用户名: 密码: 验证码:
简化制革新技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制革是我国具有综合优势的传统产业,近十年来,随着世界产业结构的调整,我国的皮革工业发展迅速,皮革产量约占世界总产量的30%,成为世界制革中心。但是,在我国,制革工业已成为轻工业中的第三污染大户,近年来,随着人们环境意识的增强和国家环保部门新的排放标准的逐渐出台,我国皮革工业的可持续发展正面临着环境污染问题的严峻挑战。
     传统的制革过程在很宽的pH范围内进行,包括很多步骤,如浸水、浸灰、复灰、脱灰软化、浸酸、铬鞣、提碱、铬复鞣、碱化、中和、水洗、复鞣、染色、加油、酸固定等,多次进行浸灰-脱灰、浸酸-提碱、中和-酸化等步骤,反复的酸碱作用导致产生大量中性盐和废水,同时也会使皮革本身受到损害。特别是在浸酸过程中,需要加入大量的NaCl来抑制酸膨胀,大量盐的加入会造成裸皮的脱水,使成革扁平、不丰满,同时NaCl的加入会造成环境中盐的污染。
     近年来,人们为了减少制革的污染做了很多工作,如无盐浸酸、高pH铬鞣、铬鞣和复鞣染色加脂同浴等,但没有从根本上改变制革过程。
     在本论文中,我们研制了一种简化了的制革新技术,该技术利用了脱灰软化后裸皮的pH值(8.0±),其远高于胶原蛋白质的等电点,胶原羧基呈负电性。在这种pH值下,直接加入阴离子复鞣剂、酸性染料及阴离子加脂剂,由于皮革的pH值较高,便于复鞣填充材料的渗透,待渗透均匀后,稍降低pH至4.5-5.0,这样不仅固定了填充材料,也为铬鞣提供了合适的条件,这时,铬分子的渗透和固定将同时发生。并且由于铬盐本身的酸性和铬盐的水解,pH降低,有利于铬盐渗透,无需进行碱化,最后pH达到4.0左右。本工艺避免了反复的酸碱操作对皮革的损坏,一定程度上增大了皮的物理机械性能,同时避免了大量中性盐的产生,降低了污染。整个湿操作只有六步:浸水、浸灰、复灰、脱灰软化、填充/染色/加油、铬鞣等,大大简化了工序,减少了化工材料的使用,节约了时间和能耗。
     本论文用浸灰牛皮和绵羊灰皮进行实验,研究了各种填充材料对新技术制作的坯革性能的影响,进行了填充材料的配伍实验,和传统工艺进行了对比,并对制革工序中污染量的降低进行了分析。通过对铬吸收率、坯革的抗张强度、撕裂强度、收缩温度、柔软度及各项感官指标的测定表明,与传统制革工艺相比,本技术可简化工序,大大降低中性盐和废水的产生,减少制革污染,对现有制革技术是一个很大的突破,对实现制革业的清洁化生产和可持续发展具有重要意义。
Tanning is the traditional industry which has comprehensive advantages in our country. In the past 10 years, our country’s leather industry developed rapidly with the adjustment of the world’s industrial structure. The leather production of our country has accounted for about 30% of the world and become the center of the world's tanning industry. However, in China, the tanning industry has the third major pollution in the light industry. With the increase of people's environmental consciousness and the issue of new discharge standards., the sustainable development of the leather industry is facing with severe challenges.
     The conventional tanning process has a wide pH range. It involves so many steps such as soaking, liming, reliming, deliming/bating, pickling, chrome tannage, basification, chrome retanning, basify, nueturazation, washing, retanning, dyeing, fatliquoring and acid fixing. It has many acid-base operations such as liming—deliming, pickling—basifycation, nueturazation--acidification, such pH changes demands the usage of acids and alkalis, which leads to the generation of salts and wastewater, at the same time it will damage the leather. Especially, a lot of NaCl are needed to add to control acid swelling in the pickling step. So many salts would cause dehydration of pelt and make leather flat, and the addition of NaCl will cause the salt pollution in the environment.
     In order to reduce the environment pollution of leather industry, in recent years, people have done a lot of works, such as pickling without salts, high pH chrome tanning and so on. But all these works have not fundamentally changed the tanning process.
     In this paper, we studied a new simplified technology of tanning. The new technology used the pH condition of the delimed/bated pelt, which was 7.0-8.0, and this pH value outclassed the isoelectric point of collagen protein. So the collagen carboxyl was electronegativity. When the anionic retanning agent, acid dyestuff and anionic fatliquor were added in this high pH, the retanning materials could easily penetrate into leather because of the higher pH. After the materials penetrated uniformly, pH value was lowered slightly to 4.5~5.5 to fix these filling materials, and simultaneously the conditions were provided for chrome tanning. Here, the penetration and fixing of chrome molecular would be taken place simultaneously. Without basification, the solution pH value would fit for chromium penetration because of its acidity and hydrolyzation. And the final pH value was 4.0±. With the new technology, the acid-base damages to leather were avoided, the physical-mechanical properties were enhanced in a certain extent and a large number of neutral salt were avoided, the pollution was reduced. There are only six steps in the whole wet operation in the new technology: soaking, liming, reliming, deliming and bating, filling/dyeing /fatliquoring, chromium tanning, etc.. The new technology could greatly simplify the process, reduce the use of chemical materials and save time and energy.
     In this paper, we did the experiments by using cow limed hides and sheep limed hides respectively. The various filling materials’influence to the properties of crust leather was studied, the experiments of match of filling materials and the contrast with conventional process were did. At the same time, the analysis of lightening pollutions in the tanning procedures were did. According to the testing results of chromium absorption rate, tensile strength, tear strength, shrinkage temperature, softness and sensory evaluation, the new technology could simplify the process compared to the conventional process. And it also could greatly reduce the quantity of neutral salt and wastewater. The new technology was a major breakthrough to the conventional process, and it had a great significance for achieving the clean production and sustainable development of leather industry.
引文
[1 ] 石碧、陆忠兵. 制革清洁生产技术[M]. 化学工业出版社, 2004
    [2 ] 张铭让. 制革工业中的绿色化学与技术[J]. 化学进展, 1998
    [3] 高 忠 柏 , 陈 杰 . 综 合 制 革 清 洁 技 术 的 研 究 [J]. 陕 西 科 技 大 学 学 报 . 2004,22(3):67-71
    [4 ] 四川大学.西北轻工业学院. 制革化学及工艺学.中国轻工业出版社. 1999.6
    [5 ] 高忠柏,陈杰. 综合制革清洁技术的研究[J]. 陕西科技大学学报. 2004
    [6 ] 白坚. 皮革工业手册—制革分册[M]. 北京:中国轻工业出版社. 2000
    [7] M.Aloy. 国际环境委员会关于皮革生产使用清洁工艺的建议[J]. 中国皮革,1996,25(1):5
    [8 ] 但卫华. 制革工业的清洁化生产途径[J]. 中国皮革. 1998,27(6): 3-6
    [9] 李彦春,侯立杰. 皮革化学品产生的污染及控制[J]. 陕西科技大学学报, 2004,(3):56-57
    [10] 沈洪. 国外皮革工艺发展综述[J]. 四川皮革, 1997(1):38-40
    [11] J.Buljian. Clean Production[J]. Leather manufacture,2001,(1):13-16
    [12] 张铭让,林炜. 绿色化学和技术与皮革工艺的可持续发展[J]. 中国皮革 2001,1(30):5-7
    [13] 杨建军.皮革行业在环保方面应注意的几个问题[N]. 2004,(11):16
    [14] 单志华. 实现制革工艺清洁化生产面临的问题[J]. 中国皮革,2003,(9) :1-4.
    [15] 王鸿儒. 制革生产的理论与技术[M]. 北京:中国轻工业出版社,1999
    [16] 庆巴图.在制革生产过程中消除主要污染源[J].中国皮革,1995,24(8):21-24.
    [17] Ramasami T,Prasad BGS. Enviromental aspects of leather processing[J]. Paper presented at LEXPO XV, ILTA, Calcutta, India,1991:43-76
    [18] 于仙杏,苏智健等. 山羊皮制革节水工艺研究[J]. 西部皮革,2003,8:9-14
    [19] 廖隆理. 制革工艺学(上册)[M]. 北京科学出版社,2001:75-82
    [20] 丁绍兰. 治理浸灰脱毛工序污染的技术综述[J]. 中国皮革,1996,25(9):21.
    [21] 丁绍兰,章川波. 常规毁毛法浸灰脱毛废液循环使用的研究[J]. 中国皮革. 1997:14-19
    [22] 王晨,孙有昌等. 清洁化脱毛工艺的研究进展[J]. 中国皮革. 2001,(10): 22-24
    [23] 王鸿儒编著. 皮革生产的理论与技术[M]. 北京:中国轻工业出版社,1999
    [24] 苏智健,于仙杏等. 制革废水循环利用生产山羊皮服装革工艺研究[J]. 四川 皮革,1999,22:16-19
    [25] H.P.Germann.The Evolution of the Unhairing Processas Influenced by Technology, Economic and Ecological Considerations[J].JALCA,1997
    [26] 丁志文,贾继章,李丽. 制革生产中的脱毛方法与清洁化技术[J]. 陕西科技大学学报.2004,3(22):97-101
    [27] 曹 成 波 , 王 平 义 . 废 铬 鞣 液 循 环 利 用 技 术 的 研 究 [J]. 中 国 皮革,1994,23(10):27-29
    [28] 张铭让,陈武勇. 鞣制化学[M]. 北京:中国轻工业出版社,1999:29-47
    [29] 刘必琥,谢时伟. 制革厂的清洁生产技术——废铬鞣液再生利用[J]. 环境污染与防治,1996,18(2):24-26
    [30] 田 庆 芳 . 制 革 厂 铬 鞣 废 水 铬 回 收 利 用 与 处 理 [J]. 环 境 污 染 与 防治,1996,(3):13-16
    [31] 高孝忠,丁绍兰. 废铬液闭路循环使用的研究与实施[C]. 第四届亚洲国际皮革科学技术会议论文集(北京),1998:293-242
    [32] 李振亚等. 废铬鞣液无压滤回收工艺[J]. 中国皮革,1998,27(4):15-16
    [33] J.Rahgava Rao 等. 减少废液-一种实用的清洁化制革工艺[J]. 西部皮革,2005,6:49-51
    [34] J.Rahgava Rao 等. 减少废液-一种实用的清洁化制革工艺(续) [J]. 西部皮革,2005,8:52-54
    [35] 王坤余,琚海燕等. 节水技术与制革工业的可持续发展[J]. 中国皮革. 2006,35(1):20-23
    [36] 许伟. 减少制革过程中的盐污染问题[J]. 西部皮革,2006,12:37-39
    [37] 德 瑞 皮 革 技 术 公 司 . 减 少制革废水中盐含 量的方法 [J]. 《中 国皮革》,2005,34(1):42-45
    [38] 四川大学,西北轻工业学院编. 制革化学及工艺学(下) [M]. 中国轻工业出版社, 1999,6:567
    [39] 于淑贤. 现代生皮保藏技术文献综述[J]. 中国皮革,1999,28(17):23-25
    [40] 曾少余. 原皮保存中的生态概念[J]. 皮革化学与工程.1997,7(4):37-38
    [41] Kanagaraj J, Chandra Babu N K,Sadulla S,et al. A new approach to less salt preservation of raw skin/hide [J]. JALCA,2000,95:368- 374
    [42] 成都科技大学,西北轻工业学院. 制革化学及工艺学[J]. 北京:中国轻工业出版社,1996
    [43] 王群智,单志华等. 无盐浸酸与铬鞣[J]. 皮革科学与工程,2000,10(3):13-17
    [44] 张洋,宋立江. 不浸酸铬鞣法[J]. 皮革化学与工程. 1999,9(1):32-35
    [45] 王永昌. 创新性制革技术一览[J]. 西部皮革, 2005,6:53
    [46] 陈占光,陈武勇. 不浸酸铬鞣机理的探讨. 中国皮革,2002,31(11):19-22
    [47] 陈占光,陈武勇. 不浸酸铬鞣剂在牛皮工艺中的应用研究[J].中国皮革,2001,30(5):13-15
    [48] 尹洪雷,陈武勇. 不浸酸铬鞣剂在羊皮鞣制中的应用研究[J]. 中国皮革, 2003,32(19):1-3
    [49] 吴兴赤. 一次不浸酸的高浓度铬鞣中试[J]. 四川皮革,1999,21(5):24-25
    [50] 但卫华. 制革工业的清洁化生产途径[J]. 中国皮革,1998,27(6):3-6.
    [51] 吴兴赤. 制革污水治理评价及水场的节水工艺[J]. 西部皮革,2002(2):10-15
    [52] 王 坤 余 等 . 节 水 技 术 与 制 革 工 业 的 可 持 续 发 展 [J]. 中 国 皮革,2006,35(1):20-23
    [53] Reversing the Conventional Leather Processing Sequence for Cleaner Leather Production. Environ[J]. Sci. Technol. 2006, 40, 1069-1075
    [54] S Saravanabhavan, REVERSED LEATHER PROCESSING FOR CLEANER PRODUCTION[A],1-24
    [55] 印度中央皮革研究院皮革服装和配件发展中心. 一种环保型山羊鞋面革的加工方法[J]. 中国皮革,2006,35(7):6-8
    [56] 姚如发. 制革工艺发展趋势探究. 中国皮革, 2004,33(1):30-32
    [57] 许雯. 制革工业的污染治理与可持续发展.中国皮革, 2000, 29(17):11-13
    [58] 张铭让 . 绿色化学和技术与皮革工业的可持续发展 [J]. 中国皮革 , 2001,30(1):5-8
    [59] Covington, A. D. Modern tanning chemistry[J]. Chemical Society Reviews, 1997(26):111
    [60] Thanikaivelan. P. Rao, J.R. and Nair, B.U. Development of leather processing method in narrow pH profile, Part1 Standardisation of tanning process[J]. JSLTC, 2000, (84):276-284
    [61] Thanikaivelan. P. Rao, J.R. and Nair, B.U. Development of leather processing method in narrow pH profile, Part2 Standardisation of tanning process[J]. JSLTC, 2000, (85):106-115
    [62] Money C.A.. Clean Technology Challenges[C]. Proc XXV IULTCS Congress, Chennai, 1999
    [63] Rao J R, Chandrababu N K, Muralidharan C, et al. Recouping the wastewater: a way forward for cleaner leather processing[J]. Journal of Cleaner Production, 2003(1):591-599
    [64] 俞从正,刘鹏杰,陈永芳,马兴元,李晓星. 制革生产中的清洁工艺及其评价[J]. 中国皮革. 2005,34(7):32-36
    [65] Simoncini, A. and Sammarco, U. Proceedings of the XXIII IULTCS Congress[C],Germany,1995
    [66] Ramasami T. Pollution control in leather industry — emerging technological options[J]. Paper presented at IUPAC, 1998
    [67] 段 镇 基 . 皮 革 工 业 生 产 中 存 在 的 问 题 及 其 对 策 [J], 中 国 皮革,2001,30(23):22-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700