2002(3):66-71.
    [64]Kwon O.A Technology for the Prediction and Control of Microstructural Changes and Mechanical Properties in Steel.ISIJ International,1992:350-358.
    [65]Sellars C M,Witeman J A.Recrystallizationandgrain growth in hot rolling.Met.Sci.,1979,13:187.
    [66]Yue S,Ed.International symposium on mathematical modeling of hot rolling of steels,Canadian institute of mining and metallurgy,1990.
    [67]Beynon J H,Sellars C M.Modelling microstructure and its effects during multipass hot rolling.ISIJ International,1992,32(3):359-367.
    [68]Majta J,Kuziak R,pietzyk M.Modeling of the influence of thermo-mechanical processing of Nb-microalloyed steel on the resulting mechanical properties.Journal of materials processing technology,1998,80-81:524-530.
    [69]Glowacki M,Kuziak R,Malinowaki Z et al.Modeling of heet transfer,plastic flow and microstructural evolution during shape rolling.Journal of materials processing technology,1995,53:159-166.
    [70]Kuziak R,Glowacki M,Pietrzyk M.Modelling of plastic flow,heat transfer and microstructural evolution of rolling of eutectoid steel rods.Journal of Materials processing technology,1996,60:589-596.
    [71]Anellie.Application of Matrhmatical Modelling to Hot Rolling and Controlled Cooling of Wire Rods and Bars.ISIJ International,1992,32:440-449.
    [72]Siwecki T.Modeling of Microstructure Evolution during Recrystallization Controlled Rolling.ISIJ International,1992,32:368-376.
    [73]Karhausen K,Kopp R.Model for integrated process and microstructure simulation in hot forming.Steel Research,1992,63:247-256.
    [74]Yue S,ed.Proc.Int.Symp.on Mathematical Modelling of Hot Rolling of Steel,CIM,Quebec,1990,34.
    [75]McQueen H J et al,ed.Proc.ISCMA7-Strength of Metals and Alloys,Canada,1985,2:1025.
    [76]刘相华,王国栋,热轧带钢新技术的发展.钢铁研究,2000,9(5).
    [77]Siciliano F,Jr.,Jonas J J.Mathematical Modeling of the hot strip rolling of microalloyed NB,Multiply-Alloyed Cr-Mo,and Plain C-Mn Steels.metallurgical and materials transactions,2000,31A:511-530.
    [78]Samarasekera I V,Wells M A,Jin D et al.Application of microstructural engineering to the processing of lightweight materials,materials characterization,1995,35:69-79.
    [79]Sun W P,Hawbolt E B.Comparison between Static and Metadynamic Recrystallization-An Application to the Hot Rolling of Steels.ISIJ International,1997,37:1000-1009.
    [80]Kumar A,Jha S,Ramaswamy V et al.Modelling the microstructural evolution during hot compression of low carbon steel.Steel Research,1993,64:210-217.
    [81]Zhang X J,Hodgson P D,Thomson P F.The effect of through-thickness strain distribution on the static recystallization of hot rolled austenitic stainless steel strip.Journal of Materials Processing Techonology,1996,6:615-619.
    [82]Devadas C,Samarasekera I V,Hawbolt E B.The Thermal and Metallurgical State of Steel Strip during Hot Rolling:Part Ⅲ.Microstructural Evolution.Metallurgical Transactions A,1991,22A:335-349.
    [83]Nanba S,Kitamura M,Shimada M et al.Prediction of Microstructure Distribution in the Through-thickness Direction during and after Hot Rolling in Carbon Steels.ISIJ International,1992,32:377-386.
    [84]Liu J S,Yanagimoto J.Three-dimensional numerical analysis of microstructural evolution in and after bar and shape rolling processes.ISIJ international,2002,42:868-875.
    [85]Kim S I,Lee Y,Jang B L.Modeling of recystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling.Material science and Engineering,2003,A357:235-239.
    [86]Kim S I,Yoo Y C.Dynamic recrystallization behavior of AISI 304 stainless steel.Material science and Engineering,2001,A311:108-113.
    [87]Jang Y S,Ko D C,Kim B M.Application of the finite element method to predict microstructure evolution in the hot forging of steel.Jounal of materials processing technology,2000,101:85-94.
    [88]张国滨,高速线材热连轧时组织结构的计算机模拟.河北理工学院学报,2001,23(2):6-12.
    [89]窦晓峰,鹿守理,赵辉.Q235钢动态再结晶模型的建立.北京科技大学学报,1998 20(5):465-470.
    [90]窦晓峰,鹿守理,赵辉.Q235低碳钢静态再结晶模型的建立.北京科技大学学报,1999,21(1):20-22.
    [91]窦晓峰,鹿守理,赵辉等.Q235钢亚动态再结晶模型的建立.钢铁,1999,34(4):34-36.
    [92]赵辉,鹿守理,窦晓峰等.低碳钢轧后冷却过程中的晶粒长大模型.钢铁,1999,34(2):51-53.
    [93]王艳文,康永林,余智勇等.棒线材热轧过程中组织变化的有限元模拟.兵器材料科学与工程,1999,22(4):50-52.
    [94]冯贺滨,李连诗,刘明哲等.控轧控冷生产中高碳钢高速线材组织和性能的预测模型.钢铁研究学报,2000,12(5):22-25.
    [95]董洪波,康永林,王克鲁.CSP连轧中温度和应变对0.05C钢组织的影响.特殊钢,2003,24(4):18-21.
    [96]崔振山,徐秉业,刘才.热轧产品微观组织和力学性能的数学模拟.力学与实践,2002,24(5):15-21.
    [97]刘相华,王国栋.热轧带钢新技术的发展.钢铁研究,2000,9(5).
    [98]许云波,刘相华,王国栋.400MPa级C—Mn钢控轧控冷生产过程组织—性能的预测.钢铁,2003,38(2):46-50.
    [99]许云波,于永梅,刘相华等.超级钢细晶轧制过程中再结晶及y晶粒尺寸的模拟计算.材料科学与工艺,2002,10(3):237-241.
    [100]许思广,曹起躟,连家创.环件轧制中晶粒变化的计算机模拟.塑性工程学报,1994,1(2):24-30.
    [101]赵辉,鹿守礼.热轧微观组织的计算机模拟及性能预报(一).轧钢,1997,(5):56-59.
    [102]Bowden J W,Samuel F H,Jonas J J.Effect of interpass time on astenite grain refinement by means of dynamic recrystallization of austenite.Metall Trans,1991,22(12)A:2947-2957.
    [103]Barnett M.R,Kelly G L,Hodgson P D.Predicting the critical strain for dynamic recrystallization using the kinetics of static recrystallization.Scripta mater.,2000,43:365-369.
    [104]Yanagimoto J,Ito T,Liu J S.FE-based Analysis for the Microstructure Evolution in Hot Bar Rolling.ISIJ International,2000,40:65-70.
    [105]Hodson P D.Microstructure modeling for property prediction and control.Journal of materials processing technology,1996,60:27-33.
    [106]Pletrzyk M.Finite element based model of structure development in the hot rolling process.Steel Research,1990,61:603-607.
    [107]Laasraoui A,Jonas J J.Recrystallization of Austenite after Deformation at High Temperatures and Strain Rates-Analysis and Modeling.Metalurgical Transactions A,1991,(22A):151-160.
    [108]刘振宇,王国栋,张强.C-Mn钢板带钢热连轧生产过程中再结晶行为的模拟计算.钢铁研究学报,1995,(6):27-31.
    [109]曲锦波,王昭东,刘相华等.控制含Ni钢板未再结晶温度的模拟计算.材料科学与工艺,1997,5(4):92.
    [110]Wells M A,Lloyd D J,Samarasekera I V et al.Modeling the Microstructral Changes during Hot Tandem Rolling of AA5XXX Aluminum Alloys(part 1).Metallurgical ad Materials Transactions,1998,29B:611-620.
    [111]Inoue T,Tanaka K.Elasto-plastic analysis of quenching with the consideration of phase transformation.J.Soc.Mat.Sci.Japen,1973,22,218-223.
    [112]Hildenwall B,Ericsson T.Prediction of residual stresses in case-hardening steels,hardenability concepts with applications to steel,TMS-AIME,warrendale,PA,1987:579-606.
    [113]Johnson W A,Mehl R F.Reaction kinetics of nucleation and growth.Trans,AIME,1939,135:416-518.
    [114]Avrami M.Kinetics of phase change,part 1:general theory.J.Chem.Phys,1939,7:1103-1112.
    [115]Hawbolt E B,Chau B,Brimacomebe K J.Kinectics of austenite-pearlite transformation in euteciod carbon steel.Metall.Trans.A,1983,14A:1803-1815.
    [116]Koistinen D F,Marburger R E.General equation prescribing the extent of the austenite transformation in pure iron-carbon alloys and plain carbon steels.Acta metal.,1959,7:50-60.
    [117]刘庄,吴肇基,吴景之等.热处理过程的数值模拟.北京科学出版社,1996.
    [118]李正升,樊志礼,张关云等.高碳铬轴承钢GCr15的热加工性能.钢铁,1996,31(supp.):61-66.
    [119]洪慧平,康永林,冯长桃.连轧大规格合金芯棒钢三维热力耦合模拟仿真.钢铁,2002,37(10):23-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700