用户名: 密码: 验证码:
中国部分地区鲍曼不动杆菌多位点序列分型及碳青霉烯类抗生素耐药机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳青霉烯类抗生素耐药鲍曼不动杆菌(Carbapenem-resistant Acinetobacter baumannii, CRAB)在我国各地的广泛出现和流行,给临床治疗带来了极大的困难。应用分子分型技术对我国各个地区的CRAB进行系统全面的分子流行病学研究,阐明我国CRAB的流行分布情况,将为制订科学、有效的预防和控制措施提供理论依据。
     本研究第一部分收集了2005年中国16个城市24家三级医院的分离的226株非重复的鲍曼不动杆菌,包括152株CRAB菌株和74株碳青霉烯类抗生素敏感鲍曼不动杆菌(Carbapenem-susceptible Acinetobacter baumannii, CSAB),应用多位点序列分型(Multilocus sequence typing, MLST)技术对这些菌株进行分子分型,并将结果与细菌分子分型技术的“金标准”脉冲场凝胶电泳(Pulsed-field gel electrophoresis, PFGE)结果进行比较,分析MLST技术应用于鲍曼不动杆菌分子流行病研究的可行性;应用eBURST软件对MLST数据进行分析,推测菌株的进化关系,并与国外鲍曼不动杆菌MLST分型结果进行比较分析;测定了11种抗菌药物的体外敏感性试验;应用PCR检测了菌株携带的碳青霉烯类抗生素耐药基因。
     MLST结果显示,CRAB菌株的遗传背景相对单一,包含8个序列型(Sequence type, ST),其中ST92及其单个位点变异型(Single locus variant, SLV) ST90和ST75为主要流行ST型,其次为ST91型。CSAB菌株具有更多样性的遗传背景,包含36个ST型,ST92也是CSAB菌株中最主要的ST型。
     PFGE将226株鲍曼不动杆菌分为44个脉冲型。整体上看,PFGE与MLST的结果具有较好的一致性,但是在对ST92及其SLVs菌株的区分上,PFGE和MLST存在部分的差异。与PFGE相比,MLST对菌株同源性的判定更为保守,可以反映菌株较长时间内的进化关系。
     将MLST数据与鲍曼不动杆菌网络数据库Pubmlst (http://pubmlst.org/abaumannii/)中数据进行对比分析,发现ST92及其SLVs属于克隆复合体92(Clonal complex92, CC92,原名CC22),是目前数据库中最主要克隆复合体,其菌株来源包括了亚洲、欧洲、大洋洲和美洲的多个国家,证实CC92存在世界性的广泛流行,且中国流行的CRAB菌株与国外流行的菌株在进化上来自于相同的祖先。
     CC92和ST91型鲍曼不动杆菌对碳青霉烯类、第三和第四代头孢菌素、氨基糖苷类、米诺环素和氟喹诺酮的耐药性均要高于其他ST型鲍曼不动杆菌(P<0.001)。ST92-CRAB与ST92-CSAB相比,除碳青霉烯类抗生素以外,对以上其他抗菌药物的耐药率无统计学差异,提示多重耐药是ST92型菌株的重要特征。
     blaOXA-23是CRAB菌株携带的最主要的获得性的碳青霉烯酶基因。ST91型CRAB菌株同时携带了blaOXA-23和blaOXA-58。CSAB菌株中均未检测到获得性的碳青霉烯酶基因。blaOXA-23阳性的ST92型CRAB菌株对亚胺培南的最小抑菌浓度(Minimal inhibitory concentration, MIC)是blaOXA-23阴性的ST92型CSAB菌株的32-128倍,提示blaOXA-23是造成ST92型鲍曼不动杆菌对碳青霉烯类抗生素耐药的关键因素。
     本研究第一部分应用了MLST分型技术对国内多个城市的鲍曼不动杆菌进行分子流行病学研究,发现克隆复合体CC92是我国甚至全球流行范围最广的CRAB克隆,且具有很强的耐药性。OXA-23型碳青霉烯酶基因是介导CC92对该类抗生素耐药的重要因素。CC92在国内的出现和播散是我国鲍曼不动杆菌对碳青霉烯类抗生素耐药率不断升高的重要原因。
     具有碳青霉烯类抗生素水解能力的D类p-内酰胺酶(Carbapenem hydrolyzingclass D β-lactamase, CHDL)是介导鲍曼不动杆菌对碳青霉烯类抗生素耐药的最重要机制。blaOXA-58是一种呈全球分布的CHDL基因。本研究第一部分发现ST91型CRAB同时携带了blaOXA-23型和blaOXA-58型碳青霉烯酶基因。第二部分在此基础上,对携带blaOXA-58基因的不动杆菌的遗传背景特征、质粒特征及blaOXA-58基因的周围结构与耐药表型间的联系进行了深入研究。
     第二部分研究收集了13株携带blaOXA-58基因的非重复的不动杆菌,来自自国内6个城市的7家三级医院,包括了2株pittii不动杆菌(即不动杆菌基因种型3),3株nosocomialis不动杆菌(即不动杆菌基因种型13TU)和8株鲍曼不动杆菌(其中两株浙江金华的鲍曼不动杆菌来自在第一部分研究)。应用PFGE和MLST对这些菌株进行分子流行病学研究;测定所有菌株对13种抗菌药物的MIC值;应用Southern杂交确定blaOXA-58的基因定位;应用质粒抽提和电转化确定携带blaOXA-58质粒的可传播性;应用限制性酶切、克隆技术分析blaOXA-58的基因周围序列;应用基于PCR的鲍曼不动杆菌质粒复制子分型法(Acinetobacter baumannii PCR-based replicon typing, AB-PBRT)对不同菌株中携带blaOXA-58的质粒进行分型研究。
     PFGE分型发现,2株pittii不动杆菌属于同一个脉冲型(分别来自浙江杭州和浙江台州),3株nosocomialis不动杆菌分属于2个脉冲型(均来自浙江温州),8株鲍曼不动杆菌可分为3个脉冲型。8株鲍曼不动杆菌可分为3个ST型。其中ST91在浙江金华和湖北武汉的医院出现,且浙江金华中心医院2004年和2009年均分离到了ST91型产OXA-58型碳青霉烯酶的鲍曼不动杆菌,提示其存在地方性流行。
     13株不动杆菌表现出不同的碳青霉烯类抗生素敏感性表型。pittii不动杆菌和nosocomialis不动杆菌均为碳青霉烯类抗生素敏感。而鲍曼不动杆菌中仅有一株为碳青霉烯类抗生素敏感,其余均为耐药。同时,鲍曼不动杆菌对第三代和四代头孢菌素、含p-内酰胺酶抑制剂的复合制剂、氨基糖苷类、米诺环素和环丙沙星的耐药性均要高于pittii不动杆菌和nosocomialis不动杆菌。
     Southern杂交结果显示,13株不动杆菌中blaOXA-58基因均定位于质粒上,质粒大小范围在52kb-305kb之间。除了305kb的质粒外,其余质粒均可通过电转化转移到碳青霉烯类抗生素敏感的鲍曼不动杆菌受体菌中。应用AB-PBRT分型法发现,这些质粒不属于已知的质粒复制子分型。确认了2株pittii不动杆菌,3株nosocomialis不动杆菌和2株鲍曼不动杆菌中携带blaOXA-58基因的质粒属于一种新的质粒复制子分型,命名为Acil0。
     对blaOXA-58基因的周围序列进行分析发现,在blaOXA-58基因的上游存在类似插入序列(Insertion sequence, IS)ISAba3的ISAba3-like结构。部分菌株的ISAba3-like结构被IS6家族的插入序列打断,形成IS6family-△ISAba3-like-blaOXA-58的特殊结构。该结构仅出现在7株碳青霉烯类抗生素耐药的鲍曼不动杆菌和1株碳青霉烯类抗生素敏感的nosocomialis不动杆菌中,且具有此结构的质粒通过电转化转入鲍曼不动杆菌受体菌后介导了受体菌对碳青霉烯类抗生素的耐药或中介其余碳青霉类抗生素敏感的不动杆菌中blaOXA-58基因的上游的ISAba3-like结构未被其他IS序列打断。启动子分析发现,IS6family-△ISAba3-like结构为下游blaOXA-58的表达提供了强启动子,在介导碳青霉烯类抗生素耐药中起了重要作用。部分菌株blaOXA-58基因的周围序列中发现了重组位点序列,提示blaOXA-58基因的转移可能和重组事件有关。ST91型鲍曼不动杆菌blaOXA-58基因的下游同时发现了携带氨基糖苷类磷酸转移酶基因aphA6的复合转座子TnaphA6。aphA6随blaOXA-58基因进行传播使受体菌同时获得对碳青霉烯类抗生素和氨基糖苷类抗生素的耐药能力。
     本研究第二部分发现blaOXA-58基因可存在于pittii不动杆菌、nosocomialis不动杆菌和鲍曼不动杆菌中,且均定位于质粒上,可以通过电转化的方式转移到受体菌中。pittii不动杆菌、nosocomialis不动杆菌和部分鲍曼不动杆菌中携带blaOXA-58基因的质粒具有相同的质粒复制子分型,提示质粒在不动杆菌间的传播也是造成鲍曼不动杆菌对碳青霉烯类抗生素耐药率迅速上升的重要原因。IS6家族插入序列△ISAba3-like-blaOXA-58的特殊结构为下游blaOXA-58的表达提供了强启动子,与碳青霉烯类抗生素耐药密切相关。
The carbapenem-resistant Acinetobacter baumannii (CRAB) has widely spread in China, which resulting in dilemma in clinical anti-infectious thrapy. Therefore, it is urgent to elucidate the distribution of CRAB in our country using molecular typing method. The results will be useful for prevention and control this pathogen.
     In Part Ⅰ of this study,226non-duplicated A. baumannii were collected from24tertiary hospitals of16cities in2005, including152CRAB and74carbapenem-susceptible A. baumannii. Multilocus sequence tying (MLST) was used as the method of molecular typing. The results of MLST were compared with those of the "golden standard" of bacterial molecular typing, pulsed-field gel electrophoresis (PFGE) to confirm the availability of MLST in molecular epidemiological study of A. baumannnii. eBURST was used to analyze the data of MLST and infer the evalutionary descent. The susceptibility testing of11antimicrobial agents were determined. PCR was used to detected the presence of carbapenemase genes.
     MLST revealed that the genetic background of CRAB was relatively simple, including8sequence types (STs). ST92and its single locus variants (SLVs), ST90and ST75were the dominant STs, followed by ST91. The genetic background of CSAB was more diverse, including36STs. ST92was also the major ST of CSAB.
     44pulsotypes were identified in226A. baumannii by PFGE. In generally, the results of MLST and PFGE were consistent. However, there were some disparities about the genotypes of ST92and its SLVs. MLST was more conservative in the interpreting of bacterial genetic relatedness, and could reveal the bacterial evolutionary descent in long term period.
     We compared our data with those in the MLST website database of A. baumannii (Pubmlst, http://pubmlst.org/abaumannii/). ST92and its SLVs were all grouped as clonal complex (CC)92(formerly named CC22), which is the largest CC in the database. The origins of CC92isolates were covered many countries of Asian, Europe, Oceania and Americas, confirming the worldwide spread of CC92. The CC92CRAB of China and other countries may evolve from a same progenitor.
     CC92and ST91were more resistant to carbapenems, third-and forth-generation cephalosporins, aminoglycosides, minocycline and fluoroquinolones than the other STs (P<0.001). There were no statistical difference between antibiotics resistance of ST92-CRAB and ST92-CSAB. The results implys multidrug resistance is an important feature of ST92.
     blaOXA-23was the main acquired carbapenemase gene of CRAB. ST91co-carried blaOXA-23and WaOXA-58.None of carbapenemase gene was detected in CSAB. The imipenem minimal inhibitory concentrations (MICs) of blaOXA-23-positive ST92-CRAB were32to128times to those of blaOXA-23-negative ST92-CSAB, implying blaOXA-23was an critical determinant of carbapenem resistance in ST92A. baumannii.
     In Part Ⅰ of this study, MLST was used for molecular epidemiological investigation of A. baumannii from multiple cities of China. CC92was the most prevalent CRAB clone of China, as well as the worldwide spread clone, and showed greater antibiotics resistance than the other STs. OXA-23-type carbapenemase was an resistance mechanism of CC92against carbapenems. The emergence and dissemination of CC92in China accounted for the increasing carbapenem resistance inA baumannii.
     The carbapenem hydrolyzing class D β-lactamases are the most important factors mediating carbapenem resistance in A. baumannii. blaOXA-58is a worldwide distributed CHDL gene. In Part Ⅰ of this study, we found the ST91CRAB co-carried blaOXA-23and blaOXA-58.On that basis, in Part Ⅱ of this study, we further studied the genetic background of blaOXA-58-harboring Acinetobacter spp., the feature of blaOXA-58-harboring plasmids, as well as the relationship between genetic contexts of blaOXA-58and susceptibility testing profiles
     13blaOXA-58-harboring non-duplicated Acinetobacter spp. were collected from seven tertiary hospitals of six cities, including two Acinetobacter pittii (formerly Acinetobacter genomic species3), three Acinetobacter nosocomialis (formerly Acinetobacter genomic species13TU) and eight A. baumannii (two A. baumannii isolates from Jinhua, Zhejiang Province were present in Part Ⅰ of this study). PFGE and MLST were used for the molecular epidemiological investigation. The MICs of13antimicrobial agents were determined. The genetic location of blaOXA-58was determined by Southern hybridization. The genetic contexts of blaOXA-58were acquired through restricted digestion and cloning experiments. The blaOXA-58-harboring plasmids were typed by A. baumannii PCR-based replicon typing method (AB-PBRT).
     PFGE identified the two A. pittii belonged to a same pulsotype (from Hangzhou and Taizhou respectively), and the three A. nosocomialis belonged to two pulsotypes (all from Wenzhou). Three pulsotypes were identified in eight A. baumannii, corresponding to three STs using MLST. ST91were detected in Jinhua, Zhejiang Province and Wuhan, Hubei Province, and recovered from Jinhua Center Hospital both in2005and2009, implying endemic prevalent in this hospital.
     The13Acinetobacter spp. displayed various carbapenem susceptibility testing profiles. All A. pittii and A. nosocomialis were carbapenem susceptible. However, the A. baumannii were almostly carbapenem resistance, except one showed carbapenem susceptible. Moreover, A. baumannii were more resistant to third-and forth-generation cephalosporins, β-lactams combination with β-lactamase inhibitor, aminoglycosides, minocycline and ciprofloxacin than A. pittii and A. nosocomialis.
     The plasmid location of blaOXA-58in13Acinetobacter spp. were confirmed by Southern hybridization, and the sizes of plasmid were ranged from ca.52kb to ca.305kb. All plasmids could transfer to carbapenem-susceptible recepient through electrotransformation except for the largest one. The plasmids did not belong to any known plasmid replicon typing. Aci10, a novel plasmid replicon typing was identified in the blaOXA-58-harboring plasmids of two A. pittii, three A. nosocomialis and two A. baumannii.
     An ISAba3-like element was identified upstream of blaOXA-58, and the element was disrupted by insertion sequence of IS6family in partial isolates, named IS6family-AISAba3-like-blaOXA-58structure. The special structure was present in seven carbapenem-resistant A. baumannii and one carbapenem-susceptible A. nosocomialis, and their transformants showed carbapenem resistant or mediated. In remaining carbapenem-susceptible isolates, the ISAba3-like element was intact. The special IS6family-△ISAba3-like-blaOXA-58structure provided strong promoter for transcription of blaOXA-58, which played an important role in the carbapenem resistance. Recombination sites around blaOXA-58were identified in partial isolates, implying the acquisition of blaOXA-58was associated with recombination events. An aminoglycoside O-phosphotransferases gene, aphA6, was identified downstream of blaOXA-58of ST91A. baumannii, and which located in a composite transposon named TnaphA6. The co-transfer of aphA6and blaOXA-58, resulted in the recepient developed carbapenem and aminoglycoside resistance at the same time.
     The part Ⅱ of this study demonstrated the plasmid-location of blaOXA-58in A.pittii, A. nosocomialis and A. baumannii, and the plamids could transfer to recepient by electrotransformation. A same plasmid replicon typing was identified in blaOXA-58-harboring plasmids of A. pittii, A. nosocomialis and partial A. baumannii, suggesting the transfer of plamids among Acientobacter spp. was involved in the rapid increasing of carbapenem resistant rate in this pathogen. The special IS6family-△ISAba3-like-blaOXA-58structure contributed to the carbapenem resistance through providing strong promoter for the transcription of blaOXA-58.
引文
[1]Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii:emergence of a successful pathogen. Clin Microbiol Rev,2008,21:538-582.
    [2]Perez F, Hujer AM, Hujer KM et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother,2007,51:3471-3484.
    [3]Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med,2008,358: 1271-1281.
    [4]Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multi drug-resistant Acinetobacter baumannii. Nat Rev Microbiol,2007,5:939-951.
    [5]Smith PW, Massanari RM. Room humidifiers as the source of Acinetobacter infections. JAMA,1977,237:795-797.
    [6]Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis,2005,41:848-854.
    [7]Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis,2010,51 Suppl 1: S81-87.
    [8]汪复,朱德妹,胡付品et al.2010年中国CHINET细菌耐药性监测.中国感染与化疗杂志,2011,11:321-329.
    [9]汪复.2005年中国CHINET细菌耐药性监测结果.中国感染与化疗杂志,2006,6:289-295.
    [10]Richet HM, Mohammed J, McDonald LC et al. Building communication networks: international network for the study and prevention of emerging antimicrobial resistance. Emerg Infect Dis,2001,7:319-322.
    [11]Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program:a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis,2009,65:414-426.
    [12]Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens:results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother, 2011,66:2070-2074.
    [13]Orskov F, Orskov I. From the national institutes of health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the enterobacteriaceae and other bacteria. J Infect Dis,1983,148:346-357.
    [14]Coelho JM, Turton JF, Kaufmann ME et al. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J Clin Microbiol,2006,44:3623-3627.
    [15]Mendes RE, Bell JM, Turnidge JD et al. Emergence and widespread dissemination of OXA-23,-24/40 and-58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations:report from the SENTRY Surveillance Program. J Antimicrob Chemother,2009,63:55-59.
    [16]Zhou H, Yang Q, Yu YS et al. Clonal spread of imipen em-resistant Acinetobacter baumannii among different cities of China. J Clin Microbiol,2007,45:4054-4057.
    [17]Wang H, Guo P, Sun H et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother,2007,51:4022-4028.
    [18]Tenover FC, Arbeit RD, Goering RV et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis:criteria for bacterial strain typing. J Clin Microbiol,1995,33:2233-2239.
    [19]Maiden MC. Multilocus sequence typing of bacteria. Annu Rev Microbiol,2006,60: 561-588.
    [20]Urwin R, Maiden MC. Multi-locus sequence typing:a tool for global epidemiology. Trends Microbiol,2003,11:479-487.
    [21]Oliveira DC, Tomasz A, de Lencastre H. Secrets of success of a human pathogen: molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect Dis,2002,2:180-189.
    [22]Shao Z, Li W, Ren J et al. Identification of a new Neisseria meningitidis serogroup C clone from Anhui province, China. Lancet,2006,367:419-423.
    [23]Willems RJ, Top J, van Santen M et al. Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis, 2005,11:821-828.
    [24]Performance standards for antimicrobial susceptibility testing,22th informational supplement. M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA. 2012,
    [25]Turton JF, Woodford N, Glover J et al. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol,2006,44:2974-2976.
    [26]Hunter SB, Vauterin P, Lambert-Fair MA et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols:converting the national databases to the new size standard. J Clin Microbiol,2005,43:1045-1050.
    [27]Bartual SG, Seifert H, Hippler C et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol,2005,43:4382-4390.
    [28]Feil EJ, Li BC, Aanensen DM et al. eBURST:inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol,2004,186:1518-1530.
    [29]Ellington MJ, Kistler J, Livermore DM et al. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother,2007, 59:321-322.
    [30]Higgins PG, Lehmann M, Seifert H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents,2010,35:305.
    [31]Johnson JK, Arduino SM, Stine OC et al. Multilocus sequence typing compared to pulsed-field gel electrophoresis for molecular typing of Pseudomonas aeruginosa. J Clin Microbiol,2007,45:3707-3712.
    [32]Faria NA, Carrico JA, Oliveira DC et al. Analysis of typing methods for epidemiological surveillance of both methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. J Clin Microbiol,2008,46: 136-144.
    [33]Wisplinghoff H, Hippler C, Bartual SG et al. Molecular epidemiology of clinical Acinetobacter baumannii and Acinetobacter genomic species 13TU isolates using a multilocus sequencing typing scheme. Clin Microbiol Infect,2008,14:708-715.
    [34]Nallapareddy SR, Duh RW, Singh KV et al. Molecular typing of selected Enterococcus faecalis isolates:pilot study using multilocus sequence typing and pulsed-field gel electrophoresis. J Clin Microbiol,2002,40:868-876.
    [35]Fournier PE, Vallenet D, Barbe V et al. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet,2006,2:e7.
    [36]Iacono M, Villa L, Fortini D et al. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone Ⅱ group. Antimicrob Agents Chemother,2008,52:2616-2625.
    [37]Post V, Hall RM. AbaR5, a large multiple-antibiotic resistance region found in Acinetobacter baumannii. Antimicrob Agents Chemother,2009,53:2667-2671.
    [38]Seputiene V, Povilonis J, Suziedeliene E. Novel variants of AbaR resistance islands with a common backbone in Acinetobacter baumannii isolates of European clone Ⅱ. Antimicrob Agents Chemother,2012,
    [39]Krizova L, Dijkshoorn L, Nemec A. Diversity and evolution of AbaR genomic resistance islands in Acinetobacter baumannii strains of European clone Ⅰ. Antimicrob Agents Chemother,2011,55:3201-3206.
    [40]Enright MC, Robinson DA, Randle G et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci U S A, 2002,99:7687-7692.
    [41]Kitchel B, Rasheed JK, Patel JB et al. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolates in the United States:clonal expansion of multilocus sequence type 258. Antimicrob Agents Chemother,2009,53:3365-3370.
    [42]Toth A, Damjanova I, Puskas E et al. Emergence of a colistin-resistant KPC-2-producing Klebsiella pneumoniae ST258 clone in Hungary. Eur J Clin Microbiol Infect Dis,2010,29:765-769.
    [43]Qi Y, Wei Z, Ji S et al. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China. J Antimicrob Chemother,2011,66:307-312.
    [44]van Dessel H, Dijkshoorn L, van der Reijden T et al. Identification of a new geographically widespread multiresistant Acinetobacter baumannii clone from European hospitals. Res Microbiol,2004,155:105-112.
    [45]Nemec A, Krizova L, Maixnerova M et al. Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone II. J Antimicrob Chemother,2008,62: 484-489.
    [46]D'Arezzo S, Capone A, Petrosillo N et al. Epidemic multidrug-resistant Acinetobacter baumannii related to European clonal types I and II in Rome (Italy). Clin Microbiol Infect,2009,15:347-357.
    [47]Kohlenberg A, Brummer S, Higgins PG et al. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J Med Microbiol,2009,58:1499-1507.
    [48]Higgins PG, Dammhayn C, Hackel M et al. Global spread of carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother,2010,65:233-238.
    [49]Park YK, Choi JY, Jung SI et al. Two distinct clones of carbapenem-resistant Acinetobacter baumannii isolates from Korean hospitals. Diagn Microbiol Infect Dis,2009,64:389-395.
    [50]Lee Y, Lee J, Jeong SH et al. Carbapenem-non-susceptible Acinetobacter baumannii of sequence type 92 or its single-locus variants with a G428T substitution in zone 2 of the rpoB gene. J Antimicrob Chemother,2011,66:66-72.
    [51]Runnegar N, Sidjabat H, Goh HMS et al. Molecular Epidemiology of Multidrug-Resistant Acinetobacter baumannii in a Single Institution over a 10-Year Period. Journal of Clinical Microbiology,2010,48:4051-4056.
    [52]Da Silva GJ, Mendonca N, Batista G et al. Sequence types of Portuguese carbapenem-resistant Acinetobacter baumannii isolates collected over 10 years. J Antimicrob Chemother,2010,65:2254-2256.
    [53]Grosso F, Quinteira S, Peixe L. Understanding the dynamics of imipenem-resistant Acinetobacter baumannii lineages within Portugal. Clin Microbiol Infect,2011,17: 1275-1279.
    [54]Kouyama Y, Harada S, Ishii Y et al. Molecular characterization of carbapenem-non-susceptible Acinetobacter spp. in Japan:predominance of multidrug-resistant Acinetobacter baumannii clonal complex 92 and IMP-type metallo-beta-lactamase-producing non-baumannii Acinetobacter species. J Infect Chemother,2012,
    [55]Adams-Haduch JM, Onuoha EO, Bogdanovich T et al. Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J Clin Microbiol,2011,49:3849-3854.
    [56]Ansaldi F, Canepa P, Bassetti M et al. Sequential outbreaks of multidrug-resistant Acinetobacter baumannii in intensive care units of a tertiary referral hospital in Italy: combined molecular approach for epidemiological investigation. J Hosp Infect, 2011,79:134-140.
    [57]Karah N, Haldorsen B, Hermansen NO et al. Emergence of OXA-carbapenemase-and 16S rRNA methylase-producing international clones of Acinetobacter baumannii in Norway. J Med Microbiol,2011,60:515-521.
    [58]Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother,2010,54:24-38.
    [59]Mugnier PD, Poirel L, Naas T et al. Worldwide dissemination of the blaOXA-23 carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis,2010,16: 35-40.
    [60]Adams-Haduch JM, Paterson DL, Sidjabat HE et al. Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother,2008,52:3837-3843.
    [61]Zhou H, Zhang T, Yu D et al. Genomic analysis of the multidrug-resistant Acinetobacter baumannii strain MDR-ZJ06 widely spread in China. Antimicrob Agents Chemother,2011,55:4506-4512.
    [1]Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii:emergence of a successful pathogen. Clin Microbiol Rev,2008,21:538-582.
    [2]Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol,2007,5: 939-951.
    [3]Towner KJ. Acinetobacter:an old friend, but a new enemy. J Hosp Infect,2009,73: 355-363.
    [4]Nemec A, Krizova L, Maixnerova M et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacterpittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol,2011,162:393-404.
    [5]Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D beta-lactamases. Antimicrob Agents Chemother,2010,54:24-38.
    [6]Karthikeyan K, Thirunarayan MA, Krishnan P. Coexistence of blaOXA-23 with blaNDM-1 and armA in clinical isolates of Acinetobacter baumannii from India. J Antimicrob Chemother,2010,65:2253-2254.
    [7]Chen Y, Zhou Z, Jiang Y et al. Emergence of NDM-1-producing Acinetobacter baumannii in China. J Antimicrob Chemother,2011,66:1255-1259.
    [8]Robledo IE, Aquino EE, Sante MI et al. Detection of KPC in Acinetobacter spp. in Puerto Rico. Antimicrob Agents Chemother,2010,54:1354-1357.
    [9]Higgins PG, Poirel L, Lehmann M et al. OXA-143, a novel carbapenem-hydrolyzing class D beta-lactamase in Acinetobacter baumannii. Antimicrob Agents Chemother,2009,53:5035-5038.
    [10]Bertini A, Giordano A, Varesi P et al. First report of the carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter baumannii isolates in Italy. Antimicrob Agents Chemother,2006,50:2268-2269.
    [11]Marque S, Poirel L, Heritier C et al. Regional occurrence of plasmid-mediated carbapenem-hydrolyzing oxacillinase OXA-58 in Acinetobacter spp. in Europe. J Clin Microbiol,2005,43:4885-4888.
    [12]Poirel L, Lebessi E, Heritier C et al. Nosocomial spread of OXA-58-positive carbapenem-resistant Acinetobacter baumannii isolates in a paediatric hospital in Greece. Clin Microbiol Infect,2006,12:1138-1141.
    [13]Chen TL, Wu RC, Shaio MF et al. Acquisition of a plasmid-borne blaOXA-58 gene with an upstream IS1008 insertion conferring a high level of carbapenem resistance to Acinetobacter baumannii. Antimicrob Agents Chemother,2008,52: 2573-2580.
    [14]Mendes RE, Bell JM, Turnidge JD et al. Emergence and widespread dissemination of OXA-23,-24/40 and-58 carbapenemases among Acinetobacter spp. in Asia-Pacific nations:report from the SENTRY Surveillance Program. J Antimicrob Chemother,2009,63:55-59.
    [15]Wang H, Guo P, Sun H et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrob Agents Chemother,2007,51:4022-4028.
    [16]Coelho J, Woodford N, Afzal-Shah M et al. Occurrence of OXA-58-like carbapenemases in Acinetobacter spp. collected over 10 years in three continents. Antimicrob Agents Chemother,2006,50:756-758.
    [17]Castanheira M, Wanger A, Kruzel M et al. Emergence and clonal dissemination of OXA-24-and OXA-58-producing Acinetobacter baumannii strains in Houston, Texas:report from the SENTRY Antimicrobial Surveillance Program. J Clin Microbiol, 2008,46:3179-3180.
    [18]Peleg AY, Franklin C, Walters LJ et al. OXA-58 and IMP-4 carbapenem-hydrolyzing beta-lactamases in an Acinetobacter junii blood culture isolate from Australia. Antimicrob Agents Chemother,2006,50:399-400.
    [19]Poirel L, Mansour W, Bouallegue O et al. Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob Agents Chemother, 2008,52:1613-1617.
    [20]Heritier C, Poirel L, Lambert T et al. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother,2005,49:3198-3202.
    [21]Chen TL, Chang WC, Kuo SC et al. Contribution of a plasmid-borne blaOXA-58 gene with its hybrid promoter provided by IS1006 and an ISAba3-like element to beta-lactam resistance in acinetobacter genomic species 13TU. Antimicrob Agents Chemother,2010,54:3107-3112.
    [22]Poirel L, Nordmann P. Genetic structures at the origin of acquisition and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-58 in Acinetobacter baumannii. Antimicrob Agents Chemother,2006,50:1442-1448.
    [23]Marti S, Sanchez-Cespedes J, Blasco MD et al. Characterization of the carbapenem-hydrolyzing oxacillinase oxa-58 in an Acinetobacter genospecies 3 clinical isolate. Antimicrob Agents Chemother,2008,52:2955-2958.
    [24]Mendes RE, Bell JM, Turnidge JD et al. Codetection of blaOXA-23-like gene (blaOXA-133) and blaOXA-58 in Acinetobacter radioresistens:report from the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother, 2009,53:843-844.
    [25]Marti S, Sanchez-Cespedes J, Blasco MD et al. Characterization of the carbapenem-hydrolyzing oxacillinase OXA-58 in an Acinetobacter phenon 6/ct13TU clinical isolate. Diagn Microbiol Infect Dis,2008,61:468-470.
    [26]Bertini A, Poirel L, Mugnier PD et al. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother,2010,54:4168-4177.
    [27]Towner KJ, Evans B, Villa L et al. Distribution of intrinsic plasmid replicase genes and their association with carbapenem-hydrolyzing class D beta-lactamase genes in European clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother,2011,55:2154-2159.
    [28]Zhou H, Zhang T, Yu D et al. Genomic analysis of the multidrug-resistant Acinetobacter baumannii strain MDR-ZJ06 widely spread in China. Antimicrob Agents Chemother,2011,55:4506-4512.
    [29]Chang HC, Wei YF, Dijkshoorn L et al. Species-level identification of isolates of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex by sequence analysis of the 16S-23S rRNA gene spacer region. J Clin Microbiol,2005,43: 1632-1639.
    [30]Moubareck C, Bremont S, Conroy MC et al. GES-11, a novel integron-associated GES variant in Acinetobacter baumannii. Antimicrob Agents Chemother,2009,53: 3579-3581.
    [31]Ellington MJ, Kistler J, Livermore DM et al. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother,2007, 59:321-322.
    [32]Higgins PG, Lehmann M, Seifert H. Inclusion of OXA-143 primers in a multiplex polymerase chain reaction (PCR) for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents,2010,35:305.
    [33]Barton BM, Harding GP, Zuccarelli AJ. A general method for detecting and sizing large plasmids. Anal Biochem,1995,226:235-240.
    [34]del Solar G, Giraldo R, Ruiz-Echevarria MJ et al. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev,1998,62:434-464.
    [35]Novick RP. Plasmid incompatibility. Microbiol Rev,1987,51:381-395.
    [36]Boo TW, Crowley B. Detection of blaOXA-58 and blaOXA-23-like genes in carbapenem-susceptible Acinetobacter clinical isolates:should we be concerned? J Med Microbiol,2009,58:839-841.
    [37]Fu Y, Zhou J, Zhou H et al. Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother,2010,65:644-650.
    [38]Giannouli M, Cuccurullo S, Crivaro V et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a tertiary care hospital in Naples, Italy, shows the emergence of a novel epidemic clone. J Clin Microbiol,2010,48: 1223-1230.
    [39]Gogou V, Pournaras S, Giannouli M et al. Evolution of multidrug-resistant Acinetobacter baumannii clonal lineages:a 10 year study in Greece (2000-09). J Antimicrob Chemother,2011,66:2767-2772.
    [40]Zhang JP, Zhu W, Tian SF et al. Molecular characteristics and resistant mechanisms of imipenem-resistant Acinetobacter baumannii isolates in Shenyang, China. J Microbiol,2010,48:689-694.
    [41]Carretto E, Barbarini D, Dijkshoorn L et al. Widespread carbapenem resistant Acinetobacter baumannii clones in Italian hospitals revealed by a multicenter study. Infect Genet Evol,2011,11:1319-1326.
    [42]Martin P, Jullien E, Courvalin P. Nucleotide sequence of Acinetobacter baumannii aphA-6 gene:evolutionary and functional implications of sequence homologies with nucleotide-binding proteins, kinases and other aminoglycoside-modifying enzymes. Mol Microbiol,1988,2:615-625.
    [43]Lambert T, Gerbaud G, Bouvet P et al. Dissemination of amikacin resistance gene aphA6 in Acinetobacter spp. Antimicrob Agents Chemother,1990,34:1244-1248.
    [44]Nigro SJ, Post V, Hall RM. Aminoglycoside resistance in multiply antibiotic-resistant Acinetobacter baumannii belonging to global clone 2 from Australian hospitals. J Antimicrob Chemother,2011,66:1504-1509.
    [45]Ravasi P, Limansky AS, Rodriguez RE et al. ISAba825, a functional insertion sequence modulating genomic plasticity and blaOXA-58 expression in Acinetobacter baumannii. Antimicrob Agents Chemother,2011,55:917-920.
    [46]Evans BA, Hamouda A, Towner KJ et al. Novel genetic context of multiple blaOXA-58 genes in Acinetobacter genospecies 3. J Antimicrob Chemother,2010, 65:1586-1588.
    [1]Bergogne-Berezin E, Towner K.T. Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev, 1996,9:148-165.
    [2]Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii:emergence of a successful pathogen. Clin Microbiol Rev,2008,21:538-582.
    [3]Brisou J, Prevot AR. [Studies on bacterial taxonomy. X. The revision of species under Acromobacter group]. Ann Inst Pasteur (Paris),1954,86: 722-728.
    [4]Baumann P, Doudoroff M, Stanier RY. A study of the Moraxella group. Ⅱ. Oxidative-negative species (genus Acinetobacter). J Bacteriol,1968,95: 1520-1541.
    [5]Smith PW, Massanari RM. Room humidifiers as the source of Acinetobacter infections. JAMA,1977,237:795-797.
    [6]Bouvet PJM, Grimont PAD. Taxonomy of the Genus Acinetobacter with the Recognition of Acinetobacter-Baumannii Sp-Nov, Acinetobacter-Haemolyticus Sp-Nov, Acinetobacter-Johnsonii Sp-Nov, and Acinetobacter-Junii Sp-Nov and Emended Descriptions of Acinetobacter-Calcoaceticus and Acinetobacter-Lwoffii. Int J Syst Bacteriol, 1986,36:228-240.
    [7]Nemec A, Musilek M, Sedo O et al. Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. Int J Syst Evol Microbiol,2010,60:896-903.
    [8]Nemec A, Krizova L, Maixnerova M et al. Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol,2011,162: 393-404.
    [9]Gerner-Smidt P. Ribotyping of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. J Clin Microbiol,1992,30:2680-2685.
    [10]Gerner-Smidt P, Tjernberg I, Ursing J. Reliability of phenotypic tests for identification of Acinetobacter species. J Clin Microbiol,1991,29:277-282.
    [11]Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol,2007,5: 939-951.
    [12]Towner KJ. Acinetobacter:an old friend, but a new enemy. J Hosp Infect,2009, 73:355-363.
    [13]Seifert H, Dijkshoorn L, Gerner-Smidt P et al. Distribution of Acinetobacter species on human skin:comparison of phenotypic and genotypic identification methods. J Clin Microbiol,1997,35:2819-2825.
    [14]Berlau J, Aucken H, Malnick H et al. Distribution of Acinetobacter species on skin of healthy humans. Eur J Clin Microbiol Infect Dis,1999,18:179-183.
    [15]Dijkshoorn L, van Aken E, Shunburne L et al. Prevalence of Acinetobacter baumannii and other Acinetobacter spp. in faecal samples from non-hospitalised individuals. Clin Microbiol Infect,2005,11:329-332.
    [16]Perez F, Hujer AM, Hujer KM et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother,2007,51: 3471-3484.
    [17]Park YK, Peck KR, Cheong HS et al. Extreme drug resistance in Acinetobacter baumannii infections in intensive care units, South Korea. Emerg Infect Dis, 2009,15:1325-1327.
    [18]Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis, 2008,8:751-762.
    [19]Falagas ME, Karageorgopoulos DE. Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among Gram-negative bacilli:need for international harmonization in terminology. Clin Infect Dis, 2008,46:1121-1122; author reply 1122.
    [20]Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol,2006,55: 1619-1629.
    [21]Paterson DL, Doi Y. A step closer to extreme drug resistance (XDR) in gram-negative bacilli. Clin Infect Dis,2007,45:1179-1181.
    [22]Magiorakos AP, Srinivasan A, Carey RB et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria:an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect, 2012,18:268-281.
    [23]Rhomberg PR, Jones RN. Summary trends for the Meropenem Yearly Susceptibility Test Information Collection Program:a 10-year experience in the United States (1999-2008). Diagn Microbiol Infect Dis,2009,65:414-426.
    [24]Turner P.T. MYSTIC Europe 2007:activity of meropenem and other broad-spectrum agents against nosocomial isolates. Diagn Microbiol Infect Dis,2009,63:217-222.
    [25]Gales AC, Jones RN, Sader HS. Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli:report from the SENTRY antimicrobial surveillance programme (2001-2004). Clin Microbiol Infect,2006,12:315-321.
    [26]Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother,2011,66:2070-2074.
    [27]汪复,朱德妹,胡付品et al.2010年中国CHINET细菌耐药性监测.中国感染与化疗杂志,2011,11:321-329.
    [28]Seifert H, Dolzani L, Bressan R et al. Standardization and interlaboratory reproducibility assessment of pulsed-field gel electrophoresis-generated fingerprints of Acinetobacter baumannii. J Clin Microbiol,2005,43: 4328-4335.
    [29]Bartual SG, Seifert H, Hippler C et al. Development of a multilocus sequence typing scheme for characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol,2005,43:4382-4390.
    [30]Diancourt L, Passet V, Nemec A et al. The population structure of Acinetobacter baumannii:expanding multiresistant clones from an ancestral susceptible genetic pool. PLoS One,2010,5:e10034.
    [31]Carretto E, Barbarini D, Farina C et al. Use of the DiversiLab semiautomated repetitive-sequence-based polymerase chain reaction for epidemiologic analysis on Acinetobacter baumannii isolates in different Italian hospitals. Diagn Microbiol Infect Dis,2008,60:1-7.
    [32]Dijkshoorn L, Aucken H, Gerner-Smidt P et al. Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J Clin Microbiol,1996,34:1519-1525.
    [33]van Dessel H, Dijkshoorn L, van der Reijden T et al. Identification of a new geographically widespread multiresistant Acinetobacter baumannii clone from European hospitals. Res Microbiol,2004,155:105-112.
    [34]Nemec A, Krizova L, Maixnerova M et al. Emergence of carbapenem resistance in Acinetobacter baumannii in the Czech Republic is associated with the spread of multidrug-resistant strains of European clone Ⅱ. J Antimicrob Chemother,2008,62:484-489.
    [35]Kohlenberg A, Brummer S, Higgins PG et al. Outbreak of carbapenem-resistant Acinetobacter baumannii carrying the carbapenemase OXA-23 in a German university medical centre. J Med Microbiol,2009,58: 1499-1507.
    [36]D'Arezzo S, Capone A, Petrosillo N et al. Epidemic multidrug-resistant Acinetobacter baumannii related to European clonal types I and II in Rome (Italy). Clin Microbiol Infect,2009,15:347-357.
    [37]Fu Y, Zhou J, Zhou H et al. Wide dissemination of OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal complex 22 in multiple cities of China. J Antimicrob Chemother,2010,65:644-650.
    [38]Park YK, Choi JY, Jung SI et al. Two distinct clones of carbapenem-resistant Acinetobacter baumannii isolates from Korean hospitals. Diagn Microbiol Infect Dis,2009,64:389-395.
    [39]Lee Y, Lee J, Jeong SH et al. Carbapenem-non-susceptible Acinetobacter baumannii of sequence type 92 or its single-locus variants with a G428T substitution in zone 2 of the rpoB gene. J Antimicrob Chemother,2011,66: 66-72.
    [40]Runnegar N, Sidjabat H, Goh HM et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a single institution over a 10-year period. J Clin Microbiol,2010,48:4051-4056.
    [41]Da Silva GJ, Mendonca N, Batista G et al. Sequence types of Portuguese carbapenem-resistant Acinetobacter baumannii isolates collected over 10 years. J Antimicrob Chemother,2010,65:2254-2256.
    [42]Grosso F, Quinteira S, Peixe L. Understanding the dynamics of imipenem-resistant Acinetobacter baumannii lineages within Portugal. Clin Microbiol Infect,2011,17:1275-1279.
    [43]Kouyama Y, Harada S, Ishii Y et al. Molecular characterization of carbapenem-non-susceptible Acinetobacter spp. in Japan:predominance of multidrug-resistant Acinetobacter baumannii clonal complex 92 and IMP-type metallo-beta-lactamase-producing non-baumannii Acinetobacter species. J Infect Chemother,2012,
    [44]Adams-Haduch JM, Onuoha EO, Bogdanovich T et al. Molecular epidemiology of carbapenem-nonsusceptible Acinetobacter baumannii in the United States. J Clin Microbiol,2011,49:3849-3854.
    [45]Ansaldi F, Canepa P, Bassetti M et al. Sequential outbreaks of multidrug-resistant Acinetobacter baumannii in intensive care units of a tertiary referral hospital in Italy:combined molecular approach for epidemiological investigation. J Hosp Infect,2011,79:134-140.
    [46]Karah N, Haldorsen B, Hermansen NO et al. Emergence of OXA-carbapenemase-and 16S rRNA methylase-producing international clones of Acinetobacter baumannii in Norway. J Med Microbiol,2011,60: 515-521.
    [47]Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med,2008, 358:1271-1281.
    [48]Pluquet E, Bremond-Gignac D, Milazzo S et al. Unusual acute endophthalmitis due to an as yet unclassified Acinetobacter gyllenbergii-like isolate. J Med Microbiol,2011,60:1379-1382.
    [49]Charnot-Katsikas A, Dorafshar AH, Aycock JK et al. Two cases of necrotizing fasciitis due to Acinetobacter baumannii. J Clin Microbiol,2009,47:258-263.
    [50]Bhagan-Bruno S, Lather N, Fergus IV. Acinetobacter endocarditis presenting as a large right atrial mass:an atypical presentation. Echocardiography,2010, 27:E39-42.
    [51]Aivazova V, Kainer F, Friese K et al. Acinetobacter baumannii infection during pregnancy and puerperium. Arch Gynecol Obstet,2010,281:171-174.
    [52]Duan X, Yang L, Xia P. Septic arthritis of the knee caused by antibiotic-resistant Acinetobacter baumannii in a gout patient:a rare case report. Arch Orthop Trauma Surg,2010,130:381-384.
    [53]Lachanas E, Tomos P, Sfyras N et al. Acinetobacter baumannii mediastinitis after cardiopulmonary bypass:case report and literature review. Surg Infect (Larchmt),2008,9:201-204.
    [54]Schafer JJ, Mangino JE. Multidrug-resistant Acinetobacter baumannii osteomyelitis from Iraq. Emerg Infect Dis,2008,14:512-514.
    [55]Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis,2005,41:848-854.
    [56]Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis,2010,51 Suppl 1: S81-87.
    [57]Falagas ME, Bliziotis IA, Siempos, Ⅱ. Attributable mortality of Acinetobacter baumannii infections in critically ill patients:a systematic review of matched cohort and case-control studies. Crit Care,2006,10:R48.
    [58]Garnacho J, Sole-Violan J, Sa-Borges M et al. Clinical impact of pneumonia caused by Acinetobacter baumannii in intubated patients:a matched cohort study. Crit Care Med,2003,31:2478-2482.
    [59]Blot S, Vandewoude K, Colardyn F. Nosocomial bacteremia involving Acinetobacter baumannii in critically ill patients:a matched cohort study. Intensive Care Med,2003,29:471-475.
    [60]Sunenshine RH, Wright MO, Maragakis LL et al. Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg Infect Dis,2007,13:97-103.
    [61]Falagas ME, Karveli EA, Kelesidis I et al. Community-acquired Acinetobacter infections. Eur J Clin Microbiol Infect Dis,2007,26:857-868.
    [62]Ho PL, Cheng VC, Chu CM. Antibiotic resistance in community-acquired pneumonia caused by Streptococcus pneumoniae, methicillin-resistant Staphylococcus aureus, and Acinetobacter baumannii. Chest,2009,136: 1119-1127.
    [63]Jawad A, Heritage J, Snelling AM et al. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J Clin Microbiol,1996,34:2881-2887.
    [64]Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis,2006,6:130.
    [65]Adams MD, Goglin K, Molyneaux N et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol,2008, 190:8053-8064.
    [66]Espinal P, Marti S, Vila J. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J Hosp Infect,2012,80:56-60.
    [67]Djeribi R, Bouchloukh W, Jouenne T et al. Characterization of bacterial biofilms formed on urinary catheters. Am J Infect Control,2012,
    [68]Catalano M, Quelle LS, Jeric PE et al. Survival of Acinetobacter baumannii on bed rails during an outbreak and during sporadic cases. J Hosp Infect,1999,42: 27-35.
    [69]Denton M, Wilcox MH, Parnell P et al. Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. J Hosp Infect,2004,56:106-110.
    [70]Simor AE, Lee M, Vearncombe M et al. An outbreak due to multiresistant Acinetobacter baumannii in a burn unit:risk factors for acquisition and management. Infect Control Hosp Epidemiol,2002,23:261-267.
    [71]Brooks SE, Walczak MA, Rizwanullah H. Are we doing enough to contain Acinetobacter infections? Infect Control Hosp Epidemiol,2000,21:304.
    [72]McDonald LC, Walker M, Carson L et al. Outbreak of Acinetobacter spp. bloodstream infections in a nursery associated with contaminated aerosols and air conditioners. Pediatr Infect Dis J,1998,17:716-722.
    [73]Bogaerts P, Naas T, Wybo I et al. Outbreak of infection by carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-58 in Belgium. J Clin Microbiol,2006,44:4189-4192.
    [74]Jones A, Morgan D, Walsh A et al. Importation of multidrug-resistant Acinetobacter spp infections with casualties from Iraq. Lancet Infect Dis,2006, 6:317-318.
    [75]Turton JF, Kaufmann ME, Gill MJ et al. Comparison of Acinetobacter baumannii isolates from the United Kingdom and the United States that were associated with repatriated casualties of the Iraq conflict. J Clin Microbiol, 2006,44:2630-2634.
    [76]Husni RN, Goldstein LS, Arroliga AC et al. Risk factors for an outbreak of multi-drug-resistant Acinetobacter nosocomial pneumonia among intubated patients. Chest,1999,115:1378-1382.
    [77]Wisplinghoff H, Schmitt R, Wohrmann A et al. Resistance to disinfectants in epidemiologically defined clinical isolates of Acinetobacter baumannii. J Hosp Infect,2007,66:174-181.
    [78]Edwards J, Patel G, Wareham DW. Low concentrations of commercial alcohol hand rubs facilitate growth of and secretion of extracellular proteins by multidrug-resistant strains of Acinetobacter baumannii. J Med Microbiol,2007, 56:1595-1599.
    [79]Smith MG, Gianoulis TA, Pukatzki S et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev,2007,21:601-614.
    [80]Landman D, Georgescu C, Martin DA et al. Polymyxins revisited. Clin Microbiol Rev,2008,21:449-465.
    [81]Fishbain J, Peleg AY. Treatment of Acinetobacter infections. Clin Infect Dis, 2010,51:79-84.
    [82]Garnacho-Montero J, Ortiz-Leyba C, Jimenez-Jimenez FJ et al. Treatment of multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia (VAP) with intravenous colistin:a comparison with imipenem-susceptible VAP. Clin Infect Dis,2003,36:1111-1118.
    [83]Reina R, Estenssoro E, Saenz G et al. Safety and efficacy of colistin in Acinetobacter and Pseudomonas infections:a prospective cohort study. Intensive Care Med,2005,31:1058-1065.
    [84]Kuo SC, Lee YT, Yang SP et al. Eradication of multidrug-resistant Acinetobacter baumannii from the respiratory tract with inhaled colistin methanesulfonate:a matched case-control study. Clin Microbiol Infect,2012,
    [85]Korbila IP, Michalopoulos A, Rafailidis PI et al. Inhaled colistin as adjunctive therapy to intravenous colistin for the treatment of microbiologically documented ventilator-associated pneumonia:a comparative cohort study. Clin Microbiol Infect,2010,16:1230-1236.
    [86]Kofteridis DP, Alexopoulou C, Valachis A et al. Aerosolized plus intravenous colistin versus intravenous colistin alone for the treatment of ventilator-associated pneumonia:a matched case-control study. Clin Infect Dis, 2010,51:1238-1244.
    [87]Linden PK, Paterson DL. Parenteral and inhaled colistin for treatment of ventilator-associated pneumonia. Clin Infect Dis,2006,43 Suppl 2:S89-94.
    [88]Kim BN, Peleg AY, Lodise TP et al. Management of meningitis due to antibiotic-resistant Acinetobacter species. Lancet Infect Dis,2009,9:245-255.
    [89]Falagas ME, Bliziotis IA, Tam VH. Intraventricular or intrathecal use of polymyxins in patients with Gram-negative meningitis:a systematic review of the available evidence. Int J Antimicrob Agents,2007,29:9-25.
    [90]Arroyo LA, Herrera CM, Fernandez L et al. The pmrCAB operon mediates polymyxin resistance in Acinetobacter baumannii ATCC 17978 and clinical isolates through phosphoethanolamine modification of lipid A. Antimicrob Agents Chemother,2011,55:3743-3751.
    [91]Moffatt JH, Harper M, Harrison P et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother,2010,54:4971-4977.
    [92]Li J, Rayner CR, Nation RL et al. Heteroresistance to colistin in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother, 2006,50:2946-2950.
    [93]Shields RK, Kwak E.T, Potoski BA et al. High mortality rates among solid organ transplant recipients infected with extensively drug-resistant Acinetobacter baumannii:using in vitro antibiotic combination testing to identify the combination of a carbapenem and colistin as an effective treatment regimen. Diagn Microbiol Infect Dis,2011,70:246-252.
    [94]Urban C, Go E, Mariano N et al. Effect of sulbactam on infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J Infect Dis, 1993,167:448-451.
    [95]Corbella X, Ariza J, Ardanuy C et al. Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J Antimicrob Chemother,1998,42:793-802.
    [96]Wood GC, Hanes SD, Croce MA et al. Comparison of ampicillin-sulbactam and imipenem-cilastatin for the treatment of acinetobacter ventilator-associated pneumonia. Clin Infect Dis,2002,34:1425-1430.
    [97]Jellison TK, McKinnon PS, Rybak MJ. Epidemiology, resistance, and outcomes of Acinetobacter baumannii bacteremia treated with imipenem-cilastatin or ampicillin-sulbactam. Pharmacotherapy,2001,21: 142-148.
    [98]Cisneros JM, Reyes MJ, Pachon J et al. Bacteremia due to Acinetobacter baumannii:epidemiology, clinical findings, and prognostic features. Clin Infect Dis,1996,22:1026-1032.
    [99]Cawley MJ, Suh C, Lee S et al. Nontraditional dosing of ampicillin-sulbactam for multidrug-resistant Acinetobacter baumannii meningitis. Pharmacotherapy, 2002,22:527-532.
    [100]Sader HS, Jones RN. Comprehensive in vitro evaluation of cefepime combined with aztreonam or ampicillin/sulbactam against multi-drug resistant Pseudomonas aeruginosa and Acinetobacter spp. Int J Antimicrob Agents, 2005,25:380-384.
    [101]Song JY, Kee SY, Hwang IS et al. In vitro activities of carbapenem/sulbactam combination, colistin, colistin/rifampicin combination and tigecycline against carbapenem-resistant Acinetobacter baumannii. J Antimicrob Chemother,2007, 60:317-322.
    [102]Savov E, Chankova D, Vatcheva R et al. In vitro investigation of the susceptibility of Acinetobacter baumannii strains isolated from clinical specimens to ampicillin/sulbactam alone and in combination with amikacin. Int J Antimicrob Agents,2002,20:390-392.
    [103]Appleman MD, Belzberg H, Citron DM et al. In vitro activities of nontraditional antimicrobials against multiresistant Acinetobacter baumannii strains isolated in an intensive care unit outbreak. Antimicrob Agents Chemother,2000,44:1035-1040.
    [104]Ko W C, Lee HC, Chiang SR et al. In vitro and in vivo activity of meropenem and sulbactam against a multidrug-resistant Acinetobacter baumannii strain. J Antimicrob Chemother,2004,53:393-395.
    [105]Fernandez-Mazarrasa C, Mazarrasa O, Calvo J et al. High concentrations of manganese in Mueller-Hinton agar increase MICs of tigecycline determined by Etest. J Clin Microbiol,2009,47:827-829.
    [106]Jones RN, Ferraro MJ, Reller LB et al. Multicenter studies of tigecycline disk diffusion susceptibility results for Acinetobacter spp. J Clin Microbiol,2007, 45:227-230.
    [107]Bertrand X, Dowzicky MJ. Antimicrobial susceptibility among gram-negative isolates collected from intensive care units in North America, Europe, the Asia-Pacific Rim, Latin America, the Middle East, and Africa between 2004 and 2009 as part of the Tigecycline Evaluation and Surveillance Trial. Clin Ther,2012,34:124-137.
    [108]Chen YH, Lu PL, Huang CH et al. Trends in the susceptibility of clinically important resistant bacteria to tigecycline:results from the Tigecycline In Vitro Surveillance in Taiwan study,2006 to 2010. Antimicrob Agents Chemother, 2012,56:1452-1457.
    [109]Gordon NC, Wareham DW. A review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. J Antimicrob Chemother,2009,63:775-780.
    [110]Karageorgopoulos DE, Kelesidis T, Kelesidis I et al. Tigecycline for the treatment of multidrug-resistant (including carbapenem-resistant) Acinetobacter infections:a review of the scientific evidence. J Antimicrob Chemother,2008,62:45-55.
    [111]Peleg AY, Adams J, Paterson DL. Tigecycline Efflux as a Mechanism for Nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother, 2007,51:2065-2069.
    [112]Li C, Kuti JL, Nightingale CH et al. Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J Clin Pharmacol, 2006,46:1171-1178.
    [113]Jaruratanasirikul S, Sriwiriyajan S, Punyo J. Comparison of the pharmacodynamics of meropenem in patients with ventilator-associated pneumonia following administration by 3-hour infusion or bolus injection. Antimicrob Agents Chemother,2005,49:1337-1339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700