用户名: 密码: 验证码:
Internet网络环境下QoS路由研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着网络技术的进步,Internet中的实际网络状况已非昔日可比,这不仅体现在网络带宽的快速增加,还体现在网络拓扑的异构化、网络协议的差异化、网络的无尺度化以及服务请求的多样化、服务质量的严格化。这就导致在IPv4中所使用的尽最大努力交付的方法遇到前所未有的挑战,很多研究者在这个领域做了大量的研究,提出了QoS(Quality of Service,服务质量)的概念,尤其多约束QoS路由问题已经成为研究的热点,但由于这个问题本身所具有的NP性,导致目前尚缺乏行之有效的解决策略。本文通过在该领域中引入灰色模糊理论,提出了GFMOOA算法,在如何降低多约束问题的计算复杂度以及提高算法对陈旧性信息的忍耐性、鲁棒性方面做了一些有益的探索。
     文章首先对后面将会用到的灰色理论作了简要的介绍,描述了灰色理论的基础知识框架,对灰色理论的基本概念、基本原理、基本方法进行了阐述,给出了传统数学理论中有关概念和方法在灰色理论中的推广,为将灰色系统理论引入多域分层体系结构下的QoS路由做好理论准备。
     然后简略介绍了目前在单播多约束QoS路由领域的一些概念、发展状况以及所取得成就,对目前已有的单播多约束QoS路由策略进行了对比,找出存在的缺点及需要解决的问题。对当前的Internet网络环境进行了分析研究,概括出了其分域分层的特点,为了研究与模拟的方便,参照有关文献及已有的成熟协议将现实中的Internet环境抽象为一个多域分层的体系结构,并讨论了该体系结构的工作机理,给出了域与层的划分策略,网络节点之间拓扑路由信息的同步、共享、分发机制以及域内、域间QoS路由的计算方法。最后文章给出了将灰色理论与模糊数学相结合的层次灰色模糊综合评判的原理与计算方法,并将其运用到多约束QoS路由领域,将模糊数学在处理问题中的模糊因素方面的优势与灰色理论在处理信息不完全或不充分方面的优势融合在一起,优势互补,实现了一种代价较小但鲁棒性、可扩展性较高的多约束QoS路由算法。最后在NS2网络模拟系统中实现了该协议,在具体实现上,按照由易到难的原则先实现单域灰色模糊多目标优化算法,然后在此基础上将单域算法推广到了多域分层灰色模糊多目标优化算法,从而使问题得到完整的解决。文章简略介绍了协议实现的过程,给出了GFMOOA协议在NS2实现中的程序流程图和核心代码,并通过大量的模拟实验证明该算法是正确的、有效的,能够在多项式时间内找到满足多目标要求的灰色模糊意义上的QoS路由,在一定程度上能够容忍现实网络中网络参数信息的陈旧性、不准确性,能够根据不同的业务类型采取不同的策略,具有一定的可扩展性,尤其对复杂的、无尺度的Internet网络环境具有很好的适应性,基本达到了设计目标。
With the development of network technology, Internet networks in the actual situation have been non-comparable with it used to be, which is reflected not only in a rapid increase in network bandwidth, but also in the isomerization of network topology, differences of network protocol, scale-free networks, and the diversification of service request as well as strict quality of service. This resulted in the IPv4 used to do best effort delivery methods have faced unprecedented challenges, a lot of researchers do some work in this field, put forward QoS (Quality of Service, Quality of Service) concept, in particular, multi-constrained QoS routing problem has become a research hotspot, but because of the inherent NP-problem, leading to the lack of effective solutions in current. Through importing Gray Fuzzy Theory in this field, this paper bring forward GFMOOA algorithm, making some useful explorations in the aspects of how to reduce the computational complexity of multi-constrained problem as well as improve the algorithm’s patience and robustness to old information.
     Firstly, the article give brief introduction of the Gray Theory which will be used behind, describe the basic knowledge framework and the basic concept of it, the basic principles, basic methods are given, present the related concepts and methods of traditional math theory at the promotion in the Gray Theory, for preparaing to introduce of the Gray System Theory to Domain Hierarchical QoS routing.
     Then briefly introduce some of concepts, developments as well as the achievements in the field of current unicast multi-constrainted QoS routing. Conduct a comparative study among existing unicast multi-constrained QoS routing strategies to identify their shortcomings and problems needing to be resolved. Then analyze the current Internet network environment and summarize its characteristics to be a multi-domain hierarchical architecture, simultaneously in order to research and simulation convenience, this paper abstract a Multi-Domain Hierarchical Architecture from reality Internet environment according to some references and existing sophisticated protocols, and its working mechanism is outlined. Then give the strategies to divide domain and hierarchical, the mechanisms to synchronize, share, distribute routing topology information between network nodes and the method to calculate QoS routing in inter-domain or outer-domain.
     Finally the article give the principles and calculation methods of Hierarchical Gray Fuzzy comprehensive evaluation method which combinate the Gray Thery and the Fuzzy Math, and apply it to multi-constrained QoS routing area. By integrating the Fuzzy Math’s advantages in dealing with fuzzy factor of problem and the Gray Theory’s advantages in dealing with incomplete or inadequate information of problem together, this paper achieve a smaller cost but higher robustness, scalability multi-constrained QoS routing algorithm. In the last we implement the protocol in the NS2 network simulation system, in specific, in accordance with the principle of going from the easy to the difficult, first achieve single-domain Gray Fuzzy multi-objective optimization algorithm, and then extended this single-domain algorithm to the Multi-Domain Hierarchical Gray Fuzzy Multi-Objective Optimization Algorithm, so that the problem is complete solution. Then, this paper provides a brief description of the process of implementation of the Protocol, gives the programme flow chart and core programme code. The simulation experiments show that the algorithm is correct and effective, can find multi-constrained Grey Fuzzy QoS routing within multinomial time, can tolerate the old and inaccurate network parameter information to a certain extent in the reality network, can adopt a different strategy according to different types of services, have some scalability, especially have good adaptability to complex and scale-free Internet network environment, the basic design goals reached.
引文
[1] Maximilien E.M., Singh M.P. A framework and ontology for dynamic Web services selection. Internet Computing, 2004, 8(5): 84-93.
    [2] LI Ling-zhi, DING Qiu-lin. Routing Optimization Algorithm for QoS Anycast FlowsBased on Genetic Algorithm [J]. Computer Engineering, 2008, 34(6):45-47.
    [3] Yan SQ,Faloutsos M,Banerjea A.QoS-Aware multicast routing for the Internet:The design and evaluation of QoS MIC.IEEE/ACM Trans.on Networking,2002,10(1):54-56.
    [4]肖伟,全惠云,刘枫.基于蚁群算法的多路径多约束QoS路由研究[J] .计算机工程与应用2008,16(03):445-452.
    [5] F.Le Facheur, et al., Requirements for support of Diff-Serv-aware MPLS traffic engineering, RFC3270 (May 2002).
    [6] Rosen E, Viswanathan A, Callon R. Multiprotocol label switching architecture. RFC 3031, January 2001.
    [7] Nibin Chang,C G Wen,Y L Chen,et al.,A Grey Fuzzy Multiobjective Programming Approach for the Optimal Planning of a Reservoir Watershed. Part A:Theoretical development[J]. Wat. Res., 1996, 30 (10): 2329-2334.
    [8] Desheng Dash Wu, Yidong Zhang. Fuzzy multi-objective programming for supplier selection and risk modeling: A possibility approach[J]. European Journal of Operation Research,2009, 48: 219- 225.
    [9]陈大为.灰色模糊集合引论[M].哈尔滨:黑龙江科学技术出版社,1994.
    [10]卜广志,张宇文.基于灰色模糊关系的灰色模糊综合评判[J].系统工程理论与实践,2002,22(4): 141-144
    [11]崔勇,吴建平,徐恪,徐明伟.互联网络服务质量路由算法研究综述[J].软件学报, 2002, 13(11): 2065-2075.
    [12] Chi Chieh Tsung, Shih Ching Long.Efficient path planning of manipulator based on grey prediction.The Journal of Grey System, 2000(1).
    [13]王燕.应用时间序列分析[M].北京:中国人民大学出版社,2005.
    [14]邓聚龙.灰理论基础[M].武汉:华中科技大学出版社,2002.
    [15]刘思峰,郭天榜,党耀国等.灰色系统理论及其应用[M].北京:科学出版社,1999.
    [16]曹鸿兴,魏风英.基于均值生成函数的时间序列分析[J].数值计算与计算机应用,1991,6(2):82~88.
    [17]唐启义,冯明光.实用统计分析及其DPS数据处理系统[M].北京:科学出版社,2002.
    [18] M Garey, DJohnson. Computers and Intractability: A Guide to the Theory of NP-Completeness [M]. New York: W. H. Freeman and Company, 1979. 38 - 50.
    [19]谭志,纪越峰.多域分层ASON路由技术[J].北京邮电大学学报, 2007 /2, 30(1):511.
    [20] Shigang Chen, Klara Nahrstedt. An overview of quality-of-service routing for the next generation high-speed networks: Problems and solutions[J].IEEE Network Magazine, 1998, 12(6): 64 - 79.
    [21] R J Sinavasankar, S Ramamz, et al. Some studies on the impact of dynamic traffic in a QoS-based dynamic routing environment [A]. ICC’2000[C]. New Orleans, USA: ICC, 2000. 959 - 963.
    [22] Nelakuditi S, Zhi-Li Zhang, Tsang R P. Adaptive Proportional routing: a localized QoS routing approach [A]. INFOCOM 2000 [C]. Tel-Avio, Israel: INFOCOM,2000. 1566- 1575.
    [23] Guerin Roch, Orda Ariel. QoS-based routing in networks with inaccurate information: Theory and algorithms [A]. INFOCOM’97 [C]. Kobe, Japan: INFOCOM,1997. 75 - 83.
    [24] Qingming Ma, Peter Steenkiste. On path selection for traffic with bandwidth guarantees [A]. Proceedings of IEEE International Conference on Network Protocols[C]. Georgia, USA: IEEE, 1997.
    [25] Alpar Juttner, Balazs Szviatovszki, Ildiko Mecs, Zsolt Rajko. Lagrange relaxation based method for the QoS routing problem [A]. INFOCOM 2001 [C]. Alaska, USA: INFOCOM,2001.
    [26] Qingming Ma, Peter Steenkiste, Hui Zhang. Routing high-bandwidth traffic in max-min fair share networks [A]. Proceedings of ACM SIGCOMM’96 [C]. Stanford, California, USA:ACM,1996. 206-217.
    [27] Anees Shaikh, Jennifer Rexford, Kang B Shin. Dynamics of quality-of-Service routing with inaccurate link-state information [R]. Technical Report CSE2TR2350297, Computer Science and Engineering Division, Dept. of Electrical Engineering and Computer Science, University ofMichigan, 1997.
    [28] Shigang Chen, Klara Nahrstedt .Maxmin fair routing in connection-oriented networks [A]. Proceedings of Euro-Parallel and Distributed Systems Conference (Euro-PDS’98)[C]. Vienna, Austria: Euro-PDS, 1998. 163- 168.
    [29] RAN S.P. A model for web services discovery with QoS. ACM SIGCOM Exchanges, 2003, 4(1): 1-10.
    [30] Qingming Ma, Peter Steenkiste. Quality-of-service routing for traffic with performance guarantees [A]. The proceedings of IFIP Fifth International Workshop on Quality of Service [C]. New York: IFIP, 1997.115-126.
    [31] Chotipat Pornavalai, Goutam Chakroborty, Norio Shiratori. QoS based routing algorithmin integrated services packet networks [R]. Technical Report, 97-1-006, The University of Aizu, 1997.
    [32] Qingming Ma, Peter Steenkiste. Routing traffic with quality-of-service guarantees in integrated services networks [A]. Proceedings of Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSSDAV) [C]. New Hall College, Cambridge, UK:NOSSDAV, 1998.
    [33] Zhong Fan, E S Lee.Multiple QoS constrained routing with inaccurate state information [J ]. Electronics Letters, 1999, 35 (21):1807-1808.
    [34] Hui Zhang. Service disciplines for guaranteed performance service in packet-switching networks [J]. Proceedings of the IEEE, 1995, 83(10):1374 - 1396.
    [35] Danny Raz, Yuval Shavitt. Optimal partition of QoS requirements with discrete cost functions [J]. IEEE Journal on Selected Areas in Communications, 2000, 18 (2):2593 - 2601.
    [36] Shigang Chen, Klara Nahrstedt. On finding multi-constrained paths[A]. ICC’98[C]. Georgia, Atlanta, USA: ICC, 1998.
    [37] Hussein F Salama, Douglas S Reeves, Yannis Viniotis. A distributed algorithm for delay-constrained unicast routing [A]. INFOCOM’97[C] .Kobe, Japan:INFOCOM,1997. 84 - 91.
    [38] D S Reeves,H F Salama.A distributed algorithm for delay-constrainedunicast routing[J]. IEEE/ACM Transactions on Networking,2000,8(2):239-250.
    [39] Chotipat Pornavalai, Goutam Chakraborty,Norio Shiratori. QoS routing algorithms for pre-computed paths[A]. Proceedings of the International Conference on Computer Communications and Networks[C]. Las Vegas,USA:ICCCN,2007.
    [40] GApostolopoulos,S K Tripathi. On the effectiveness of path pre-computation in reducing the processing cost of on-demand QoS path computation[A]. Proceedings IEEE Symposiumon Computers and Communication[C]. Greece: IEEE,1998.
    [41] A Shaikh,J Rexford,KShin. Efficient precomputation of quality-of-service routes[A]. NOSSDAV’98[C]. Cambridge, UK:NOSSDAV,1998.15-27.
    [42] Orda Ariel,Sprintson Alexander. QoS routing:The precomputation perspective[A]. INFOCOM 2000[C]. Tel-Avio,Israel:INFOCOM,2000.128-136.
    [43] Apostolopoulos G, Kama S , Williams D , Guerin R , Orda A ,Przygienda T. QoS routing mechanisms and OSPF extensions. RFC2676 , 1999.
    [44] M Montgomery, G de Veciana. Hierarchical Source Routing through Clouds[A]. INFOMCOM’98[C]. San Francisco ,USA:INFOMCOM,1998.685-692.
    [45] Jochen Behrens ,J J Garcia Luna Aceves.Hierarchical routing using link vectors[A]. INFOMCOM’98[C]. San Francisco,USA:INFOMCOM,1998.702-710.
    [46] King-Shan Lui, Klara Nahrstedt. Topology aggregation and routing in bandwidth-delay sensitive networks[A]. Globecom 2000[C]. San Francisco, USA: GLOBOCOM, 2000.410-414.
    [47] S Chen, K Nahrstedt. Distributed quality-of-service routing in high-speed networks based on selective probing[A]. Proceedings of IEEE Conference on Local Computer Networks[C]. Boston: IEEE,1998.80-89.
    [48] J.Lian, S.Naik, G. B. Agnew. Optimal solution of total routing table size for hierarchical networks. Proe. ISCC 2004. Ninth International Symposium on Computers and Communications, 2004. Volume 2, 28 June-1 July, 2004. p.834-83.
    [49] W.T.Tsai, C.V. Ramamoorthy, W.K.Tsai and O.NiShiguchi. An Adaptive Hierarehieal Routing Protoeol. IEEE Trans.on Communications, Vol.38, No.8, p.1059-1075, 2003.
    [50] L. Kleinroek and F. Kamoun, Hierarehical Routing for large networks: Performance evaluation and optimization. Computer Networks, Vol.1, Pages 155- 174, 2007.
    [51] J. McQuillan, Adaptive routing algorithms for distributed computernetworks, BBN Rep. 2831. Bolt Beranek and Newman Inc.,Cambridge,MA, 2007.
    [52] Qingming Ma,Peter Steenkiste. On Path Selection for Traffic with Bandwidth Guarantees. Fifth International Conference on Network Protocols, 1997, p.191.
    [53]苑芳兵,王新华,卢民. QoSR多目标优化的灰色模糊解[J],计算机应用与软件, 2009,6.
    [54] Ibrahim Matta, Azer Bestavros, Marwan Krunz. Load Profiling Based Routing for Guaranteed Bandwidth Flows. IEEE 1998.
    [55]王新华,孙义欣,苑芳兵.基于MPLS流量工程的约束路由算法研究[J],山东师范大学学报(自然科学版),2009,1.
    [56] A. T. Campbell, C. Aurrecoechea, L. Hauw, A review of QoS Architectures, Proceedings of the 4th International Workshop on Quality of Service, 1996.
    [57] N. Sharda, M. Georgievski. A Holistic Quality Of Service (Qos) Model For Multimedia Communications[J]. International Conference on Internet and Multimedia Systems and Applications, IMSA2003, Aug 13-15, 2003, Hawaii, USA
    [58]冀鑫泉,桂志波. IP QoS路由算法研究综述[J].计算机工程与应用, 2003,33:147-150.
    [59]徐雷鸣,庞博,赵耀. NS与网络模拟.[M].人民邮电出版社, 2003/11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700