用户名: 密码: 验证码:
酶水解漂白针叶木纤维结构和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物纤维原料是地球上储量最丰富的可再生自然资源,它的充分、有效利用对节约能源、保护环境都具有非常重要的意义。利用纤维素酶和半纤维素酶水解纤维原料,一方面,可使纤维表面和内部结构得到一定程度的活化,使纤维性能得到改善;另一方面,可直接获得低聚糖和单糖,进一步发酵可以生产乙醇、甲醇等生物质燃料,因而酶水解纤维原料在养殖、食品、酿酒、纺织、洗涤、造纸、能源等工业中都具有广泛的应用价值。但是,由于酶的种类繁多,酶的组成、结构、催化机理等都存在较大差异,再加上原料本身结构的复杂性,使得纤维原料在酶水解过程中,其结构和性能的变化比较复杂,从而影响纤维原料酶改性技术的应用。本课题主要是以漂白针叶木纤维为原料,通过分析比较复合纤维素酶、内切纤维素酶和木聚糖酶在不同的水解程度下对纤维形态、结构、性能的影响,研究经不同的酶水解后纤维结构和性能变化的一般规律及其机理,旨在加强对酶水解过程中纤维原料结构和性能变化的控制,为植物纤维原料酶改性技术的工业化应用提供理论指导,进而推动酶水解纤维原料的全面有效应用。
     研究了酶水解对纤维得率的影响,结果显示:经复合纤维素酶Celluclast1.5L水解后,随着酶用量的增加或酶水解时间的延长,纤维得率急速下降,当酶用量为10.0FPU/g,水解时间为48h时,纤维得率仅为55.34%,说明复合纤维素酶对纤维素具有很强的水解作用,可以使无定形区和结晶区纤维素都发生水解。内切纤维素酶Novozym476对纤维的水解能力远低于Celluclast1.5L,当Novozym476用量为50.0CMCU/g时,处理2h后仅有5%左右的纤维素发生水解。经木聚糖酶Pulpzyme HC水解后,纤维得率基本上没什么变化,说明木聚糖酶对漂白针叶木纤维的水解作用非常有限。
     研究了酶水解对纤维形态的影响。结果显示:酶水解前,纤维表面带有许多细小纤丝,纤维素酶Celluclast1.5L和Novozym476都会优先作用于这些细小纤丝,使其发生水解,使得纤维表面变得光滑,比表面积减少;随着纤维素酶Celluclast1.5L用量的增加,纤维表面出现起皮、表层剥落现象,进一步增加用量,纤维出现明显的缺口和断裂,纤维比表面积增加,纤维平均长度急剧下降,细小纤维含量明显增加,纤维卷曲率和扭结指数下降;而经纤维素酶Novozym476水解后,纤维平均长度变化不大,但纤维卷曲率和扭结指数有所增加。木聚糖酶Pulpzyme HC水解处理后纤维形态没有明显变化。
     研究了酶水解对漂白针叶木纤维纤维素分子量和聚集态结构的影响,结果显示:漂白针叶木纤维经纤维素酶Celluclast1.5L或Novozym476水解后,随着酶用量的增加,纤维素聚合度逐渐降低,在Celluclast1.5L用量为10.0FPU/g时,聚合度降低到694,较对照样下降了40.38%;在Novozym476用量为50.0CMCU/g时,聚合度下降到711,较对照样下降了38.92%。说明在这两种纤维素酶的作用下,纤维素大分子链都会发生较多断裂,使组成纤维素大分子链的葡萄糖基数量减少,纤维素分子量减小,由此可见,在纤维素的酶水解过程中,导致纤维素聚合度和分子量下降的主要是内切葡聚糖酶的作用。漂白针叶木纤维经木聚糖酶Pulpzyme HC水解后,纤维素聚合度和分子量基本保持不变。
     从X-射线衍射分析和红外光谱分析结果显示,纤维素酶水解不会引起纤维素大分子结构变化,水解过程中也没有新的官能团产生,纤维素晶型未发生改变,仍属于典型的纤维素I晶型,但在两种纤维素酶的作用下,纤维素结晶度出现了不同的变化。随着纤维素酶Celluclast1.5L用量的增加,纤维素结晶度呈现先增加后降低再增加再降低的周期性变化,结晶区纤维素和无定形区纤维素同时受到酶的作用发生水解。在内切纤维素酶Novozym476的作用下,纤维素结晶度一开始略有降低,但随着酶用量的增加,纤维素结晶度逐渐增加后又降低,整体呈现增长的变化趋势。经木聚糖酶Pulpzyme HC水解后,随着酶用量的增加,纤维素结晶度逐渐增加。
     研究了酶水解对漂白针叶木纤维性能的影响,结果显示:随着纤维素酶Celluclast1.5L用量的增加,水解后纤维悬浮液滤水性先增加后降低,纤维保水值先降低后增加,当酶用量为20.0FPU/g时,保水值增加到204.19%,较对照样增加了47.73%;随着酶用量的增加,纤维表面的Zeta电位绝对值先降低后增加,表面自由能逐渐降低,纤维亲水性降低,亲油性增加;酶水解后纤维热稳定性有所下降。
     随着纤维素酶Novozym476用量的增加,水解后纤维悬浮液滤水性缓慢增加,纤维保水值则略有降低;纤维表面Zeta电位绝对值逐渐降低,表面自由能增加,纤维亲水性增加,亲油性降低。酶水解后纤维热稳定性降低。
     木聚糖酶Pulpzyme HC水解处理对纤维悬浮液滤水性影响不大,但随着其用量的增加,纤维保水值略有降低,纤维表面Zeta电位绝对值逐渐降低,表面自由能增加,纤维亲水性增加,亲油性降低;另外水解后纤维热稳定性略高于对照样。
     研究了酶水解对漂白针叶木纤维打浆和成纸性能的影响,结果显示:漂白针叶木纤维经纤维素酶Celluclast1.5L或Novozym476预处理后,在高打浆转数下打浆,随着酶用量的增加,浆料游离度逐渐降低,说明复合纤维素酶和内切纤维素酶预处理都能增加打浆过程中纤维切断、润胀、细纤维化等作用效果,起到一定的降低打浆能耗的作用;在较低的打浆转数下,纤维素酶预处理对降低打浆能耗贡献不大。纤维素酶酶促打浆和机械打浆对纤维具有不同的作用效果:在同样的游离度下,经酶促打浆的纤维较薄、纤维发生较多切断,浆料中纤维碎片含量较多。
     在未经机械打浆的情况下,随着纤维素酶Cellulast1.5L用量的增加,成纸松厚度、抗张指数、柔软度、透气度等指标均呈现先增加后降低的变化趋势,其中抗张指数在酶用量为0.1FPU/g时达到最大值21.77N.m/g,较对照样增加了26.36%,而当酶用量为10.0FPU/g时,抗张指数下降到10.97N.m/g,较对照样下降了39.89%;成纸内结合强度则随着酶用量的增加而逐渐增加。
     在纤维素酶Celluclast1.5L和Novozym476酶促打浆过程中,如果酶用量较低,在低转数下打浆,成纸抗张指数、内结合强度和松厚度都增加;在酶用量较高时,由于长纤维表面或内部的分子链发生断裂,纤维表面会产生缺口或松动,在机械力的作用下造成纤维变薄、变短、浆料中碎片含量增多,纤维自身强度下降,因此成纸抗张指数下降,且随着酶用量的增加,下降幅度逐渐增加。纤维素酶酶促打浆对提高成纸透气度是不利的。
     木聚糖酶Pulpzyme HC水解对降低纤维打浆能耗基本没什么作用,但木聚糖酶Pulpzyme HC酶促打浆有利于提高成纸抗张指数和内结合强度。
     对比研究了酶深度水解和盐酸水解对纤维结构、性能的不同影响,结果显示:漂白针叶木纤维经盐酸水解后,纤维素聚合度可以下降到极限聚合度200左右,而且纤维得率在90%以上,而经纤维素酶Celluclast1.5L深度水解后,纤维素聚合度保持在700左右,而纤维得率则急剧下降。说明虽然稀酸水解和纤维素酶水解都是使纤维素大分子上的β-1,4-糖苷键发生断裂,但具体发生断裂的位置有很大的区别。酶水解纤维素纤维和酸水解纤维素纤维具有相似的纤维形态,纤维平均长度都下降到只有0.1~0.2mm,但是两者经粉碎后纤维素颗粒在微观形态上存在较大差别:酸水解纤维素为椭圆形的颗粒,粒径较小,完全失去了纤维细胞壁原有的结构,符合微晶纤维素的颗粒特性;酶水解纤维素颗粒粒径较大,具有较完全的纤维细胞壁结构,不符合微晶纤维素颗粒特性。酶水解纤维素和酸水解纤维素具有相似的结晶结构,结晶度都较水解前增加,两者结晶度大小区别不大。酸水解纤维素较酶水解纤维素具有稍高一点的耐热性能。
Fiber raw material is the most abundant renewable naturalresources on the earth, the effective use of it has a very importantsignificance to energy conservation and the protection of theenvironment. Using of cellulase or hemicellulase to hydrolyze the fibermaterials, on one hand, it could activate the fiber surface and internalstructure to a certain degree, and improve the fiber performance; on theother hand, it could obtain oligosaccharides and monosaccharidesdirectly, which can produce biomass fuels such as ethanol, methanol byfurther fermentation. So the enzymatic hydrolysis of fiber materials hasa wide value of application in farming, food, wine, textiles, washing,papermaking, energy and other industries. However, due to the widevariety of enzymes, the large difference of its composition, structure,catalytic mechanism, and coupled with the complex structure of thefiber material itself, in the process of enzymatic hydrolysis, thestructure and properties of fiber changed complexly, it would affect theapplication of fiber enzymatic modification technology. This taskmainly used bleached softwood fiber as the raw material, by analyzingand comparing the influence of the composite cellulase, endo-cellulaseand xylanase to the morphology, structure and performance of the fiberin a different hydrolysis degree, studied the general rule and mechanismof the changes of fiber structure and properties with enzymatichydrolysis. It aimed at strengthening the control of the change of thefiber structure and properties in the enzymatic hydrolysis, providingtheoretical guidance for the industrial application of fiber enzymatichydrolysis, and promoting the application of fiber enzymatic hydrolysisin full range effectively.
     The effect of enzymatic hydrolysis to fiber yield was investigated.The results showed that by the hydrolysis of complex cellulase namedas Celluclast1.5L, with the increasing of the enzyme dosage or thehydrolysis time, the fiber yield declined rapidly. Hydrolyzed in thedosage of10.0FPU/g for48h, the fiber yield was just55.34%. Itindicates that the complex cellulase has a strong hydrolysis on cellulose,and it can hydrolyze the cellulose both in amorphous region and incrystallization region. Endo-cellulase named as Novozym476had a farweaker hydrolysis on the fiber than Celluclast1.5L. Hydrolyzing for2hours with Novozym476in the dosage of50.0CMCU/g, only about5%cellulose was hydrolyzed. There was not essentially change in the fiberyield when hydrolyzed with xylanase named as Pulpzyme HC, itindicates that the function of xylanase on bleached softwood fiber isvery limited.
     The effect of enzymatic hydrolysis to fiber morphology wasinvestigated. The results showed that there are many tiny fibrils on fibersurface without enzymatic hydrolysis. both of Celluclast1.5L andNovozym476took role on these tiny fibrils firstly and made them behydrolyzed, thus the fiber surface became smooth, and the fiber specificsurface area reduced. With the increasing enzyme dosage of theCelluclast1.5L, there was peeling and stripping appeared on the fibersurface. While the enzyme dosage increased furthermore, the fiberappeared significant gaps and breaking. Thus the fiber specific surfacearea increased, average length of fiber declined sharply, the content offine increased significantly, and curl rate and kink index of fiberdecreased. The average length of fiber hydrolyzed with Novozym476was not changed significantly, but curl rate and kink index of fiberincreased. Pulpzyme HC had no significant effect on fiber morphology.
     The effect of enzymatic hydrolysis on molecular weight andaggregation structure of bleached softwood fiber were investigated. Theresults showed that hydrolyzed by Celluclast1.5L or Novozym476,with the enzyme dosage increasing, the degree of polymerization (DP)of the cellulose decreased gradually. When the dosage of Celluclast 1.5L was10.0FPU/g, the DP of cellulose declined to694, dropped by40.38%compared with the control sample; when the dosage ofNovozym476was50.0CMCU/g, the DP of cellulose declined to711,dropped by38.92%compared with the control sample. It illustrates thatin the function of complex cellulase or endo-cellulase, themacromolecular chain of cellulose would break in a high degree, andthe molecular weight of cellulose declined. It shows that in the processof enzymatic hydrolysis, it is endo-glucanase that mainly leads the DPand molecular weight of cellulose to decrease. Bleached softwood fiberhydrolyzed by Pulpzyme HC, the DP and the molecular weight ofcellulose was essentially unchanged.
     Shown from the results of X-ray diffraction (XRD) and FourierTransform infrared spectroscopy (FTIR), that the enzymatic hydrolysiswould not cause the change of macromolecule structure, and there hadno new functional groups generated during the hydrolysis process. Thecellulose crystal form was not changed, and it is still the cellulose I.However, the crystallinity of cellulose went through different variationswith the function of two cellulases. After hydrolyzing by Celluclast1.5L, the crystallinity presents a periodic variation with the increase ofthe enzyme dosage. It indicates that the celluloses in crystallizationregion and amorphous region are hydrolyzed at the same time in thefunction of Celluclast1.5L. With the function of endo-cellulaseNovozym476, the crystallinity decreased initially, but it would increaseand then decreased with the enzyme dosage increasing, but it showed agrowth trend as a whole. After hydrolyzing by xylanase Pulpzyme HC,the crystallinity gradually increased with the increase of the enzymedosage.
     The effect of enzymatic hydrolysis on the properties of bleachedsoftwood fiber was investigated. The results showed that with theincreasing dosage of Celluclast1.5L, the filtration performance of fibersuspension increased initially and then decreased, while the waterretention value (WRV) of fiber decreased first and then increased. In theenzyme dosage of20.0FPU/g, the WRV of fiber increased to204.19%, increased by47.73%compared with the control sample. With theenzyme dosage increasing, absolute Zeta potention of fiber surface firstdecreased and then increased, fiber surface free energy decreasedgradually, and the hydrophilicity of fiber decreased while thelipophilicity increased. After enzymatic hydrolysis with Celluclast1.5L,the thermal stability of fiber declined.
     With the increasing dosage of cellulase Novozym476, thefiltration performance of fiber suspension gradually increased while theWRV of fiber decreased. Absolute Zeta potention of fiber surfacedecreased and the surface free energy of fiber increased gradually whilethe enzyme dosage increased, and the hydrophilicity of fiber increased.After enzymatic hydrolysis with Novozym476, the thermal stability offiber declined.
     There had no significant effect to the filtration performance offiber hydrolyzed with xylanase Pulpzyme HC. While the enzyme dosageincreased, the WRV of fiber decreased slightly, the absolute Zetapotention of fiber surface decreased gradually, the surface free energyof fiber increased gradually and the hydrophilicity of fiber increased. Inaddition, the thermal stability of hydrolysis fiber was slightly higherthan the control sample.
     The effect of enzymatic hydrolysis to fiber refining performanceand paper sheet properties was investigated. The results showed thatpretreated by cellulase of Celluclast or Novozym476and then refinedby higher PFI revolutions, the pulp freeness decreased with theincreasing of the enzyme dosage. it indicates that the pretreatment withcomposite cellulase or endo-cellulase in refining process wouldincrease the effect of the fiber cut、swelling、fibrillation and so on, andit would play a role in reduce the energy consumption of refining. Butin the lower PFI revolutions, cellulase pretreatment contribute little toreduce the energy consumption of refining. Cellulase enzymaticrefining had different effect on fiber morphology compared withmechanical refining. In the same pulp freeness, enzymatic refining would make the fiber thinner、more incision and there would have muchmore fragments in the pulp.
     In the case of without mechanical refining, the paper properties ofthickness, tensile index, softness and air permeability all increased atfirst and then decreased with the increasing of the enzyme dosage ofCellulast1.5L. In the enzyme dosage of0.1FPU/g, the tensile index ofpaper reached the maximum of21.77N·m/g and increased by26.36%compared with the control sample. While in the enzyme dosage of10.0FPU/g, the tensile index of paper declined to10.97N.m/g anddecreased by39.89%compared with the control sample. The internalbond strength of paper increased gradually with the increasing of theenzyme dosage.
     In the process of enzymatic refining used Celluclast1.5L orNovozym476, while in the case of less enzyme dosage, the tensileindex, internal bond strength and bulk of paper all increased with lowerPFI revolutions; In the case of higher enzyme dosage, for the reasonthat the surface or internal molecular chain of cellulose was broken, thesurface of the fiber would have a gap or loose, so the fibers would bethinner, shorten with the mechanical force, which led to the decreasingof the fiber strength, so the tensile index of paper decreased. The higherof the enzyme dosage, much more declined of the tensile index.Enzymatic refining with cellulase was not conducive to improve paper’sair permeability.
     Hydrolyzing by xylanase Pulpzyme HC had no beneficial to reducethe energy consumption of refining, but the enzymatic refining withPulpzyme HC would help to improve the tensile index and internalbonding strength of paper.
     The different effect on structure and performance of fiber withdepth enzymatic hydrolysis and acid hydrolysis was investigated. Theresults showed that hydrolyzed by hydrochloric acid, the DP of bleachedsoftwood fiber reduced to limit DP of about200rapidly, and fiber yieldwere more than90%. Hydrolyzed by the cellulase Celluclast1.5Ldeeply, the DP of cellulose maintained at about700, while the fiber yield sharply declined. It shows that although both of the hydrolysiswith dilute acid hydrolysis and cellulase would break the beta-1,4-glycosidic bond on the cellulose macromolecules, but there had quitedifference in the location of the breaking occurs. Depth enzymatichydrolyzed fiber and acid hydrolyzed fiber have a similar morphology,the average length of fibers dropped to only0.1to0.2mm. however,after crushing, there had a big difference between particles in the formof microscopic: the acid hydrolyzed cellulose were oval particles withsmall size, and it lost the original structure of the fiber cell wallcompletely, so it met with the particle characteristics ofmicrocrystalline cellulose. The enzymatic hydrolyzed cellulose had abigger size, and it had a quilt complete cell wall structure of fiber anddid not meet with the characteristics of microcrystalline cellulose.Depth enzymatic hydrolyzed cellulose and acid hydrolyzed cellulosehad similar crystal structure; the crystallinity of them was similar andincreased compared with the control sample. Acid hydrolyzed cellulosehas a slightly higher thermal stability than the enzymatic hydrolyzedcellulose.
引文
[1]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1996.
    [2]杨淑惠主编.植物纤维化学(第三版)[M].北京:中国轻工业出版社,2001.
    [3] Jones J. L., Semrau K. T. Wood hydrolysis for ethanol production—previousexperience and the economics of selected processes [J]. Biomass,1984,5(2):109-135.
    [4] Nishiyama Y. Structure and properties of the cellulose microfibril [J].Journal of wood science,2009,55(4):241-249.
    [5] Mutwil M., Debolt S., Persson S. Cellulose synthesis: a complex complex[J]. Current opinion in plant biology,2008,11(3):252-257.
    [6] Heiningen A., Tunc M. S., Gao Y., et al. Relationship between alkaline pulpyield and the mass fraction and degree of polymerization of cellulose in thepulp[J]. Journal of pulp and paper science,2004,30(8):211-217.
    [7] Hon D. N. S., Shiraishi N. Wood and cellulosic chemistry [M]. CRC Press,2001.
    [8]尹增芳,樊汝汶.植物细胞壁的研究进展[J].植物研究,1999,19(4):407-414.
    [9]张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报,2002,(3):23-26.
    [10]孙宗苹,张军华.酶水解木质纤维材料制取可发酵糖研究进展[J].生物质化学工程,2012,(3):39-44.
    [11]杨益毅.木聚糖的高温降解及酶解规律的研究[J].南京:南京林业大学,2007:7-10.
    [12]南京林业大学主编.木材化学[M].北京:中国林业厅出版社,1990:155:156.
    [13]顾阳.植物纤维中木聚糖的生物降解及调控[D].南京:南京林业大学,2004.
    [14] Harris J. F., Baker A., Conner A., et al. Two-Stage Dilute Sulfuric AcidHydrolysis of Wood[J]. General technical report FPL,1985,45.
    [15]湛含辉,黄丽霖.木质纤维原料预处理与水解技术的研究进展[J].酿酒科技,2010,(4):83-86.
    [16]王联结,陈建华.木质纤维原料预处理技术[J].现代化工,2007,(6).
    [17] C té W. A., C té W. A. Wood ultrastructure: An atlas of electronmicrographs [M]. Seattle: University of Washington Press,1967.
    [18]唐爱民.超声波作用下纤维素纤维结构与性质的研究[D].广州:华南理工大学,2006.
    [19]王菊华.中国造纸原料纤维特性及显微图谱[M].北京:中国轻工业出版社,1999.
    [20] Clark G. L., Parker E. A. An X-ray diffraction study of the action of liquidammonia on cellulose and its derivatives [J]. Journal of Physical Chemistry,1937,41(6):777-786.
    [21] Fengel D. Ideas on the ultrastructural organization of the cell wallcomponents[C]. Journal of Polymer Science Part C: Polymer Symposia.Wiley Subscription Services, Inc., A Wiley Company,1971,36(1):383-392.
    [22] http://www.bio.miami.edu/dana/226/226F08_2print.htmL
    [23]沈同,王镜岩.生物化学(第三版)[M].北京:高等教育出版社,2002.
    [24] Polaina J., MacCabe A. P. Industrial enzymes: structure, function andapplications [M]. Springer,2007.
    [25]袁勤生.酶与酶工程(第一版)[M].上海:华东理工大学出版社,2005.
    [26]郭勇.酶工程原理与技术[M].北京:高等教育出版社,2005.
    [27]吕家华.纤维素酶对纤维素纤维的作用[D].上海:东华大学,2004.
    [28]阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展[J].生物化学与生物物理进展,1999,(3):233-237.
    [29]张群.酶超分子结构化学[J].安庆师范学院学报(自然科学版),2003,(4):001.
    [30]余东游,冯杰.纤维素酶在动物营养上的研究进展[J].饲料研究,2000(5):20-22.
    [31]李燕红,赵辅昆.纤维素酶的研究进展[J].生命科学,2005,17(5):392-397.
    [32]阎伯旭,高培基.纤维素酶分子结构与功能研究进展[J].生命科学,1995,7(5):22-25.
    [33]高培基.纤维素酶降解机制及纤维素酶分子结构与功能研究进展[J].自然科学进展,2003,13(1):21-29.
    [34]张名佳.纤维素酶高效水解、回收再用与反应机理的研究[D].天津:天津大学,2011.
    [35] Goyal A.,Ghosh B.,Eveleigh D. Characteristics of fungal cellulases [J].Bioresourc Technol.1991,36(l):37-50.
    [36]汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能[J].生物工程进展,2000,20(2):37-40.
    [37] Bhat M. K. Cellulases and related enzymes in biotechnology [J].Biotechnology advances,2000,18(5):355-383.
    [38]章冬霞,亓伟,孙秀云,等.木质纤维素酶水解技术的研究[J].吉林化工学院学报,2009,26(01):1-5.
    [39]吴淑芳.重组内切纤维素酶酶学性能及其应用研究[D].南京:南京林业大学,2006.
    [40] Subramaniyan, S., Prema P. Biotechnology of microbial xylanases:Enzymology, molcular biology, and application [J]. Crit. Rev. Biotechnol.2002,22:33-64.
    [41]刘亮伟,秦天苍,王宝,等.木聚糖酶的分子进化[J].食品与生物技术学报,2007,26(6):110-116.
    [42] Collins, T., Gerday, C. Feller, G. Xylanases, xylanase families andextremophilic xylanases [J]. FEMS Microbiol. Rev.2005,29:3-23.
    [43]刘明启.提高木聚糖酶热稳定性、催化活性和结合水解纤维素能力的研究[D].杭州:浙江大学,2011.
    [44]杨桂花.木聚糖酶在速生杨制浆过程中的应用研究[D].广州:华南理工大学,2011.
    [45]黄翊.纤维素酶水解机理及影响因素[J].山东化工,2007,5:008.
    [46]夏安.纤维素酶水解动力学及影响因素研究[D].成都:四川大学,2002.
    [47]何泽超.纤维素的酶水解及超声波对其加速作用的研究[D].成都:四川大学,2004.
    [48] Reese E. T., Siu R. G. H., Levinson H. S. The biological degradation ofsoluble cellulose derivatives and its relationship to the mechanism ofcellulose hydrolysis [J]. Joru. Bact.1950(59):485-497.
    [49]周晓云.酶技术[M].北京:石油工业出版社,1995.225-226.
    [50]张树政.酶制剂工业(下册)[M].科学出版社,1984:595-624.
    [51] Whitehead E. A., Smith S. N. Fungal intracellular enzyme activityassociated with the breakdown of Plant cell biomass [J]. Enzyme MicrobTechnol.1989.11(11):736-743
    [52] Walker L. P., Wilson D. B. Enzymatic hydrolysis of cellulose: an overview[J]. Bioresource Technology,1991,36(1):3-14.
    [53] Lee D., Yu A. H. C., Saddler J. N. Biotechnology [J]. Bioeng.,1995,45:328-336.
    [54] Fan T., Lee Y. H. Kinetic studies of enzymatic hydrolysis of insolublecellulose: derivation of a mechanistic kinetic model [J]. Biotechnol Bioeng.1983.25(11).2707-2733.
    [55] Fujii M., Taniguchi M., et al. Synergy between an endoglucanase andcellobiohydrolases from trichoderrna koningil [J]. Chen. Eng. J. Biochem. J.,1995,59(3):315-319.
    [56] Polizeli M. L. T. M.,.Monti R., Terenzi H. F., et al. Xylanases from fungi:properties and industrial applications [J]. Appl Microbiol Biotechnol,2005.67:577-591.
    [57]张宁宁.降解半纤维素嗜热菌的筛选及耐热木聚糖酶的性质[J].福建农林大学:福建农林大学,2010:8-14.
    [58] Polizeli M., Rizzatti A. C. S., Monti R., et al. Xylanases from fungi:properties and industrial applications[J]. Applied Microbiology andBiotechnology,2005,67(5):577-591.
    [59] Subramaniyan, S., Prema, P. Biotechnology of microbial xylanases:enzymology, molecular biology, and application [J]. Critical reviews inbiotechnology,2002.22(1):33-64.
    [60] Li K., A.P., Collins R., Tolan J., Kim J. S., Eriksson Karl-Erik L.,Relationships between activities of xylanases and xylan structures [J].Enzyme Microb Technol.,2000.27:89-94.
    [61] Collins T., Gerday C., Feller G. Xylanases, xylanase families andextremophilic xylanases [J]. FEMS microbiology reviews,2005,29(1):3-23.
    [62]邓天福,程梦林,莫建初.木质纤维素降解酶的应用及前景[J].中国农学通报,2010,(14):82-85.
    [63]孙智谋,蒋磊,张俊波,等.世界各国木质纤维原料生物转化燃料乙醇的工业化进程[J].酿酒科技,2007,1:91-94.
    [64]张传富,顾文杰,彭科峰,等.微生物纤维素酶的研究现状[J].生物信息学,2007,(1):34-36.
    [65]周建,罗学刚,苏林.纤维素酶法水解的研究现状及展望[J].化工科技,2006,(2):51-56.
    [66]怀文辉,何秀萍,郭文洁,等.微生物木聚糖降解酶研究进展及应用前景[J].微生物学通报,2000,(2):137-139.
    [67] Singh Rashmi, Bhardwaj Nishi K. Enzymatic Refining Of Pulps: AnOverview [J]. IPPTA J.,2010,22(2):109-115.
    [68]金士威,朱圣东,吴元欣,等.木质纤维原料酶水解研究进展[J].生物质化学工程,2006,(3).
    [69]朱圣东,吴元欣,喻子牛,等.植物纤维素原料生产燃料酒精研究进展[J].化学与生物工程,2003,20(5):8-11.
    [70] Sun Y., Cheng J. Hydrolysis of lignocellulosic materials for ethanolproduction: a review [J]. Bioresource technology,2002,83(1):1-11.
    [71]苏东海,孙君社.提高纤维素酶水解效率和降低水解成本[J].化学进展,2007,19(7):1147-1152.
    [72] Li C. Z., Makoto Y., Naoki T., et al. A kinetic study on enzymatichy-drolysis of a variety of pulps for its enhancement with continuousultrasonicirradiation[J].Biochem Eng J,2004,19(2):155-164.
    [73]刘媛媛,孙君社,裴海生,等.提高木质纤维素酶水解效率的研究进展[J].中国酿造,2011,(5):006.
    [74]周广麒,郭茵,吴琼.超声波对甜高粱秸秆酶水解影响的研究[J].中国酿造,2008(22):54-56.
    [75]王献玲,方桂珍.不同活化方法对微晶纤维素结构和氧化反应性能的影响[J].林产化学与工业,2007,27(3):67-71.
    [76] Yachmenev V., Condon B., Klasson T., et al. Acceleration of the enzymatichydrolysis of corn stover and sugar cane bagasse celluloses by low intensityuniform ultrasound [J]. Journal of Biobased Materials and Bioenergy,2009,3(1):25-31.
    [77] Ahmad Z., Ajit A., Chisti Y.,et al. Effects of ultrasound on enzymatichydrolysis of soluble cellulose[J]. J Biotechnol,2010,150:135-136.
    [78]崔玲.超声波与助剂强化玉米秸秆预处理与酶水解的研究[D].南京:南京林业大学,2007.
    [79]任天宝,张玲玲,宋安东,等.稻草秸秆多酶水解条件研究[J].可再生能源,2010,28(2):67-71.
    [80] Rajeev K., Wyman C.E. Effect of additives on the digestibility of cornstoversolids following pretreatment by leading technologies [J]. BiotechnolBioeng,2009,102(6):1544-1557.
    [81] Ouyang J., Dong Z.W.,Song X.Y.,et al. Improved enzymatic hydrolysisof microcrystalline cellulose (Avicel PH101) by polyethyleneglycoladdition[J].Bioresour Technol,2010,101(17):6685-6691.
    [82]计红果,庞浩,刘伟,等.聚乙二醇增强纤维素酶水解玉米秸秆[J].华中科技大学学报,2009,37(10):121-123.
    [83] Yang B.,Wyman C.E. BSA Treatment to Enhance Enzymatic Hydrolysis ofCellulose in Lignin Containing Substrates[J].Biotechnol Bioeng,2006,94(4):611-617.
    [84]崔玲,姚春才.超声波牛血清蛋白和吐温试剂辅助玉米秸秆酶水解[J].纤维素科学与技术,2007,15(3):47-51.
    [85]陈牧,连之娜,李鑫.玉米秸秆蒸爆渣的氨基酸辅助纤维素酶水解[J].生物质化学工程,2010,44(2):15-18.
    [86]李德莹,龚大春,田毅红,等.金属离子对纤维素酶活力影响的研究[J].酿酒科技,2009(6):40-46.
    [87]张智研,张伟伟.金属离子对纤维素酶水解玉米秸秆的影响[J].中国新技术新产品,2010(8):3-4.
    [88] Kenealy W., Buschle-Diller G., Ren X. Enzymatic modification of fibers fortextile and forest products industries[M]. Springer Netherlands,2006:191-208.
    [89] Oksanen T., Pere J., Buchert J., et al. The effect of Trichoderma reeseicellulases and hemicellulases on the paper technical properties ofnever-dried bleached kraft pulp [J]. Cellulose,1997,4(4):329-339.
    [90]管斌,孙艳玲,谢来苏等.纸浆酶改性对纤维素聚合度和纤维长度的影响[J].中国造纸学报,2000,15(1):14-17.
    [91]管斌,谢来苏,隆言泉.杨木SGW浆酶改性对细小组分的影响[J].中国造纸,2000,1(15): C3.
    [92]管斌,孙艳玲,隆言泉,等.复合纤维素酶对杨木SGW浆纤维素结晶度和微晶体尺寸的影响[J].中国造纸学报,2000,(1).
    [93]鲁杰,石淑兰,杨汝男,等.纤维素酶酶解苇浆纤维微观结构和结晶结构的变化[J].中国造纸学报,2005,(2):85-90.
    [94]张瑞萍.纤维素酶对棉纤维结构和织物性能的影响[J].纺织学报,2005,(4):33-35.
    [95] Pu Y.Q., Ziemer C., Ragauskas A. J. CP/MAS C-13NMR analysis ofcellulase treated bleached softwood kraft pulp [J]. Carbohydrate Research,2006,341(5):591-597.
    [96] Pala H., Mota M., Gama F. M. Enzymatic modification of paper fibers [J].Biocatalysis and Biotransformation,2002,20(5):353-361.
    [97]李雪芝,赵建,曲音波.木聚糖酶处理对麦草化学组成及其纸浆纤维长度的影响[J].林产化学与工业,2006,(2):128-130.
    [98] Park S., Venditti R. A., Abrecht D. G., et al. Surface and pore structuremodification of cellulose fibers through cellulase treatment [J]. Journal ofapplied polymer science,2007,103(6):3833-3839.
    [99]李海龙,陈嘉川,詹怀宇,等.木聚糖酶处理后麦草浆的表面形态及化学组成[J].华南理工大学学报(自然科学版),2008,36(3):55-59.
    [100]刘艳萍,张洋,江华,等.木聚糖酶处理对麦秸表面性能的影响[J].福建农林大学学报(自然科学版),2009,(5).548-551.
    [101]金文俊,蒋耀兴,管翔.纤维素酶处理对竹原纤维结构的影响[J].丝绸,2010,3.
    [102]袁平,余惠生,付时雨,等.纤维素酶和半纤维素酶对纤维改性的研究进展[J].中国造纸,2001,(5):53-57.
    [103] Viikari L., Tenkanen M., Suurn kki A. Biotechnology in the pulp and paperindustry [J]. Biotechnology Set, Second Edition,2001:523-546.
    [104] Pala H., Mota M., Gama F. M. Enzymatic modification of paper fibres [J].Biocatalysis and Biotransformation,2002,20(5):353-361.
    [105]赵玉林,陈中豪,王福君.半纤维素酶在制浆造纸工业的应用研究进展[J].中国造纸学报,2001,(2):146-150.
    [106] Diehm, R. A. Process of manufacturing paper[P], U. S. Patent:2280307,1942.
    [107] Singh Rashmi, Bhardwaj Nishi K. Enzymatic Refining Of Pulps: AnOverview [J]. IPPTA J.,2010,22(2):109-115.
    [108] Noé P., Chevalier J., Mora F., et al. Action of xylanases on chemical pulpfibers Part Ⅱ: Enzymatic beating [J]. Journal of Wood Chemistry andTechnology,1986,6(2):167-184.
    [109] Gupta R., Mehta G., Deswal D., et al. Cellulases and Their BiotechnologicalApplications [M]. Biotechnology for Environmental Management andResource Recovery. Springer India,2013:89-106.
    [110] Yamaguchi H., Yaguchi Y. Enzyme treatment improves refiningefficiency[C]. Appita conference proceedings,1996·91
    [111] Bhardwaj Nishi K., Bajpai Pratima, Bajpai Pramod K., et al. Use of enzymesin modification of fibers for improved beatability[J]·J·Biotech-nol,1996,51(1):21
    [112] Mansfield S. D., Swanson D. J., Roberts N, et al. Enhancing Douglas-firpulp properties with a combination of enzyme treatments and fiberfractionation [J]. Tappi journal,1999,82(5).
    [113] Seo Y. B., Shin Y. C., Jeon Y. Enzymatic and mechanical treatment ofchemical pulp [J]. Tappi journal,2000,83(11).
    [114] Ulla-Britt Mohlin, Bert Pettersson. Improved paper making by cellulasetreatment before refining [J]. Progress in Biotechnology,2002,21:291-299.
    [115] Hyoung-Jin Kim, Byoung-Muk Jo, Seon-Ho Lee. Potential for energy savingin refining of cellulase-treated kraft pulp [J]. Journal of Industrial andEngineering Chemistry,2006,12(4):578-583.
    [116] Nuno Gil, Cristina Gil, Maria Emília Amara, et al. Use of enzymes toimprove the refining of a bleached Eucalyptus globulus kraft pulp [J].Biochemical Engineering Journal,2009,46(2):89-95.
    [117] Michael Lecourt, Valérie Meyer, Jean-Claude Sigoillot, et al. Energyreduction of refining by cellulases [J]. Holzforschung,2010,64(4):441-446
    [118] Torres C. E., Negro C., Fuente E., et al. Enzymatic approaches in paperindustry for pulp refining and biofilm control [J]. Applied microbiology andbiotechnology,2012,96(2):327-344.
    [119]王高升,解来苏,隆言泉.用纤维素酶改善废纸浆性能[J].纸和造纸,1999,5(3):34.
    [120]傅英娟,邵志勇,王权,等.针叶木纤维的酶促打浆[J].中华纸业,2000,21(5):47-48,51.
    [121]汤振江,张爱萍,徐清华,等.酶对针叶木KP纤维改性的研究[J].山东轻工业学院学报(自然科学版),2004,(4):20.
    [122]鞠成民,纪培红,胡慧仁,等.生物酶对未漂硫酸盐针叶木打浆性能的影响[J].中国造纸,2006,25(01):71-72.
    [123]孙萍萍,傅英娟,苗庆显,等.纤维素酶促打浆对漂白针叶木浆湿部电荷特性的影响[J].中国造纸,2008,27(9):11-15.
    [124]董毅,陈嘉川,杨桂花,等.纤维素酶处理对桉木KP浆性能的影响[J].山东轻工业学院学报,2009,23(3):1-4,16.
    [125] Jun Liu, Huiren Hu. Treatment of NBKP with cellulase to reduce therefining energy consumption in production of grease proof paper [J].Advanced Materials Research,2011,236-238:1379-1384
    [126]吕进.纤维素复合酶系改性二次纤维纸浆[D].南京:南京林业大学,2007.
    [127]张正健,胡惠仁.纤维素酶改性提高思茅松漂白KP浆打浆性能[J].中国造纸,2008,(12):1-5.
    [128]杨博,秦梦华,刘娜,等.纤维素酶和木聚糖酶改善杨木CTMP强度性能的研究[J].造纸科学与技术,2010,(2):59-63.
    [129]谢敬.纤维素酶的研究进展[J].化学工业与工程技术,2010,(5):46-49.
    [130]白洪志.降解纤维素菌种筛选及纤维素降解研究[D].哈尔滨:哈尔滨工业大学,2010.
    [131]贺小贤.现代生物工程技术导论[M].北京:科学出版社,2005.
    [132]刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994,24(4),27-31.
    [133] Ghose T. K. Measurement of cellulase activity [J]. Pure&AppliedChemistry,1987,59(2):257-268.
    [134] Mandels M., Andreotii, Roche C. Measurement of saccharifying cellulose[J]. Biotechnol. Bioeng. Symp.1976,6:21-23.
    [135]高培基.纤维素酶滤纸酶活测定方法的改进[J].植物生理学通讯.1986(2):46-48.
    [136]高培基.纤维素酶活力测定方法研究进展[J].工业微生物,1985,6:5-8.
    [137] Bailey M. J., Biely P., Poutanen K. Interlaboiratory Testing of Methods forAssay of Xylanase Activity[J]. Biotech,1992,(23):257~270·
    [138]张素风.芳纶纤维/浆粕界面及结构与成纸性能相关性研究[D].西安:陕西科技大学,2011.
    [139] Lumiainen J. Refining of chemical pulp [J]. Papermaking part,2000,1:86-122.
    [140]付欣,唐爱民,张宏伟等.纤维素纤维的可及度及多孔性能表征研究木[J].造纸科学与技术,2005,24(6).
    [141] Hongwei., Yingyao. Characterization of the Accessibility and PorousProperties of Cellulose Fibers [J]. Guangdong,2005,6:012.
    [142] Inglesby M. K. and Zeronian S. H., The accessibility of cellulose asdetermined by dye adsorption [J]. Cellulose,1996,3:165-181.
    [143] Kreze T., Jeler S., Strnad S. Correlation between structure characteristicsand adsorption properties of regenerated cellulose fibers [J]. MaterialsResearch Innovations,2002,5(6):277-283.
    [144]张俐娜.天然高分子材料改性与应用[M].北京:化学工业出版社,2006.
    [145] Wakelin J. H., Virgin H. S., Crystal E. Development and Comparison ofTwo X‐Ray Methods for Determining the Crystallinity of Cotton Cellulose[J]. Journal of applied physics,1959,30(11):1654-1662.
    [146] Ruan D., Zhang L., Lue A., et al. A Rapid Process for Producing CelluloseMulti‐Filament Fibers from a NaOH/Thiourea Solvent System [J].Macromolecular rapid communications,2006,27(17):1495-1500.
    [147] Segal L, Creely L, Martin A.E. An empirical method for estimating thedegree of crystallinity of native cellulose using X-ray diffractometer [J].Textiles Research Journal,1959,29:786-794.
    [148]红外光谱法研究纤维素结晶度——Ⅰ.纸浆红外结晶度指数的测定及其与X射线结晶度指数、打浆度的关系[J].造纸技术通讯,1981,(3).
    [149]卢煊初.用红外光谱法研究纤维素结晶度——Ⅱ.苇浆打浆过程中脆性和结晶度的关系[J].中国造纸,1984,(2):003.
    [150]黄安民,江泽慧,李改云.杉木综纤维素和木质素的近红外光谱法测定[J].光谱学与光谱分析,2007,27(7):1328-1331.
    [151] O'Connor R. T., DuPré E. F., Mitcham D. Applications of infraredabsorption spectroscopy to investigations of cotton and modified cottonsPart I: physical and crystalline modifications and oxidation [J]. TextileResearch Journal,1958,28(5):382-392.
    [152] Nelson M. L., O'Connor R. T. Relation of certain infrared bands to cellulosecrystallinity and crystal lattice type. Part II. A new infrared ratio forestimation of crystallinity in celluloses I and II [J]. Journal of AppliedPolymer Science,1964,8(3):1325-1341.
    [153]施志超,徐立新.评价和改善纤维悬浮液滤水性能的几种方法[J].天津造纸,2005,27(1):32-36.
    [154]刘丽莎,戴红旗,王淑梅等.纤维悬浮液比表面积与保水值的相关性[J].中国造纸学报,2007,22(02):90-94.
    [155] Ferrus R., Pages P. Water retention value and degree of crystallinity byinfrared absorption spectroscopy in caustic-soda-treated cotton [J].Cellulose Chemistry and Technology,1977,11(3):633-637.
    [156]曹光锐,劳嘉葆,李凤遂.纸浆的保水值[J].中国造纸,1981,4:009.
    [157] Koethe J. L., Scott W. E. Polyelectrolyte interactions with papermakingfibers: The mechanism of surface-charge decay [J]. Tappi journal,1993,76(12):123-133.
    [158]金星明,曹春昱.造纸系统中的电荷分析[J].中国造纸,2003,22(10):44-47.
    [159] Kirby B. J., Hasselbrink E. F. Zeta potential of microfluidic substrates:1.Theory, experimental techniques, and effects on separations [J].Electrophoresis,2004,25(2):187-202.
    [160]戴红旗,毕松林,李忠正.漂白麦草浆的表面化学特性[J].南京林业大学学报(自然科学版).2002,26(2):29-31.
    [161]刘丽莎,戴红旗,王淑梅,等.细小纤维表面化学特性研究(Ⅰ)——湿部pH值对细小纤维性能的影响[J].生物质化学工程,2006,(5):7-10.
    [162]孙萍萍,傅英娟,苗庆显,等.纤维素酶促打浆对漂白针叶木浆湿部电荷特性的影响[J].中国造纸.2008,27(9):11-15.
    [163]宋世谟,王正烈,李文斌.物理化学(下册)[M].北京:高等教育出版社,1995:145-146.
    [164]杨静,谭允祯,顾景梅,等.动态接触角测定法研究润湿剂对煤尘的润湿性能[J].煤矿安全,2008,12:7-10.
    [165]范克雷维伦D W.聚合物的性质:性质的估算及其与化学结构的关系[M].许元泽,赵得禄,吴大诚.译.北京:科学出版社,1981:121-129.
    [166] Sharma P. K.,Hanumantha R. K.Adhesion of paenibacillus polymyxa onchalcopyrite and pyrite: Surface thermodynamics and extended DLVOtheory[J].Colloids and Surfaces B:Biointerfaces,2003,29(1):21-38.
    [167]邱冠周.颗粒间相互作用与细粒浮选[M].长沙:中南工业大学出版社,1993.
    [168]顾惕人,朱步瑶,李外郎,等.表面化学[M].北京:科学出版社,2001:371-388.
    [169]张开.高分子界面科学[M].北京:中国石化出版社,1997:47-55.
    [170]潘慧铭,黄素娟.表面,界面的作用与粘接机理(三)[J].粘接,2003,24(4):37-42.
    [171]何慧,沈家瑞.用接触角法测量聚合物共混体系的表面性能[J].合成材料老化与应用,2002,1:1-6.
    [172]王晖,顾帼华,邱冠周.接触角法测量高分子材料的表面能[J].中南大学学报:自然科学版,2006,37(5):942-947.
    [173]王志玲,王正,阎昊鹏.麦秆表面自由能及其分量研究[J].高分子材料科学与工程.2007:23(03):207-210.
    [174]张振涛,甘学英,苑文仪,等.表面自由能色散分量测试方法研究[J].中国原子能科学研究院年报.2007:283-284.
    [175]武汉大学,吉林大学等.无机化学[M].北京:高等教育出版社,1987,210-220.
    [176]王晖,顾帼华.固体的表面自由能及其亲水/疏水性[J].化学通报.2009,12:1091-1096.
    [177]成青.热重分析技术及其在高分子材料领域的应用[J].广东化工,2008,35(12):50.
    [178]焦剑,雷渭媛.高聚物结构,性能与测试[M].北京:化学工业出版社,2003.
    [179]何北海.造纸原理与工程[M].北京:中国轻工业出版社,2010.
    [180]任永森,杨晨鸣.关于造纸工业节能减排问题专访造纸协会[J].中华纸业,2007,28(8):6-9.
    [181]高善民,乔青安,许璞等.微晶纤维素的制备及性质研究[J].功能材料,2007增刊,38:2891-2894.
    [182]李小芳,丁恩勇,黎国康.一种棒状纳米微晶纤维素的物性研究[J].纤维素科学与技术,2001,9(2):29-36.
    [183] Li Xiaofang, Ding Enyong, Li Guokang. A method of preparing sphericalnano-crystal cellulose with mixed crystalline forms of celluloseⅠandⅡ [J].Chinese Journal of Polymer Science,2001,3:291-296.
    [184]王宗德,胡庆国.微晶纤维素的特性及其应用[J].江西林业科技,2000,1:26-28.
    [185] David N. S. H., Nobuo S. Wood and Cellulose Chemistry [J]. New York:Marcel Dekker,1991:55-60.
    [186]王宗德,范国荣,黄敏等.杉木木材纤维素及其开发利用的研究[J].江西林业科技,2003,5:1-3.
    [187] Li X., Li K., Fougere J. D., et al. Fiber cutting in the enzymatic hydrolysisof cellulosic biomass[C]. The32nd Symposium on Biotechnology for Fuelsand Chemicals.2010.
    [188] Clarke K., Li X., Li K. The mechanism of fiber cutting during enzymatichydrolysis of wood biomass [J]. Biomass and Bioenergy,2011,35(9):3943-3950.
    [189]潘祖仁.高分子化学[M].北京:化学工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700