用户名: 密码: 验证码:
新型光催化剂降解盐酸莫西沙星及灭活病原微生物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然水体中抗生素物残留及由此而引发的耐药菌群增加,成为两类新兴的环境污染物,采用高级氧化技术是去除这两类环境污染物的有效方法。其中Fenton试剂反应迅速、条件温和、无二次污染;光催化氧化技术氧化效率高,反应速度快,并且可有效利用太阳能,绿色环保,在处理这两类环境污染物中得到较为广泛的应用。本文以盐酸莫西沙星和四种常见致病性微生物为目标,研究了Fenton反应及可见光催化降解水环境中污染物的影响因素和动力学规律。主要研究内容为:
     1.采用氧化褪色法建立了Fenton反应中羟基自由基的测定方法,对影响羟基自由基测定的溶液初始pH值、Fe2+浓度、反应温度、反应时间等因素进行了优化,结果表明在一定的浓度范围内,不同类型的染料在最大吸收波长处的吸光度的降低值与体系中加入的H202成线性关系,可以间接测定Fenton反应中羟基自由基的浓度。氧化褪色法方便、快捷可广泛应用于环境领域中羟基自由基、H202和金属离子的测定以及食品、药学领域中功能性物质对羟基自由基、H202清除能力的比较。
     2.以盐酸莫西沙星的降解率及降解残留物的抑菌活性为指标,采用响应面分析法优化了Fenton反应降解盐酸莫西沙星的工艺,建立了Fenton反应降解盐酸莫西沙星的数学模型。在pH2.3,Fe2+浓度57μmol·L-1, H2O2浓度100μmol·L-1,温度44℃,降解时间30min的条件下,初始浓度30μmol·L1的盐酸莫西沙星的降解率为85.5%,降解残留物对大肠杆菌的抑菌圈减小至10.6mm。采用Fenton反应对四种致病性微生物大肠杆菌、肺炎克雷伯菌、金黄色葡萄球菌和绿脓假单胞菌进行了灭活,考察了反应体系初始pH、Fe2+浓度、H202浓度、菌体浓度及反应介质对灭活过程的影响,实验结果为城镇及医院污水中致病性病原微生物的灭活提供实验依据。
     3.采用超声辅助原位离子交换法制备了AgBr@Ag3PO4(Ag2CO3)复合型光催化剂,采用XRD、SEM、DRS等方法研究其晶型结构、表面形态和吸光强度,探讨了在可见光照射下AgBr@Ag3PO4(Ag2CO3光催化降解盐酸莫西沙星的降解效率及动力学规律,考察复合型光催化剂摩尔比、催化剂用量、盐酸莫西沙星初始浓度、溶液pH值、光照强度对降解率的影响,并研究了其光催化反应机理。XRD分析结果表明,AgBr的复合并未改变本体Ag3PO4(Ag2CO3)的晶型结构,二者之间形成简单的物理复合物。光催化降解盐酸莫西沙星实验表明:AgBr与Ag3PO4(Ag2CO3)形成复合物,有利于光生电子和空穴对的迁移,从而使得复合物具有更高的光催化性能;盐酸莫西沙星的光催化反应符合Langmuir-Hinshelwood一级动力学数学模型。当复合物中Br与P(C)的摩尔比为0.6:1,催化剂浓度1.5gL-1,可见光照射10min, AgBr@Ag3PO4、AgBr@Ag2CO3对盐酸莫西沙星的降解率达到99.8%和95.9%。复合型光催化剂灭活病原微生物实验结果表明,0.2g·L-’的催化剂可在30min内将4种致病性微生物全部杀死。
     4.采用Hummers方法制备氧化石墨烯,采用超声辅助共沉淀法制备氧化石墨烯基异质结光催化剂GO@Ag3PO4(Ag2CO3),并用XRD、SEM-TEM、DRS、FT-IR、拉曼光谱等手段对催化剂进行表征,探讨了GO@Ag3PO4光催化降解盐酸莫西沙星的活性及机理。实验结果表明:与氧化石墨烯形成异质结后,Ag3PO4(Ag2CO3)晶型及表面形貌没有发生变化,但是晶体粒径变小,在可见光区对光的吸收得到有效提高。光催化降解实验表明:氧化石墨烯作为有效的电子受体,在异质结中含量为2.5%时,使得光生电子和空穴得到最大程度的分离,催化活性最高,活性要高于AgBr@Ag3PO4(Ag2CO3)复合型光催化剂,并且光催化降解反应亦符合一级反应动力学特性。催化剂稳定性实验结果表明,GO@Ag3PO4、GO@Ag2CO3循环使用四次后,对盐酸莫西沙星的降解率分别为93.3%和89.3%,表现出较高的稳定性。异质结型光催化剂灭活病原微生物实验结果表明,0.2g.L-1的催化剂可在30min内将4种致病性微生物全部杀死,因自身有部分银离子溶解具有杀菌作用,对致病性微生物的灭活活性要高于复合型光催化剂。
Antibiotics residuals and resistant pathogenic bacteria induced by antibiotics residuals became new environmental pollutants. And Advanced Oxidation Processes including Fenton reaction and photocatalytic oxidation technology were pollution control technology for these pollutants. This paper is to study the influencing factors and kinetics properties of degradation Moxifloxacin Hydrochloride(MX) and inactivation of pathogenic bacteria by Fenton reaction and photocatalysts under visible-light irradiation.
     1. A new catalytic spectrophotometry method was developed for the determination of hydroxyl radical in Fenton reaction based on the Fe2+catalyzed depletion of dyes by hydrogen peroxide. The influencing factors such as pH、Fe2+concentration、reaction time and temperature were discussed. The proposed method applied to determination hydroxyl radical was simple, rapid and satisfactory, and could be used in environment field to determine hydroxyl radical and in food and pharmacy field to determine scavenging capacity of hydroxyl radical and hydrogen peroxide.
     2. With the degradation rate of MX and antibacterial activity as response value, the pH, Fe2+concentration, temperature were optimized by response surface methodology based on single factor experiments in Fenton reaction. The optimal reacting conditions was found to be initial pH2.3,[Fe2+]057μmol·L-1,[H2O2]0100μmol·L-1for MX30μmol·L-1at temperature44℃. Under optimal conditions,85.5%degradation efficiency in aqueous solution was achieved after30min of reaction, which was agreed with model predictions. And the residuals inhibition zone reduced to10.6mm. The pH, Fe2+、H2O2concentration, reaction medium were discussed in inactivation of K. pneumoniae, S. aureus B. pyocyaneus and E. coli by Fenton reaction. The results showed that all the pathogenic bacteria were inactivated in30min.
     3. A visible-light response photocatalyst AgBr@Ag3PO4(Ag2CO3) was prepared by in situ ultrasonic assisted anion-exchange method with Ag3PO4(Ag2CO3) as precursor.The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, and UV-Vis diffuse spectroscopy. The photocatalytic activity of the prepared samples were evaluated by the degradation of MX as simulation pollutant under the visible light (λ>420nm) irradiation. The effect of several parameters such as pH value, catalyst dosage, initial moxifloxacin hydrochloride concentration and recycling runs were discussed. The photocatalysis reactive mechanisms under visible light irradiation were investigated by adding different scavengers. The results indicated that the AgBr could not change the crystal structures of Ag3PO4(Ag2CO3), and a simple physical composite material were formed in each other. The highest efficiency was obtained when the sample with the proportion0.6of Br to P(C). The AgBr@Ag3PO、AgBr@Ag2CO3photocatalyst could degrade MX up to99.8%and95.9%under illumination with500W visible lights for10min when the concentration of photocatalyst was1.5gL-1The photocatalyst could kill all of K. pneumoniae, S. aureus B. pyocyaneus and E. coli in30min with its concentration0.2gL-1.
     4. Graphene Oxide was prepared by Hummers method, and then GO@Ag3PO4(Ag2CO3) heterojunction was prepared by in situ ultrasonic assisted co-precipitation method. The synthesized samples were characterized by X-ray diffraction, scanning electron microscopy, UV-Vis diffuse spectroscopy, FT-IR spectroscopy and Roman spectroscopy. The photocatalytic activity and mechanisms of the prepared samples were discussed. The results indicated the efficiency enhanced with the he teroj unction structure formed between Ag3PO4(Ag2CO3) and GO because the enhanced capacity of hole and charge generation and separation.The highest efficiency was obtained when the sample with the proportion2.5of GO. The results indicated that degradation rate MX process conformed to the rule of Langmuir-Hinshelwood kinetics which followed the pseudo-first order reaction. Testing in4recycle experiments, the degradation rate of MX did not change significantly; indicating the excellent stability and reusability.The photocatalyst could kill all of K. pneumoniae, S. aureus B. pyocyaneus and E. coli in30min with its concentration0.2gL-1.
引文
1. Spurgeon DJ, Weeks JM, CorneliusAM, et al. A summary of eleven years progress in earth worm ecotoxicology [J]. Pedobiologia,2003,47:588-606.
    2.吴青峰,洪汉烈,LI Zhao-hui环境中抗生素污染物的研究进展[J].安全与环境工程2010,17:69-72.
    3. Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams,1999-2000:a national reconnaissance [J]. Environ. Sci.Tech,2002,36: 1202-1211.
    4. Zuccato E, Calamari D, Natangelo M, et al. Presence of therapeutic drugs in the Environment [J]. The Lancet,2000,355:1789-1790.
    5. Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotics in the aquatic environment [J].Sci of the Total Environ,1999,225:109-118.
    6. Calamari D, Zuccato E, Castiglioni S, et al. Strategic survey of therapeutic drugs in the rivers Po and Lambro in northern Italy [J]. Environ. Sci.Tech,2003,37:1241-1248.
    7. McArdell C S, Molnar E, Suter M J-F, et al. Occurrence and fate of macrolide antibiotics in wastewater treatment plants and in the Glatt Valley watershed, Switzerland[J]. Environ. Sci.Tech,2003,37:5479-5486.
    8.Xu W H, Zhang G, Zou S C, et al. Occurrence and seasonal changes of antibiotics in the Victoria harbour and the Pearl River, SouthChina[J]. Environ Sci,2006,27:2458-2462.
    9. Sun G D, Su Z Y, Chen M, et al. Simultaneous determination of tetracycline and quinolone antibiotics in environmental water samples using solid phase extraction-ultra pressure liquid chromatography coupled with tandem mass spectrometry[J]. Chin J of Chrom,2009,27:54-58.
    10. Liu B, Pop M.2008. ARDB Antibiotic Resistance Genes Database [J]. Nucleic Acids Research,2009,37: 443-447.
    11. Reinthaler F F, Posch J, Feierl G, et al. Antibiotic resistance of E.coli in sewage and sludge [J].Wit Res, 2003,37:1685-1690.
    12. Stine O C, Johnson J A, Keefer-Norris A, et al.Widespread distribution of tetracycline resistance genes in a confined animal feeding facility [J]. Inter. J. of Antimicro Agents,2007,29:348-352.
    13. Halling-S rensen B, Jacobsen A M, Jensen J, et al. Dissipation and effects of chlortetracycline and tylosin in two agricultural soils:a field-scale study in southern Denmark [J]. Environ Toxico and Chem,2005,24: 802-810.
    14. Volkmann H, Schwartz T, Kirchen S, et al. Evaluation of inhibition and cross-reaction effects on real-time PCR applied to the total DNA of wastewater samples for the quantification of bacterial antibiotic resistance genes and taxon-specific targets [J]. Mole and Cell Probes,2007,21:125-133.
    15. Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants:studies in northern Colorado [J]. Environ Sci Tech,2006,40:7445-7450.
    16. Wang N, NkejabegaN, Hien N N, et al. Adverse effectsof enrofloxacinwhen associated with environmental stress inTra catfish [J]. Chemosphere,2009,77:1577-1584.
    17. Huang,C.H., J.E.Renew, K.L.Smeby, et al.Assessment of poten-tial antibiotic contaminants in water and preliminary occurrenceanalysis [J].Water Res,2001,120:30-40.
    18. Filiz Ay, Fikret Kargi. Advanced oxidation of amoxicillin by Fenton's reagent treatment [J]. J Hazard Mater,2010,179:622-627.
    19. Vera Homem, Arminda Alves, Lucia Santos. Amoxicillin degradation at ppb levels by Fenton's oxidation using design of experiments [J]. Sci of the Total Environ,2010,408:6272-6280.
    20.陈举恩,罗康碧,李沪萍,等.超声/Fenton联用技术降解头孢噻肟钠模拟制药废水研究[J].化工技术,2007,15:19-23.
    21. Sheng-Peng Sun, Hui-Qin Guo, Qiang Ke, et al. Degradation of Antibiotic Ciprofloxacin Hydrochloride by Photo-Fenton Oxidation Process [J]. Environ Eng Sci,2009,26:753-759.
    22.黄昱.电-Fenton法预处理青霉素废水的研究[D].湖南:湖南大学环境科学与工程学院,2007:7-8.
    23. Emad S. Elmolla, Malay Chaudhuri. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/TiO2 photocatalytic process [J]. J Hazard Mater,2010,173:445449.
    24. Nikolaos P. Xekoukoulotakisa, Catherine Drosoua, et al. Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices[J]. Catal Today,2011,161(1): 163-168.
    25. C. Reye, J. Fern'andez, J. Freer, et al. Degradation and inactivation of tetracycline by TiO2 photocatalysis [J]J of Photochem and Photobiol A:Chem 2006,184:141-146.
    26. Addamo M, Augugliaro V, Dipaola A, et al. Removal odrugs in aqueous systems by photoassisted degradation[J]. J of Appl Electrochem,2005,35:765-774
    27. Ge Lei, Xu Mingxia, Fang Haibo. Synthesis of novel photocatalytic InVO4-TiO2thin films with visible light photoactivity [J]Mate Lett,2007,61(1):63-66.
    28. Kazuhiko Maeda, Kazunari Domen.New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible LightJ. Phys. Chem. C 2007,111,7851-7861
    29. Kang MG, HaiHE, Kim Kj. Enhanced Photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO2 [J].J photochem. Photobiol A,1999,125:119-125.
    30. Brahimi R, Bessekhouad Y, Bouguelia A, et al. Improvement of eosin visible light degradation using PbS-sensititized TiO2[J].J Photoch Photobio A:Chem.,2008,194:173-180.
    31. Xiao G C, Wang X, Li D Z, et al. InVO4-sensitized TiO2 photocatalysts for ef-cient air puri-cation with visible light [J].J. Photochem. Photobio A:Chem.,2008,193:213-221.
    32. Wang C, Wang X M, Xu B Q, et al.Enhancedphotocatalytic performance of nanosized coupled ZnO/SnO2 photo catalysts for methylorange degradation [J]. J. Photoch. Photobiol A:Chem.,2004,168:47-52.
    33. Lin X, Xing J, Wang W, et al. Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3:a strategy for the design of efficient combined photocatalysts [J].J. Phys. Chem. C,2007,111:18288-18293.
    34. Xia HL, ZhangHS, ZhangT, et al. Photocatalytic degradation of Acid Blue 62 over CuO-SnO2 nanocomposite photocatalyst under simulated sunlight [J]. J. Environ. Sci.,2007,19:1141-1145.
    35. Hu X, Hu C, Qu J. Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation[J]. Appl Catal B:Environ,2006,69:16-23.
    36. AsahiR, Morikawa T, OhwakiT, et al.Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides [J].Science,2001
    37. Wonyong Choi, Andreas Termin, Michael R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photo reactivity and Charge Carrier Recombination Dynamics [J]J. Phys. Chem., 1994,98:13669-13679.
    38. KANG I C, ZHANG Q, YIN S,et al. Improvement in photocatalytic activity of TiO2under visible irradiation through addition of N-TiO2[J].Environ Sci Technol,2008,42:3622-3626.
    39. Nagaveni K Hegde MS Ravishankar, et al.Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high phtocatalytic activity [J]. Langmuir 2004,20:2900-2907
    40. Iria H. Caebon-doped TiO2 powers as a visble-light sensitive photocatalyst [J]. Chme Lett,2003,32: 772-775.
    41. Bae E Choi W Park J et al Effects of surface anchoring groups (CO32- vs PO43-) in ruthenium-complex sensitized TiO2 on visible light reactivity in aquous suspensions [J]. J Phys Chem B 2004,108: 14093-14100.
    42. Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306:666-669.
    43. Chae H K, Siberio-Prez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J].Nature,2004,427(5):523-527.
    44. Williams G, Seger B, Kamat P V. TiO2-Graphene Nanocomposites UV-Assisted Photocatalytic Reduction of Graphene Oxide [J].ACS Nano,2008,2:1487-1491.
    45.Hao Zhang, Xiaojun Lu, Yueming Li,et al. P25-Graphene Composite as a High Performance Photocatalyst [5].ACS Nano,2010,4:380-386.
    46. Ng Y H, Iwase A, Kudo A, et al. Reducing Graphene Oxide on a Visible-Light BiVO4 Photocatalyst for an Enhanced Photoelectrochemical Water Splitting [J]. J.Phys. Chem. Lett.,2010,1:2607-2612.
    47. Jintao Zhang, Zhigang Xiong, X. S. Zhao. Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation [J]. J. Mater. Chem.,2011,21:3634-3640.
    48. Hui Zhang, Xinfei Fan, Xie Quan. Graphene Sheets Grafted Ag@AgCl Hybrid with Enhanced Plasmonic Photocatalytic Activity under Visible Light [J]. Environ. Sci. Technol.2011,45:5731-5736.
    49.闫世成,罗文俊,李朝升,等.新型光催化材料探索和研究进展[J].中国材料进展,2010,29:1-9.
    50. Shan Z C, Wang Y M, Ding H M, et al. Structure dependent photocatalytic activities of MW04(M=Ca, Sr, Ba) [J]. J. Mol. Catal.A:Chem.2009,302:54-58.
    51. Wang P, Huang B B, Qin X Y, et al. Ag@ AgCI:a highly efficient and stable photocatalys active under visible light [J]. Chem. Int. Ed.,2008,47:7931-7933.
    52. Wang P, Huang B B, Zhang X Y, et al. Highly efficient visible-light plasmonic photocatalyst Ag@ AgBr [J]. Chem. Eur. J,2009,15:1821-1824.
    53. Zhang L S, Wong K H, Chen ZG,et al. AgBr-Ag-Bi2WO6 nano junction system:a novel and efficient photocatalyst with double visible-lightactive components [J]. Appl CatalA.,2009,363:221-229.
    54. Hu C, Peng T W, H u X X, et al. Plasma on-induced photodegradation of toxic pollutions with Ag-AgI /A12O3 under visible-light irradiation [J]. Am. Chem. Soc.,2010,132:857-862.
    55. Ming Ge, Na Zhu, Yaping Zhao, et al. Sunlight-Assisted Degradation of Dye Pollutants in Ag3PO4 Suspension [J]. Ind. Eng. Chem. Res.,2012,51:5167-5173.
    56. WANG Wenguang, CHENG Bei, YUJiaguo, et al. Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles [J]. Chem Asian J,2012,7(8):1902-1908
    57. Yi Z G, Ye1 J H, Naoki K. et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation [J]. Nature Materials,2010,9:559-564.
    58. Sher Bahadur Rawal, Sang Do Sung, Wan In Lee. Novel Ag3PO4/TiO2 composites for efficient decomposition of gaseous 2-propanol [J]. CatalCommun,2012,17:131-135.
    59. Yingpu Bi, Hongyan Hu, Shuxin Ouyang, et al. Photocatalytic and photoelectric properties of cubic Ag3PO4 submicrocrystalswith sharp corners and edges [J]. Chem Comm (online)
    60. Kittaka S, Nishida S, Ohtani T. Mechanochemical reactions between Ag2O and V2O5 to form crystalline silver vanadates [J]. Solid State Chem.,2002,169:139-142.
    61. Chao-Ming Huang Guan-Ting Pan, Yu-Chu M. Li. Crystalline phases and photocatalytic activities of hydrothermal synthesis Ag3V04and Ag4V2O7 under visible light irradiation [J]. Appl Catal A: General, 2009,358:164-172.
    62. Jing Xu, Chenguo Hua, Yi Xi. Synthesis and visible light photocatalytic activity of (3-AgVO3 nanowires [J]. Solid State Sci,2012,14:535-539.
    63. HuXX, HuC. Preparation and visible-light Photocatalytic activity of Ag3VO4 Powers [J]. Solid.State Chem., 2007,180:725-732.
    64. HuXX, HuC, QuJH. Preparation and visible-light activity of silver vanadate for theDegradation of Pollutants [J].Mater.Res.Bull.,2008,43:2986-2997.
    65.LEE H, PEART T E, SVOBODA M L. Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquidchromatography-tandem mass spectrometry[J].J of ChromaA,2007,1139:45-52-
    66.GOLETE M, ALDER A C, GIGER W. Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and riverwater of the Glatt Valley Watershed, Switzerland [J]. Environ Sci Tech,2002,36:3645-3651.
    67.MIAO X, BISHAYF, CHENM, et al. Occurrence of antimicrobials inthe final effluents of wastewater treatment plants in Canada [J]. Environ Sci Tech,2004,38:3533-3541.
    68.JIAAi, HU Jianying, SUN Jianxian, et al. Pharmaceuticals and personal care products(PPCPs) in environment [J].Progress in Chem,2009 (SI):389-399.
    69.林惊世,顾晟琰,蒋震媚.喹诺酮类抗菌药的耐药机制及其研究进展[J].海峡药学,2012,24,8-10.
    70.汪复.2005中国CHINET细菌耐药性监测结果[J].·中国感染与化疗杂志,2006,6:289-295.
    71.赵旺胜,江淑芳,顾兵,等.南京地区鲍曼不动杆菌喹诺酮类药物耐药基因突变的研究[J].临床检验杂志,2007,25:90-92.
    72.王睿,裴斐,赵铁梅,等.莫西沙星等13种抗菌药物对呼吸道常见感染致病菌体外抗菌活性的研究[J].中华检验医学杂志,2004,27:739-746.
    73.曹小丽,郑波,李耘,等.质粒介导的喹诺酮耐药基因在中国大陆尿液分离的大肠埃希菌中的广泛分布[J].中国临床药理学杂志,2012,28:103-106.
    74.刘文广.铜绿假单胞菌对喹诺酮类抗菌药物的耐药机制[J].医学综述,2012,18:1650-1652.
    75.吴蓉,邱燕,刘东华.肺炎克雷伯菌的分布及耐药性分析[J].国际检验医学杂志,2011,32:265-266.
    76.赖书华.莫西沙星的药理特性及最新应用进展[J].中国医院用药评价与分析,2010,10:682-683.
    77. Joseph Papaparaskevasl, Angeliki Pantazatou, Anastasia Katsandri. Moxifloxacin resistance is prevalent among Bacteroides and Prevotella species in Greece [J].J of Antimicro Chem,2008,62,137-141.
    78. Yoav Golan, Laura A. McDermott, Nilda V. Jacobus, et al.Emergence of fluoroquinolone resistance among Bacteroides species [J]. J ofAntimicro Chem,2003,52:208-213.
    79. Richard P. Spence, Kevin J. Towner. Frequencies and mechanisms of resistance to moxifloxacin in nosocomial isolates of Acinetobacter baumannii [J]. J of Antimicro Chem,2003,52:687-690.
    80. Xander Van Doorslaer, Philippe M. Heynderickx, Kristof Demeestere. UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin:Reaction kinetics and role of adsorption [J]Appl Catal B:Environ,2011,101:540-547.
    1. Su Meihong, Yang Yao, Yang Guoliang, et al. Quantitative measurement of hydroxyl radical induced DNA double-strand breaks and the effect of N-acetyl-L-cysteine [J]. FEBS Lett,2006,580:4136-4142.
    2. Sandra A.V. Eremia, Dominique Chevalier-Luci, et al. Optimization of hydroxyl radical formation using TiO2 as photocatalyst by response surface methodology [J]. Talanta,2008,77:858-862.
    3. M.E. Abbas, Luo Wei, ZhuLihua, et al. Huorometric determination of hydrogen peroxide in milk by using a Fenton reaction system [J].Food Chem,2010,120:327-331.
    4. Luo Wei, M.E. Abbas, ZhuLihua, et al.Rapid quantitative determination of hydrogen peroxide by oxidation decolorization of methyl orange using a Fenton reaction system [J]. Anal Chimi Acta,2008,629:1-5.
    5. Hu Yufei, Zhang Zhujun, Yang Chunyan, et al.Measurement of hydroxyl radical production in ultrasonic aqueous solutions by a novel chemiluminescence method [J]. Ultrason Sonochem,2008,15:665-672.
    6. Vladimir M. Mishin, Paul E. Thomas, et al. Characterization of hydroxyl radical formation by microsomal enzymes using a water-soluble trap, terephthalate [J]. Biochem Pharmacol,2004,68:747-752.
    7. Julio A. Zimbron, Kenneth F. Reardon, et al. Fenton's oxidation of pentachlorophenol [J]. Water Res,2009, 43:1831-1840.
    8. Bavo De Witte, Herman Van Langenhove, Karen Hemelsoet, et al. Levofloxacin ozonation in water:Rate determining process parameters and reaction pathway elucidation [J]. Chemosphere,2009,76:683-689.
    9. Ragip Unal, Ahmed E. Yousef, C. Patrick Dunne, et al. Spectrofluorimetric assessment of bacterial cell membrane damage by pulsed electric field [J]. Innov Food Sci Emerg Technol,2002,3:247-254.
    10. Muruganandham M, Swaminathan M. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology [J]. Dyes Pigments,2004,63:315-321.
    11. Kwon BG, Lee DS, Kang N, et al. Characteristics of p-chlorophenol oxidation by Fenton's reagent [J]. Water Res,1999,33:211-218.
    12. Feng J, Hu X, Yue PL, Zhu HY, et al. Degradation of orange Ⅱ by a photo-assisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst [J]. Ind Eng Chem Res 2003, 42:2058-2066.
    13. Sun JianHui, Sun ShengPeng, Wang GuoLiang, et al.Degradation of azo dye Amido black 10B in aqueous solution by Fenton oxidation process [J]. Dyes Pigments,2007,74:647-652.
    14. Arturo A. Burbano, Dionysios D. Dionysiou, et al. Oxidation kinetics and effect of pH on the degradation ofMTBE with Fenton reagent [J].Water Res,2005,39:107-118.
    15. E. Neyens, J. Baeyens. A review of classic Fenton's peroxidation as an advanced oxidation technique [J].J Hazard Mater,2003,98:33-50.
    16. Sun ShengPeng, Li ChengJie, Sun JianHui, et al. Decolorization of an azo dye Orange G in aqueous solution by Fenton oxidation process:Effect of system parameters and kinetic study [J]. J Hazard Mater, 2009,161:1052-1057.
    17. R. Marandi, M. Khosravi, M.E. Olya, et al.Photocatalytic degradation of an azo dye using immobilised TiO2 nanoparticles on polyester support:central composite design approach [J]. Micro & Nano Lett,2011,6: 958-963.
    18 Idil Arslan-Alaton, Gokce Tureli, Tugba Olmez-Hanci, et al.Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes:Optimization by response surface methodology [J]. J Photoch and Photo A:Chem,2009,202:142-153.
    19. Zhang Junwei, Fu Dafang, Xu Yunda, et al. Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology [J]. J Environ Sci,2010, 22:1281-1289.
    20. Silvia Raffellini, Marcela Schenk, Sandra Guerrero, et al. Kinetics of Escherichia coli inactivation employing hydrogen peroxide at varying temperatures, pH and concentrations [J]. Food Control,2011,22: 920-932.
    21. Jee Yeon Kim, Changha Lee, David L. Sedlak, et al. Inactivation of MS2 coliphage by Fenton's reagent [J]. Water Res,2010,44:2647-2653.
    22. C. Belfiore, P. Castellano, G. Vignolo, et al. Reduction of Escherichia coli population following treatment with bacteriocins from lactic acid bacteria and chelators [J]. Food Micro,2007,24:223-229.
    23 Alexander O. Gill, Richard A. Holley. Interactive inhibition of meat spoilage and pathogenic bacteria by lysozyme, nisin and EDTA in the presence of nitrite and sodium chloride at 24℃[J]. IntJ Food Microbiol, 2003,80:251-259.
    1. Martinez J L.Environmental pollution by antibiotics and by antibiotic resistance determinants[J]. Environ Pollut,2009,157:2893-2902.
    2. Zhao Ling, Dong Yuanhua, Wang Hui. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China[J]. Sci Total Environ,2010,408:1069-1075。
    3. Bojana Beovic. The issue of antimicrobial resistance in human medicine [J]. Int J Food Microbiol,2006, 112:280-287.
    4. Liu Qiaoling, Zhou Yufen, Chen Lingyun, et al. Application of MBR for Hospital Wastewater Treatment in China[J].Desalination,2010,250:605-608.
    5. An Taicheng, Yang Hai, Li Guiying,, et al. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water[J]. Appl. Catal. B:Environ,2010,94:288-294.
    6. Huo Pengwei, Yan Yongsheng, Li S ongtian, et al.Preparation of poly-o-phenylenediamine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics[J]. Appl Surf Sci,2010,256:3380-3385.
    7. Nikolaos P. Xekoukoulotakisa, Catherine Drosoua, et al. Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices[J]. Catal Today,2011,161: 163-168.
    8. Tarek G A, Mohamed E M, Mohamed I B. Photocatalytic oxidation of ciprofloxacin under simulated sunlight [J]. J Hazard Mater,2011,186:751-755.
    9. Ge Lei, Xu Mingxia, Fang Haibo. Synthesis of novel photocatalytic InVO4-TiO2thin films with visible light photoactivity[J].Mate Lett,2007,61:63-66。
    10. B. Ohtani. Photocatalysis A to Z-What we know and what we do not know in a scientific sense[J] J Photoch Photobio C,2010,11:157-178.
    11. Yi Zhiguo, Ye Jinhua, Naoki Kikugawa, et al. An orthophosphate semiconductor with photooxidation properties under visible-light irradiation [J]. Nat Mater,2010,9:559-564.
    12. Bi Yingpu, Ouyang Shuxin, CaoJunyun, et al. Facet Effect of Single-Crystalline Ag3PO4 Sub-microcrystals on Photocatalytic Properties [J]. J Am Chem Soc,2011,133:6490-6492.
    13. Wang Wengguang, Cheng Bei, Yu Jiaguo, et al.Visible-Light Photocatalytic Activity and Deactivation Mechanism of Ag3PO4 Spherical Particles [J]. Chem Asian J,2012,7:1902-1908.
    14. Chengwei Xua, Yuanyuan Liub, Baibiao Huan, et al.Preparation, characterization, and photocatalytic properties of silver carbonate [J]. App Sur Sci,2011,257:8732-8736.
    15. Liu Yongping, Fang Liang, Lu Huidan, et al. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light[J]. Catal Commun,2012,17:200-204.
    16. Guo Jiafeng, Ma Bowen, Yin Anyuan, et al. Highly stable and efficient Ag/AgCl@TiO2 photocatalyst: preparation, characterization, and application in the treatment of aqueous hazardous pollutants [J]. J Hazard Mater,2012,211-212:77-82.
    17. Zhang Lisha, Wong King Huang, Chen Zhigang, et al. AgBr-Ag-Bi2WO6 nanojunction system:A novel and efficient photocatalyst with double visible-light active components [J]. Appl Catal A:General,2009, 363:221-229.
    18. Cao Jing, Luo Bangde, Lin Haili, et al. Synthesis, characterization and photocatalytic activity of AgBr/H2WO4 composite photocatalyst[J]. J Mol Catal A:Chem,2011,344:138-144.
    19. Zhou Zhijun, Long Mingce, Cai Weimin, et al. Synthesis and photocatalytic performance of the efficient visible light photocatalyst Ag-AgCl/BiVO4[J]./Mol Catal A:Chem,2012,353-354:22-28.
    20. Bi Yingpu, Ouyang Shuxin, Cao Junyu, et al. Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X= Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities[J]. Phys Chem,2011,13: 10071-10078.
    21.Zhou Lin, Wang Wenzhong, Liu Shengwei, et al. A sonochemical route to visible-light-driven high-activity BiVO4 photocatalyst [J].J Mol Catal A:Chem,2006,252(1-2):120-124.
    22. Dai Gaopeng, Yu Jiaguo, Gang Liu, et al.A New Approach for Photocorrosion Inhibition of Ag2CO3 Photocatalyst with Highly Visible-Light-Responsive Reactivity [J]. J. Phys. Chem. C,2012,116: 15519-15524.
    23. Luo Xubiao, WangChengcheng, Luo Shenglian, et al.Adsorption of As (Ⅲ) and As (Ⅳ) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites [J].Che. Eng. J,2012,187:45-52.
    24. Jiang Guodong, Lin Zhifen, Chen Chao, et al.TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants [J].Carbon,2011,49:2693-2701.
    25. He Zhongqi, Xing Baoshan, et al.Solid-Sate fourier transform infrared and 31p nuclear magnetic resonance spectral features features of phosphate compouns [J]. Soil Sci,2007,172:501-515.
    26.中本一雄.无机和配位化合物的红外和拉曼光谱[M].化学工业出版社,1991年,第四版。
    27.王敏,王里奥,储刚,等.Ag+掺杂FeVO4光催化剂的制备及光催化性能[J].功能材料,2010,2:228-231.
    28 CURCO D, GIMENEZ J, ADDARDAK A. Effects of radiation absorption and catalyst concentration on the photocatalytic degradation of pollutants [J]. Catal Today,2002,76:177-188.
    29.杨英杰,陈建林,王仪春,等Bi2WO6催化剂的合成和表征及其光催化活性[J].化工环保,2007,6:501-505.
    30. Wang Desong, Yandong Duan, Qingzhi Luo et al.Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method [J]. Desalination,2011,270:174-180.
    31.叶红勇,左广玲,杜朝军,等.超声辅助沉淀法制备催化剂Ag3V04及其光催化性能[J].石油化工,2011,40:90-94.
    32.WANG Wenguang, CHENG Bei, YUJiaguo, et al. Visible-light photocatalytic activity and deactivation mechanism of Ag3PO4 spherical particles [J]. Chem Asian J,2012,7(8):1902-1908.
    33. Liqun Ye, Jinyan Liu, Chuqing Gong, Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X=Cl, Br) Visible light Photocatalysts:Surface Plasmon Resonance and Z Scheme Bridge [J]. ACS Catal.2012,2: 1677-1683
    [34]LI Guoting, K.H. Wong, ZHENG Xiwang, et al. Degradation of Acid Orange 7 using magnetic AgBr under visible light:The roles of oxidizing species[J]. Chemosphere,2009,76(9):1185-1191.
    1. Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films [J]. Science,2004,306:666-669.
    2. Chae H K, Siberio-Prez D Y, Kim J, et al. A route to high surface area, porosity and inclusion of large molecules in crystals [J].Nature,2004,427(5):523-527.
    3. Dlmitrakakis G K, Tylianakis E, Froudakis G E. Pillared Graphene:A New 3D Network Nanostrucmre for Enhanced Hydrogen Storage [J]. Nano Lett,2008,8(10):3166-3170.
    4 JiangGuodong, Lin Zhifen, ChenChao, et al. TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants [J]. Carbon,2011,49:2693-2701.
    5. Gao Yanyan, Pu Xipeng, ZhangDafeng, et al. Combustion synthesis of graphene oxide-TiO2 hybrid materials for photodegradation of methyl orange [J]. Carbon,2012,50:4093-4101.
    6. Zhou Xun, ShiTiejun, ZhouHaiou, et al. Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with highperformance in photocatalytic degradation [J].Appl Surf Sci,2012,258:6204-6211.
    7. N.R. Khalid Zhanglian Hong E. Ahmed, et al. Synergistic effects of Fe and graphene on photocatalytic activity enhancement ofTiO2 under visible light [J]. Appl Surf Sci,2012,258:5827-5834.
    8. XiongZhigang, Zhang Li Li, Xiu Song Zhao, et al. Visible-Light-Induced Dye Degradation over Copper-Modified Reduced Graphene Oxide [J].Chem. Eur. J.2011,17:2428-2434
    9. Qinghua Liang, Wangjing Ma, Yao Shi, et al. Hierarchical Ag3PO4 porous microcubes with enhanced photocatalyticproperties synthesized with the assistance of trisodium citrate [J].CrystEngCommon (online).
    10. Yingpu Bi Hongyan Hu Shuxin Ouyang et al. Selective growth of Ag3PO4 submicro-cubes on Ag nanowires to fabricatenecklace-like heterostructures for photocatalytic applications [J]J. Mater. Chem., 2012,22,14847-14854.
    11. Liu Yongping, Fang Liang, Lu Huidan, et al. Highly efficient and stable Ag/Ag3PO4 plasmonic photocatalyst in visible light[J]. Catal Commun,2012,17:200-204.
    12. Dai Gaopeng, Yu Jiaguo, Gang Liu, et al.A New Approach for Photocorrosion Inhibition of Ag2CO3 Photocatalyst with Highly Visible-Light-Responsive Reactivity [J]. J. Phys. Chem. C,2012,116:15519-15524.
    13. Hummers S, Offeman R. Preparation of graphitic oxide [J]. J Am Chem Soc,1958,80:1339-1339.
    14.马文石,周俊文,程顺喜.石墨烯的制备与表征[J].高校化学工程学报,2010,24:719-722.
    15. Zhu Mingshan, Chen Penglei, Liu Minghua, et al.Ag/AgBr/Graphene Oxide Nanocomposite Synthesized via Oil/Water and Water/Oil Microemulsions:A Comparison of Sunlight Energized Plasmonic Photocatalytic Activity [J]. Langmuir,2012,28:3385-3390.
    16. Bissessur R, Scully S F. Intercalation of solid polymer electrolytes into graphite oxide [J]. Solid State Ionics,2007,178:877-882.
    17. Yongsheng FuXiaoqiang Sun, Xin Wang, et al BiVO4-graphene catalyst and its high photocatalytic performance under visible light irradiation [J]. Mat Chem Phy,2011,131:325-330.
    18. Dato A, Radmilovic V, Lee Z H, et al. Substrate-Free Gas-Phase Synthesis of Graphene Sheets [J]. Nano Lett,2008,8:2012-2016.
    19. Kudin K N, Ozbas B, Schniepp H C, et al. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets [J]. Nano Lett,2008,8:36-41.
    20. Stankovich S., Dikin D. A., Piner R. D., et al. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide[J]. Carbon,2007,45:1558-1565.
    21. Irene Martina, Rita Wiesinger, Dubravka Jembrih-Simburger, et al. Micro-Raman Spectroscopy of Silver Corrosion Products [J]. e-PresSci,2012,9:1-8.
    22.Song Yi Han, In Young Kim, Kyung Yeon Jo, et al. Solvothermal-Assisted Hybridization between Reduced Graphene Oxide and Lithium Metal Oxides:A Facile Route to Graphene-Based Composite Materials [J]. J. Phys. Chem. C,2012,116:7269-7279.
    23. Hui Zhang, Xinfei Fan, Xie Quan, et al.Graphene Sheets Grafted Ag@AgCl Hybrid with Enhanced Plasmonic Photocatalytic Activity under Visible Light [J]. Environ. Sci. Technol,2011,45:5731-5736.
    24. Gao Erping, Wang Wenzhong, Shang Meng, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J]. Phys. Chem. Chem. Phys.,2011,13:2887-2893.
    25.近藤精一,石川达雄,安部郁大.吸附化学[M].化学工业出版社,2010年,第一版.
    26. Liu Lei, Liu Jincheng, Sun Darren Delai, et al. Graphene Oxide Enwrapped Ag3PO4 Composite:Towards a Highly Efficient and Stable Visible-Light-Induced Photocatalyst for Water Purification [J]. Cat Science & Tech (online).
    27. Hu Huating, WangXianbao, Liu Fangming, et al. Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfidenanocomposites:Optical and photocatalytic properties [J]. Synthetic Metals, 2011:161:404-410.
    28. Chen Chao, Cai Weimin, Long Mingce,et al. Synthesis of Visible-Light Responsive Graphene Oxide/TiO2 Composites withp/n Heterojunction [J].ACS NANO,2010,4:6425-6432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700